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ABSTRACT
Technological progress in �ood monitoring and the proliferation
of cost-e�cient IoT-enabled water level sensors are enabling new
streams of information for today’s smart cities. StormSense is an in-
undation forecasting research initiative and an active participant in
the GCTC seeking to enhance �ood preparedness in the Hampton
Roads region for �ooding resulting from storm surge, rain, and tides
and demonstrating replicability of the solution. Herein, we present
street-level hydrodynamic modeling results at 5m resolution with
conventional �ood validation sources alongside new emergent tech-
niques for validating model predictions during three prominent re-
cent �ooding events in Hampton Roads during Fall 2016: Hurricane
Hermine, Tropical Storm Julia, and Hurricane Ma�hew. Emerg-
ing validation techniques include: (1) IoT-water level sensors, (2)
crowd-sourced GPS maximum �ood extent measurements, and (3)
geospatial �ooded area comparisons with drone-surveyed �ood
extents via ESRI’s Drone2Map. Model uncertainty was validated
against 5 newly-established tide gauges within the domain for an
aggregate vertical root mean squared error of ±8.19 cm between
the sensor observations and model predictions. Also, geospatial
uncertainty was assessed using mean horizontal distance di�erence
as ±4.97 m via 206 crowd-sourced GPS �ood extents from the Sea
Level Rise App.

CCS CONCEPTS
•Computer systems organization → Embedded and cyber-
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1 INTRODUCTION
Cities are inherently complex systems subject to innumerable non-
linear in�uences on how to e�ciently allocate their limited re-
sources [17]. �is is certainly true for handling emergency �ooding
conditions in the near-present and how best to prepare for the
imminent �ood-related disasters of the future. Analysis of the local
sea level trend from one water level monitoring sensor at Sewells
Point in the City of Norfolk depict a long-term increase in mean
sea level of 4.59 mm/year ±0.23 mm/year since its establishment
in 1928, projecting that rising sea levels will inevitably exacerbate
�ooding conditions from storm events in the future [3, 16].Cities,
counties, and town governments, local institutions, and private con-
tractors, provide many solutions, each of which must be evaluated
in its own way. However, provision of these serviceable �ooding
solutions o�en impacts the availability of other services. Many
existing smart cities solutions, such as those implemented in the
Global City Teams Challenge (GCTC) action clusters, are designed
to have a measurable impact on speci�c key performance indica-
tors. Because many of today’s smart city/community development
e�orts are isolated and customized projects, the National Institute
of Standards and Technology (NIST) has launched the GCTC to
encourage collaboration and the development of standards. �e
GCTC’s long-term goal is to demonstrate a scalable and replica-
ble model for incubating and deploying interoperable, adaptable,
and con�gurable Internet of �ings (IoT)/Cyber-Physical Systems
technologies in smart cities/communities. �is program aims to
help communities bene�t from working with others to improve
e�ciency and lower costs. NIST created the Replicable Smart City
Technology (RSCT) cooperative agreement program to provide
funding to enable awardee City/Community Partners to play a lead
role in the team-based GCTC e�ort to pursue measurement sci-
ence for replicable solutions [1]. �e RSCT program was designed
to support standards-based platform approaches to smart cities
technologies that can provide measurable performance metrics.
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Figure 1: Map of the Hampton Roads Region of Virginia
with StormSense partner agreement cities outlined in gray
superposed with radar-derived rainfall totals (in.) over 72
hours from Sept. 19-22, 2016, during Tropical Storm Julia.
�e region has an area of 1,365 sq. km. (527 sq. mi.) and can
be modeled using lidar elevations and high-res. bathymetry
at 5 m resolution.

�e StormSense project brings together partnering municipal
governments in Hampton Roads, Virginia, including: Newport
News, the RSCT grant recipient, Norfolk, Virginia Beach, Hampton,
Chesapeake, Portsmouth, Williamsburg, and York County along
with the Virginia Institute of Marine Science (VIMS), with emphasis
on replicating a �ood forecasting andmonitoring solution across the
entire region (Figure 1). As an example, in one neighborhood in the
City of Newport News that is subject to frequent �ooding, typically
a large number of emergency responders were required to assist
in evacuating the complex [2, 10]. However, by remotely alerting
residents that thewater is rising quickly on the local stream, the past
two �ooding events have not required any emergency responders to
assist them in evacuating, who were subsequently able to dedicate
their emergency services elsewhere [18]. �e goal of establishing
a �ood monitoring network can be cost-prohibitive, but in the
long term, the anticipated bene�ts of improved quality of life for
a region’s denizens are sizable. �e goal is to replicate this level
of success throughout the cities of Hampton Roads by providing a
greater density of water level sensors. As an added bene�t, residents
are taking responsibility for their assumed risk of living adjacent to
�oodplains, resulting in a marked spike in the number of residents
who have opted for �ood insurance, with 2,231 claims totaling $25M
in damage a�ributed to Hurricane Ma�hew [9]. Many of these
properties are insured through the Federal EmergencyManagement
Agency’s (FEMA) National Flood Insurance Program (NFIP), but
many properties outside of the surveyed �oodplain do not have
preferred risk policies.

A stakeholder workshop conducted on January 19, 2016 with
representatives from Hampton Roads regional emergency manage-
ment, storm water engineering and planning municipal sta�, as
well as academic and non-government organization partners uncov-
ered a need for near-term, locally scaled, and ‘realistic’ scenarios to
communicate risk [5]. Emergency managers are currently limited
in their communications tools and know them to be inadequate
[5, 6]. A be�er understanding of the decisions people are making

Figure 2: Prototype of Newport News Smart Cities Planning
Dashboard with water level sensor installation sites relative
to FEMA’s �ood zones and NFIP repetitive loss claims, and
GIS �ood-vulnerable properties identi�ed via Hazus for a
100-year �ood scenario in: A) Salters Creek, vulnerable to
Coastal Flooding, and B) along Newmarket Creek, an inland
regulatory �oodway vulnerable to rainfall-induced �ood-
ing.

to adapt to �ooding is needed. Di�erences are expected in both
�ood perception and behavior between urban and rural audiences.
A pilot study conducted in 2015 examining information logistics for
drivers on �ooded roads in Norfolk found that decisions made about
driving were strongly situational, based upon the importance, tim-
ing and location of the driving plans, but that a regional approach to
communication was needed and lacking [6]. Time living in the area
was an important factor in risk perception and that information
comes from local knowledge, recognized sources of information,
and sometimes a haphazard mix of both. Examining these issues
in the context of �ood communication and further elucidating the
currently vague appropriate �ood model parameters for accurate
inundation prediction at 5 m scale in a broader context is needed,
leading to the following �ood research questions:

• How should bo�om friction be appropriately parameter-
ized for high-resolution street-level sub-grid inundation
models?
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• How should percolation/in�ltration of rainwater through
di�erent density surfaces present in urban and rural envi-
ronments be accurately accounted for in a high-resolution
sub-grid model?

• How should model results be deseminated to enhance �ood
preparedness, and what communication methods and mes-
sages in�uence �ood risk decision-making and behaviors
(including information-seeking and adaptive response)?

To a�empt to address these questions, examples from a recent
installment of water level sensors by the United States Geological
Survey (USGS) and the City of Norfolk will be used as a proxy for
a suite of ultrasonic water level sensors currently being installed
in Hampton Roads via StormSense. �e sensors will be fed into a
geographic information system (GIS) �ood risk dashboard (example
depicted in Figure 2) to demonstrate the utility of a higher-density
water level sensor network and how future �ood forecasting e�orts
can be augmented for the be�erment of citizen safety. �e system
can be used to study inundation extents and timing during �ooding
events in order to:

(1) Build public awareness of inundation, and recurrent �ood-
ing through predictable geospatially locatable events,

(2) Collect quality crowd-sourced inundation extent data to
test and validate the numerical model via citizen science,
and

(3) Enhance both the scienti�c understanding of the physi-
cal systems involved and the public understanding of the
science of inundation.

In pursuit of this, the StormSense model will be spatially vali-
dated during three 2016 �ooding events: Hurricane Hermine, Tropi-
cal Storm Julia, and Hurricane Ma�hew, via the following emergent
data sources in the subsequent sections: 1) IoT-water level sensors,
2) Crowd-sourced GPS maximum �ood extent measurements col-
lected using the crowd-sourced data-collection app, ‘Sea Level Rise’,
and 3) Geospatial �ooded area comparisons with drone-surveyed
�ood extents via Drone2Map so�ware.

2 STUDY AREA AND MODEL INPUTS
Hampton Roads has been described as the second-largest popu-
lation center at risk from sea level rise, with ¿400,000 properties
exposed to �ood or storm surge inundation [19]. �e region has a
population of over 1.7 million people, living and traveling on roads
exposed to both severe and increasing frequent chronic ”nuisance”
�ooding [8]. Existing �ood communication and messaging systems
have not yet responded to the changing risk pa�erns brought by sea
level rise and have not been able to meet the needs of diverse at-risk
communications audiences. A be�er understanding of �ood risk
perception, information seeking behavior and decision-making can
inform the development of new communications tools and �ood
risk messaging [20]. �is is the perceived intersect between new
IoT-technologies and emerging �ood model validation methods.
For each storm event, water levels driven via 36-hour tidewatch
forecasts provided by VIMS at Sewells Point were used to drive
surge and tides, alongside wind and pressure inputs used to drive
the model atmospherically, similar to [14].

2.1 Groundwater Inputs
Recent advancements in hydrodynamic computation have enabled
models to predict the mass and movement of �ood waters to predict
water velocities at increasingly �ner scales. However, the current
version of the sub-grid inundation model VIMS has developed does
not fully incorporate a comprehensive groundwater model that
slowly returns �ood waters that in�ltrate through the soil back to
the nearest river. �is is a valuable aspect of �ooding relevant for
city planning perspectives using sub-grid hydrodynamic modeling
that has been successfully developed and employed throughout the
Netherlands, Germany, and Italy [7]. �ere is an array of ground-
water wells that exist in the Hampton Roads Region, bored and
monitored by the USGS [4]. �ese temporally-varying values for
hydraulic conductivity could provide some valuable input infor-
mation for the hydrodynamic model via Richard’s equation [13].
However, this does not currently account for the standard prac-
tice of near-surface groundwater displacement via pumping prior
to anticipated �ooding events conducted by cities with residents
in the �oodplains where a high water table regularly exacerbates
even minor rainfall events [15]. Nevertheless, values observed near
these sites prior to forecast simulations were used as the model’s
initial condition to estimate in�ltration through previous surfaces,
to counterbalance precipitation inputs, similar to [13].

In forecast approaches, groundwater in�uence is usually ne-
glected, since typically storm surge is a short-term event, and
groundwater recharge is more of a delayed and long-term process,
however, it is becoming increasingly important to also consider
in forecasting longer-term extratropical �ooding events such as
nor’easters where �ooding and high winds can persist for 5 or
more tidal cycles. Although, VIMS have been incorporating di�er-
ent forms of percolation of �ood waters through di�erent types
of ground cover ranging from vegetated to impervious within the
sub-grid model more recently [12, 13] there are still some poten-
tial applications of storm water that could be manually added to
the existing sub-grid model version to account for surge �ooding
backups through storm water drainage without su�cient back�ow
prevention [13].

2.2 Precipitation Inputs
�e inundation model could be used to guide decisions related to
storm water management by using existing sensor-derived precip-
itation data in several cities. �is could be expanded to include
data observations from rain gauges that are currently operating on
sewer and storm water pump stations in the localities, and from
the Hampton Roads Sanitation District (HRSD), which combined
currently amounts to ∼ 130 sensors. With an iteratively interpo-
lated series of precipitation measurements, further research could
also be conducted with these sensors and the 10 proposed water
level sensors to model localized microburst precipitation events.
As evidenced in the series of interpolated rainfall images in Fig-
ure 1, a combination of these rainfall data with new observations
from a high-density water level sensor network, would help be�er
explain why one neighborhood experienced a drizzle and a neigh-
boring community experienced a deluge during Hurricane Ma�hew.
Furthermore, this could aid researchers to help model ways that
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the city’s systems could potentially be augmented for greater re-
silience to precipitation -induced �ooding threats in the future. In
the simulations presented herein, model results are calculated with
temporally-varying precipitation inputs from the currently-private
rain gauge data from HRSD.

3 WATER LEVEL SENSOR COMPARISON
StormSense is currently in the process of identifying and surveying
sites for new IoT-bridge-mounted ultrasonic and microwave radar
water level sensors in Newport News, Virginia Beach, and Norfolk,
as outlined on the StormSense project’s website at stormsense.com.
�ese sensors will complement the previously installed array of
2 gauges operated by NOAA, 9 gauges recently installed in 2015-
2016 via Hurricane Sandy relief funds operated by the USGS, and 1
gauge operated by VIMS in Hampton Roads. While these remote
sensors are largely X-band radar sensors transmi�ing data through
satellite signals, the IoT-sensors will enlist ultrasonic sensors and
transmit data via cellular transmission protocols with the focus
of creating a replicable cost-e�ective network of sensors. Some
perceived utilities of water level sensors are viewed as follows:

(1) Archiving of water level observations for �ood reporting
(2) Automated targeted advance �ood alert messaging
(3) Validation/inputs for hydrodynamic �ood models

A collaboration between VIMS and the constituent partner Cities
of: Newport News, Hampton, Norfolk, Virginia Beach, Portsmouth,
Chesapeake, Williamsburg, and York County, in Hampton Roads,
VA, will provide a prototype for strengthening emergency response
times by providing spatial �ood extent predictions in interactive
map form at 5 m resolution. �e plan for integrating the inundation
model into a more permanent warning system involves planned
connection with the new sensors to the cities� current Everbridge
noti�cation systems for alert messaging when the sensor observes
�ooding at user-speci�ed elevations, and integration with model
predictions for timely forecasted alerts once the sensors are tidally-
calibrated. �is approach demonstrates the bene�ts of replicating
shared smart city solutions across multiple cities and communities
that are facing similar �ood challenges and it aligns with the goals of
GCTC and RSCT programs. It is the hope that the recent installation
of water level sensors provided by the e�orts of the USGS can be
used as an opportunity to demonstrate some of the bene�ts of
added water level sensors while the alternative model validation
approaches described herein may be replaced with more reputable
and replicable monitoring methods soon.

A comparison of �ve existing water level sensors were used
to temporally and vertically validate the hydrodynamic model’s
predictions. �ese sensors are located at: 1) National Oceanic and
Atmospheric Administration (NOAA)’s Money Point sensor, the
USGS’s permanent sensors at 2) Rt. 17 near Portsmouth, and 3) Bai-
ley Creek at Dock Landing Rd. in Chesapeake, a temporary USGS
rapid-deployment gauge at 4) the Hague in Norfolk deployed only
during Hurricane Hermine, and 5) water level sensor at May�ower
Crescent pump station maintained by the City of Norfolk. �ese 5
gauges resulted in an aggregate vertical root mean squared error
(RMSE) of ±8.19 cm over the 36-hour Hurricane Hermine fore-
cast simulation [14]. �e four gauges present during Hurricane
Ma�hew yielded a more favorable aggregate RMSE of ±4.69 cm.

Tropical Storm Julia resulted in 12-14” of rainfall a week prior to
Hurricane Ma�hew, ameliorating high water table drainage issues
during the storm (Figure 1). Both storms produced minimal surge
related coastal �ooding and inundation impacts were far more pro-
found inland, making coastal and estuarine water level sensors less
practical for veri�cation of inland inundation extents or depths.

4 CROWDSOURCED GPS FLOOD EXTENTS
Hurricane Hermine had a more signi�cant storm surge measured
by water level sensors in Hampton Roads and less rain, while the
opposite was true for Hurricane Ma�hew. �e relatively new cit-
izen science ’Sea Level Rise’ mobile app provided 206 points of
geospatial data for use with validating predicted �ood extents in
Norfolk during Hurricane Hermine with a favorable Mean Hori-
zontal Distance Di�erence (MHDD) of ±4.97 m (Figure 3A). Sites
labelled B-D in Figure 3 represent the modeled maximum �ooding
extents calculated by the street-level hydrodynamic model in the
�ood-prone Larchmont neighborhood of Norfolk. Positioned on
a peninsula bounded by the Elizabeth River to the west and the
Lafaye�e River to the north and east, the area is no stranger to
tidal ’nuisance’ �ooding. By measuring the horizontal distances
from the GPS-reported points of maximum �ooding extents from
the ’Sea Level Rise App’, to the edge of the model predicted max-
imum �ooding extent contour line, an assessment of geospatial
accuracy may be reached with minimal processing e�ort using the
standard distance formula [17,18]. In Figure 3B at the houses along
Richmond Crescent, the MHDD between the 65 GPS observation
points and the model-predicted maximum �ood extent contour
line is ±6.72 m. Figure 2C depicts a slightly more favorable com-
parison with a MHDD of ±3.92 m along Cambridge and Carroll
Crescent’s 74 points. Finally, in Figure 3D, 48th Street near ODU
and Hampton Blvd’s 67 GPS observations were in agreement with
model-predicted �ooding extents with a MHDD of ±4.48 m.

An apparent caveat of this geospatial MHDD approach is that
it is only a relevant metric in areas with minimal sur�cial slope
[17,18], like those that characterize Hampton Roads, VA. In areas
with steeper slopes immediately adjacent to the shoreline, model
over-prediction of several inches or even feet in the vertical may
only manifest in minuscule increments of change on the horizontal
scale. However, lack of these app data or crowdsourced data on
ArcGIS online in the region during tropical Storm Julia or Hurricane
Ma�hew (due to mass power outages) led to the use of emerging
data validation methods from image analysis of drone videos via
Drone2Map.

5 DRONE2MAP FLOODED AREA
COMPARISONS

Useful information can be extracted from iterative image analysis of
publicly uploaded drone footage to internet video repositories (e.g.
YouTube, Vimeo, etc.) released under the umbrella of the shared
creative commons license for research. O�en, the rapid ba�ery
drain constraints of �ight control and video streaming result in
short drone �ight times of ¡30 minutes. �us, accompanying aux-
iliary data collection alongside �ight-control information is o�en
an a�erthought. �rough estimation of altitudes and retroactive
construction of pre-programmed �ight plans, a video may be parsed
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Figure 3: Maximum �ooding extents predicted for 2016 Hurricane Hermine on Sept. 2nd validated via crowdsourced GPS
monitoring of maximum �ooding extents on Sept 3rd in the Larchmont neighborhood of Norfolk, VA.

Figure 4: A) Single �ooding image frame from drone video
over drone video footage of LlewellynAve nearHavenCreek
Boat Ramp in Norfolk at 2:30pm on Oct. 10, 2016 a�er Hur-
ricane Matthew. B) Laplace transform of pixel values for
edge detection of water’s edge. C) Resulting polygon (white)
of water’s edge from Drone2Map stitched edge-detected im-
agery representing extracted �ood extents [14]. Source
Video: https://youtu.be/PkvjnqDlTcQ

into a series of image frames that may be individually prescribed
estimated GPS metadata to aid in �ood model validation in places
where there is an absence of validated reputable water level sensor
measurements. Figure 4 depicts an estimated Drone2Map �ood-
ing extent captured via drone at 2:30pm on October 10th, 2016 on

Llewellyn Ave of a mostly oblique segment of video. Figure 4 de-
picts drone video footage at the intersection of Monticello Ave and
Je�erson Ave in Norfolk from an overhead aerial view shows a more
uniform depiction of �ooding, although there are complications in
each series of images form uniform edge detection methods. �e
oblique view su�ers from line of sight complications with taller
buildings, while the overhead viewpoint can be hampered by shad-
ows. �is can have potentially worse implications for detecting
the dark transition between the water’s edge and shadows cast by
tall infrastructure becoming more apparent later in the day as the
shadows elongate. When calculating the mean horizontal distance
di�erence of the resulting edge-detected interface between wet and
dry pixel values, the example is Figure 4 at the Haven Creek Boat
Ramp in Norfolk at 3:00pm on Oct. 10, 2016, resulted in an AHDD
of ±14.39 m from 137 points arti�cially constructed at 5 m regular
intervals along the interface line.

6 CONCLUSIONS
�e hydrodynamic model in Hampton Roads, VA, was e�ectively
validated using 5 water level sensors within the model domain
during Hurricane Hermine to yield a vertical RMSE of 8.19cm, as
a primary time-honored model validation method that has been
embraced by the hydrodynamic modeling community as a staple
for determining the uncertainty of their predictions. Typically, the
USGS provides a valuable service in the form of surveying high
water marks a�er major �ood events, but as none of these events
were truly catastrophic �ood events in Hampton Roads, VA, rela-
tive to the southern U.S. Eastern Seaboard, high water lines in the
form of GPS maximum �ood extent points from the citizen science
App, ’Sea Level Rise’ were used instead as a secondary form of
model validation. Results from 3 sites in Norfolk yielded a MHDD
of ±4.97 m during Hurricane Hermine. A tertiary �ood validation
approach involving the use of the newly-released Drone2Map so�-
ware from ESRI was employed to successfully develop maximum
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�ooding extent polygons from aerial drone survey footage. �e
footage was parsed into frames at quarter-second intervals, and
batch-processed through image analysis to run an edge detection
algorithm using a Laplacian �lter. �is highlighted areas of the
images where stark contrasts in wet/dry (dark/light) pixel values
were used to highlight �ooding extents at the time of the �ight. �e
frames were georeferenced and mosaicked together in the so�ware,
and then compared with the analogous time-aware raster model
output layer for a reasonably agreeable estimated AHDD of 14.39 m
(±3 of 5 m resolution sub-grid cells). It is worth noting that in cases
of heavy rainfall, this street-level sub-grid hydrodynamic modeling
also performs the function of a hydrologic transport model to pre-
dict �ow accumulation to aid in identi�cation of areas that are most
susceptible to �ooding. �is is useful for resilient building practices,
as the model could also identify potential areas where development
of green infrastructure could commence, with the understanding
that a sub-grid model represents infrastructural features and many
city lifelines be�er than most conventional hydrodynamic models
[11]. In the future, smart city systems could evaluate the e�cacy
of candidate blueprint solutions to �ood-related problems, and sug-
gest how they could be addressed with a street-level inundation
model (bold):

• Reduction of impervious surfaces is addressed by changes
to spatially-varying soil in�ltration values

• Land use changes is addressed by the model grid mesh
modi�cation to remove/add buildings/
infrastructureANDchanges to spatially-varying soil
in�ltration values

• Combination gray and green infrastructure opportunities
are tested by changes to spatially-varying soil in�ltra-
tion values in areaswheremodi�ed green infrastruc-
ture lie

• Increase in storm water “holding” management systems is
modeled byDigital ElevationModel modi�cation and
adding sources/sinks for newholding reservoirs/ ponds
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