
PHYSICAL REVIEW B 95, 245119 (2017)

High-field magnetization and magnetic phase diagram of α-Cu2V2O7
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High-field magnetization of the spin-1/2 antiferromagnet α-Cu2V2O7 was measured in pulsed magnetic fields
of up to 56 T in order to study its magnetic phase diagram. When the field was applied along the easy axis
(the a axis), two distinct transitions were observed at Hc1 = 6.5 T and Hc2 = 18.0 T. The former is a spin-flop
transition typical for a collinear antiferromagnet and the latter is believed to be a spin-flip transition of canted
moments. The canted moments, which are induced by the Dzyaloshinskii-Moriya interactions, anti-align for
Hc1 < H < Hc2 due to the anisotropic exchange interaction that favors the antiferromagnetic arrangement along
the a axis. Above Hc2, the Zeeman energy of the applied field overcomes the antiferromagnetic anisotropic
interaction and the canted moments are aligned along the field direction. Density functional theory was employed
to compute the exchange interactions, which were used as inputs for quantum Monte Carlo calculations and then
further refined by fitting to the magnetic susceptibility data. Contrary to our previous report in Phys. Rev. B
92, 024423 (2015), the dominant exchange interaction is between the third nearest-neighbor spins, which form
zigzag spin chains that are coupled with one another through an intertwining network of the nonnegligible nearest
and second nearest-neighbor interactions. In addition, elastic neutron scattering under the applied magnetic fields
of up to 10 T reveals the incommensurate helical spin structure in the spin-flop state.

DOI: 10.1103/PhysRevB.95.245119

I. INTRODUCTION

A spin-flop transition in collinear antiferromagnetic sys-
tems can be observed when a magnetic field is applied
parallel to the easy axis of the antiferromagnet. The strength
of the applied magnetic field that forces the spins to flop
depends on exchange interactions in the systems. The spin-flop
transition, if present, causes the spins to reorient themselves
perpendicular to the applied magnetic field in order to
compromise the exchange-interaction energy with the Zeeman
energy. This phenomenon was predicted 80 years ago [1] and
has been observed in several compounds [2–5]. Generally,
the spin-flop transition can be observed as a single transition
with a sudden increase of magnetization M at a critical
field Hc as well as the change of magnetic susceptibility
defined by the slope of the M-H curve below and above
Hc. However, there are a few cases in which two successive
magnetic phase transitions are observed, for example, in the
quasi-one-dimensional BaCu2Si2O7 system [6–8], of which
the underlying mechanism is still unresolved. In this article
we report on the two-stage spin reorientation in α-Cu2V2O7

using high-field magnetization measurements on single crystal
samples. Despite a single spin-flop transition being observed
in its cousin phase β-Cu2V2O7 [9] or other antiferromagnetic
systems [3,4,10], we instead found two successive jumps in
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the magnetization of α-Cu2V2O7 similar to those observed in
BaCu2Si2O7.

α-Cu2V2O7 crystallizes in the orthorhombic system
(Fdd2) with a = 20.645(2) Å, b = 8.383(7) Å, and c =
6.442(1) Å [11,12]. Below TN = 33.4 K, the system undergoes
a paramagnetic to antiferromagnetic transition. In the ordered
state, S = 1/2 Cu2+ spins align antiparallel along the crys-
tallographic a axis with their nearest neighbors [13,14]. The
magnetization and powder neutron scattering studies suggest
small spin canting along the c axis [13,14] as a result of
the antisymmetric Dzyaloshinskii-Moriya (DM) interaction.
The exchange interactions in α-Cu2V2O7 are, to date, still
open to debate. Our previous analysis using quantum Monte
Carlo (QMC) simulation [13] showed two possible models
with different values of the nearest-neighbor interaction J1

and second nearest-neighbor interaction J2 that can be equally
used to describe the broad maximum observed in the magnetic
susceptibility data. On the other hand, density functional
theory (DFT) calculations by Sannigrahi et al. [15] revealed the
dominant third nearest-neighbor antiferromagnetic interaction
J3 (see Fig. 1 for the diagram). The latest study on a powder
sample using inelastic neutron scattering also supports the
leading J3 model [16]. Both DFT and powder inelastic neutron
scattering studies qualitatively suggest that the antiferromag-
netic third nearest-neighbor interaction J3 forming zigzag
chains along the c axis [Fig. 1(c)] via a complex Cu-O-V-O-Cu
pathway (through the VO4 tetrahedra) is nonnegligible and
possibly the strongest exchange interactions. In addition,
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FIG. 1. Diagrams showing the network of Cu2+ ions in
α-Cu2V2O7. (a) The nearest-, second-nearest, and third-nearest
neighbor interactions, J1, J2, and J3, are represented by red, green,
and gray lines, respectively. (b) The nearest-neighbor interaction J1

forms zigzag chains which run along the [011] and [011̄] directions.
(c) The third nearest-neighbor interaction forms zigzag chain along
the c axis.

the interconnection between electricity and magnetism in
α-Cu2V2O7 has been studied to reveal its magnetoelectric
properties [14,15], which might find useful applications. This
variety of interesting phenomena and inconclusive understand-
ing of the nature of the exchange interactions in α-Cu2V2O7

have led us to this more detailed investigation of the magnetic
properties of the system.

This paper presents a study of the magnetic properties
of single-crystal α-Cu2V2O7. The experimental details are
described in Sec. II. In Sec. III A we discuss the magnetization
measurements at low field. In Sec. III B the DFT calculation
and QMC simulation are discussed and compared to the low-
field magnetic susceptibility data. In Sec. III C we investigate
the magnetic phase transitions using high-field magnetization
and present the magnetic phase diagram of this system. Elastic
neutron scattering measurements under applied magnetic
fields of up to 10 T are discussed in Sec. III D followed by
the conclusion in Sec. IV

II. EXPERIMENT

The single crystals of α-Cu2V2O7 studied in this paper
were grown by the vertical Bridgman technique. The detailed
method of crystal growth and characterization are described
elsewhere [13]. The crystals with dimensions of about 4 × 4 ×
4 mm3 were aligned using a four-circle x-ray diffractometer
with Mo Kα radiation and cut perpendicular to the crystallo-
graphic b and c axes (the a axis is the naturally cleaved facet).
Magnetic properties at low fields (up to 7 T) were studied
using a superconducting quantum interference device (MPMS-
XL, Quantum Design) down to the base temperature of
1.8 K. Magnetization as a function of field and temperature
was measured when the magnetic field was applied parallel
to each of the crystallographic axes. To study the magnetic
properties at high fields, the nondestructive pulsed magnet at
the International MegaGauss Science Laboratory, Institute for
Solid State Physics (ISSP), University of Tokyo was used to

generate pulsed magnetic fields of up to 56 T. Magnetization
was measured by induction using a coaxial pick-up coil. The
single-crystal sample was aligned so that the applied field was
either parallel or perpendicular to the a axis, and cooled to the
base temperature of 1.4 K using a liquid 4He cryostat.

The DFT calculations were performed using the QUANTUM

ESPRESSO simulation package [17]. All calculations were
done within the generalized gradient approximation in the
form of Perdew, Burke, and Ernzerhof (PBE) [18] for the
exchange and correlation potentials with the Hubbard U

correction (GGA+U ) in order to explicitly take into account
the correlated effect of the 3d electrons of Cu2+ ions. We
adopted the values of the on-site Coulomb and exchange
interaction parameters U = 7.0 eV and J = 0.5 eV according
to similar compounds [19,20]. To cross check the choice of the
Coulomb parameters, we calculated the electronic structure,
e.g., a band gap for several values of U , and evaluated the
exchange coupling for U = 6.0, 7.0, and 8.0 eV. The effect of
core electrons was modeled through the use of ultrasoft pseu-
dopotentials with the plane-wave cutoff of 80 Ry. The Gaussian
broadening technique was used and meshes of 2 × 4 × 4
and 4 × 6 × 6 k points were sampled for the Brillouin-zone
integrations. All calculations were done with the experimental
crystal structure whose lattice parameters are a = 20.6786 Å,
b = 8.4052 Å, and c = 6.4462 Å [13]. The internal lattice
coordinates from the experimental measurements were also
used in the calculations. The crystal structure of α-Cu2V2O7

belongs to the Fdd2 space group, thus yielding the 88-atom
unit cell. To address the consistency of the structural data,
we performed the structural relaxation; the discrepancy of
the atomic coordinates is less than 0.2 Å and the forces do
not exceed 0.001 Ry/a.u. This small distortion in the atomic
coordinates weakly affects the electronic structure and the
exchange coupling. The obtained exchange parameters were
then used to construct a spin network for the QMC simulation
with LOOP algorithm [21] using the simulation package ALPS

[22] to calculate the magnetic susceptibility for comparison
with the experimental data.

Finally, the spin-flop state was investigated microscopically
using elastic neutron scattering at the SPINS instrument, NIST
Center for Neutron Research (NCNR), USA. The single crystal
of mass 1.39 g was aligned so that the bc plane was in the
scattering plane. The fixed final neutron energy of 5 meV was
utilized with the horizontal collimations of open–80′–sample–
80′–detector. The vertical magnetic field between 0 to 10 T
was applied along the crystallographic a axis to investigate the
spin-flop transition and the magnetic structure of α-Cu2V2O7

in the spin-flop state.

III. RESULTS AND DISCUSSION

A. Low-field magnetization

In our previous work [13], the magnetization as a function
of magnetic field M(H ) on single-crystal α-Cu2V2O7 was
measured with the applied magnetic fields of up to 7 T along
two orthogonal directions, i.e., H ‖ a and H ⊥ a. The results
showed magnetic anisotropy between the a axis and bc plane.
Weak ferromagnetism, which suggests canted moments as a
result of the DM interaction, was observed in the ordered
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FIG. 2. Magnetization as a function of field at 1.8 K near the zero
field which is applied along the a axis (black diamonds), b axis (green
circles), and c axis (blue triangles). The solid line is a linear fit to
the magnetization at H > 0.1 T and interpolated to H → 0. Inset:
The magnetization along the a axis up to the field of 7 T shows the
magnetic phase transition at 6.3 T indicated by a peak in dM/dH

and denoted by the red line.

state for H ⊥ a. A later study on this system by Lee et al.
[14] revealed, from the magnetization measurements along
all three crystallographic axes, that the spins are only canted
along the c axis and the canting angle varies from 2◦ to 7◦
depending on the applied magnetic field from 0 to 9 T. As a
result, the relevant DM vectors between the pairs of nearest
neighbors (Dij · Si × Sj ) can only point along the b axis given
the collinear spin structure along the a axis. In this work,
we performed a detailed investigation of the magnetization
as a function of field as well as magnetic susceptibility as a
function of temperature on the aligned single crystals when
the magnetic field was applied along all three crystallographic
axes. The samples studied in this work are from the same batch
as those reported in our previous study [13].

Figure 2 shows the magnetization as a function of field
between −1 and 1 T for the applied field along each of the
crystallographic axes at 1.8 K. These results confirm that the
weak ferromagnetism exists only for the field along the c axis,
where the spontaneous magnetization is clearly observed, in
agreement with the work by Lee et al. [14]. The remnant
magnetization as the field approaches zero M(0) is determined
from the linear fit for H > 0.1 T. The interpolation gives
M(0) = 0.082(1) μB , from which the canting angle η can be
calculated using η = sin−1 M(0)

gμBS
yielding η = 4.7(1)◦. Note

that the value of M(0) in our previous report [13] was not
precisely determined since the magnetic field was applied
perpendicular to the a axis but not precisely along the c axis.
The different values of M(0) suggest that the applied field in
Ref. [13] was ∼30◦ away from the c axis.

The magnetization along the a and b axis, on the other
hand, show a linear relation through zero field implying that
the spin component along those axes are antiparallel resulting
in zero net spontaneous magnetization, which is also consistent
with the magnetic structure reported earlier [13,14]. Since the
canting is along the c axis and the spins anti-align along the a

axis, the relevant component of the DM vector, which in our

 = 

FIG. 3. Magnetization as a function of applied field with H ‖ c at
different temperatures from 1.8 to 35 K (only selected temperatures
are shown). Inset shows the power-law fit to the magnetization at zero
field M(0) (black circles). Error bars are smaller than the plot symbol.
The blue triangle in the inset is the magnetization as a function of
temperature when the field of H = 100 Oe is applied along the c axis.

previous work was proposed to lie within the bc plane, must be
solely along the b axis. Interestingly, when the field is applied
along the a axis, a magnetic phase transition appears at 6.3 T
as shown in the inset of Fig. 2. This magnetic phase transition,
which is not observed when H ‖ b, is due to the spin-flop
transition and will be discussed in detail in Sec. III C.

A series of M(H ) measurements at different temperatures
(Fig. 3) shows that the remnant magnetization and hence the
value of M(0) decreases as temperature increases; M(0) goes
to zero at TN (the inset of Fig. 3). A fit of the measured
temperature dependence of M(0) to the power-law M(0,T ) ∝
(1 − T/TN )β for 20 < T < 33.4 K yields β = 0.27(3). This
value of the critical exponent is quite close to that obtained
from the order parameter measurement of the magnetic Bragg
intensity using neutron scattering [β = 0.21(1)] [13]. The
inset also shows the field-cooled magnetization, measured
at the low-field of 100 Oe along the c axis, as a function
of temperature which, as expected, perfectly follows the
temperature dependence of M(0).

The magnetic susceptibility measured at the applied field
of 1 T along the a and c axis are shown as a function of
temperature in Fig. 4. The data for H ‖ b (Fig. 8) will be
discussed in Sec. III B. When the field is applied along the
a axis, there is a sharp Néel transition at TN ≈ 35 K which,
as shown in the inset of Fig. 4(a), slightly decreases toward
lower temperature when the applied field is increased [see
Fig. 11 for the H (T ) phase diagram]. For H ‖ c, there is a
spontaneous magnetization below TN due to the spin canting
as described above. The value of the remnant magnetization as
T → 0 along the c axis is much higher than that along the other
two axes. Above 50 K the magnetic susceptibility shows a clear
and smooth curve following the Curie-Weiss law up to 300 K.
It should be noted that the previously observed broad peak in
the magnetic susceptibility data for H ⊥ a around T = 50 K
can now be observed only in the H ‖ b data [Fig. 8(a)]. This
board peak will be analyzed and fitted in the next section.
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FIG. 4. Temperature dependence of the magnetic susceptibility
when a field of 1 T is applied (a) along the a axis and (b) c axis. Inset
in (a) shows the Néel transition at different applied fields from 1 T
(black diamonds) to 7 T (blue triangles) with y offset. The inset in
(b) shows a clear and smooth decrease in the magnetic susceptibility
as the temperature increases following the Curie-Weiss law.

B. Density functional theory calculation and quantum Monte
Carlo simulation

In order to derive the exchange interactions between the
Cu-Cu couplings, we performed total energy calculations for
120 different magnetic structures including the ferromagnetic,
antiferromagnetic, and other spin configurations. The calcu-
lations show that structures with ferromagnetic and random
spin structures are more energetic than the antiferromagnetic
structure. The energy of the antiferromagnetic ordered state
is about 3.3 meV per formula unit cell lower than the others.
Therefore, it is in agreement with the known ground state of
α-Cu2V2O7.

The total and atomic-resolved density of states (DOS) of the
ground state of α-Cu2V2O7 is shown in Fig. 5. The Fermi level
is at zero energy. The DOS of spin-up and spin-down electrons
are symmetric as expected for an antiferromagnetic state. The
band gap is estimated to be about 1.8 eV, thus rendering
the system an insulator. The bottom of the conduction band
comprises the Cu 3d, V 3d, and O 2p electrons, whereas
the top of the valence band is primarily composed of the O
2p electrons with some contributions from Cu 3d and V 3d.
It is evident that the O 2p orbitals hybridizes strongly with
the Cu 3d and V 3d orbitals in the valence band region. To
elucidate the electronic nature and chemical bonding of the

FIG. 5. Total and atomic-resolved density of states per formula
unit of the α-Cu2V2O7 in the collinear antiferromagnetic state.
The positive and negative DOS refer to the spin-up and spin-down
contributions, respectively. The Fermi energy is set to zero.

system, we plotted the orbital-resolved density of states of
the Cu 3d orbitals as depicted in Fig. 6. The magnetic Cu2+

ions in α-Cu2V2O7 have been regarded as having a distorted
octahedral environment as a result of the Jahn-Teller effect
[23,24]. The d9 electronic configuration of Cu2+ implies the
splitting of the crystal field into the (t2g)6 and (eg)3 orbitals,
which consist of the xy, xz, and yz orbitals and the x2 − y2

and 3z2 − r2 orbitals, respectively. This implies that the lower
lying t2g orbitals are fully filled, while the eg orbital is partially
filled. Hence, the eg orbitals would play a crucial role for the
hybridization with O 2p as evidenced by Fig. 6. Here most
of the states in the vicinity of the Fermi energy belong to the
eg contribution, i.e., 3z2 − r2 and x2 − y2 with an especially
large contribution from the 3z2 − r2 orbitals near the Fermi
energy indicating that these orbitals are magnetically active.
In contrast, the states of the t2g orbitals, i.e., xy, xz, and yz,
lie in the lower energy range of −7.5 to −4 eV.

FIG. 6. Projected density of states (spin-up only) of the five Cu
3d orbitals. The Fermi level is set to zero.
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We evaluated the exchange interaction through the isotropic
Heisenberg model of spin interactions whose Hamiltonian is
expressed as

H =
∑

ij

Jij Si · Sj , (1)

where Jij denotes the coupling interaction between spins at
the lattice sites i and j . We note that due to the complexity
of the spin structures required to refine the anisotropic terms,
the anisotropic interactions are ignored. However, this spin
Hamiltonian should be sufficient to capture high-temperature
susceptibility above the ordering temperature. For the com-
plete description of the system, we will employ the spin Hamil-
tonian described in Eq. (2), which will be discussed later. To
quantitatively extract the coupling constant, magnetic unit cells
with different spin configurations are considered. Since the
crystal structure of α-Cu2V2O7 is known to have space group
Fdd2, lower dimensional structures can be easily utilized to
define the three dominant magnetic coupling constants, one
intrachain interaction and two interchain interactions. In the
bc plane, Cu2+ cations form zigzag chains connected by two
inequivalent O2+ ions. The coupling J1 corresponds to the first
nearest-neighbor Cu-Cu with the shortest intrachain bond of
3.138 Å. Another lower-dimensional structure linking all the
1D chains in the crystal to form a network of the intertwining
spin chains defines the other two coupling constants J2 and
J3. The coupling J2 emerges from the two Cu2+ ions of
different chains via the shorter 3.982 Å bonds while J3

relates to the longer bond of 5.264 Å as depicted in Fig. 1.
For each magnetic spin configuration, the pair energy of the
parallel and antiparallel alignments corresponding to each of
the coupling constants (EFM,Ji

and EAFM,Ji
) and the total

energies are mapped to the Heisenberg model Hamiltonian.
The coupling constants are then determined by least-square
fitting. The calculated values of the exchange interactions are
J1 = 3.02 meV, J2 = 3.40 meV, and J3 = 6.12 meV.

Figure 7 shows the isosurface of the valence electron
density of α-Cu2V2O7 for two different planes depicting the
intrachain and interchain coupling between the magnetic Cu2+

ions. Here the intrachain Cu-Cu coupling can be observed
through the charge density on the bc plane as shown in
Fig. 7(a). Strong covalency between Cu 3d and O 2p atomic
orbitals is observed, underlying the J1 coupling. In contrast,
Fig. 7(b) depicts two superexchange pathways corresponding
to the two interchain interactions. The second nearest-neighbor
interaction J2 is attributed to the Cu-O-Cu pathway, while
the third nearest-neighbor interaction J3 connects the two
Cu atoms via the Cu-O-V-O-Cu pathway. It is clear that the
charge distribution crossing the Cu-O-Cu pathway is finite
but a more pronounced distribution can be observed along the
Cu-O-V-O-Cu pathway. This result indicates that the strong
exchange coupling J3 is induced by the superexchange bridge
by the V d5 orbitals. This is reasonable since the Cu-O
distances in the Cu-O-Cu pathway differ substantially (1.94
and 3.03 Å) while the Cu-O and V-O distances in the J3

coupling are comparable (ranging from 1.65 to 1.75 Å). These
distances are short enough to accommodate the hybridization
between the cation 3d and O 2p states.

The obtained values of the exchange interactions from
the first-principles calculations were used to construct a spin
network for the QMC simulation in order to describe the broad
maximum and fit the measured magnetic susceptibility for
H ‖ b [Fig. 8(a)]. For comparison, we used two different
models; one is the 2J model in which we only consider
the first and second nearest-neighbor interactions J1 and J2,
respectively, and the other is the 3J model that includes
the third nearest-neighbor interaction J3 in the spin network
(Fig. 1). The values of the exchange parameters for the 2J

model were kept the same as those in our previous work [13],
where the J1 : J2 ratios of 1 : 0.45 and 0.65 : 1 were found
to give the best fit to the experimental data for H ⊥ a. We
note that the previous data is imprecise since the applied field
was not perfectly aligned along the b axis. However, it is clear
from our new data shown in Figs. 4 and 8 that the broad
peak at around 50 K only occurs when the magnetic field
is applied along the b axis. This broad peak is a result of
short-range correlations and is related to the magnitude of the
exchange couplings. To obtain a more accurate determination

FIG. 7. Isosurface of electron density at (a) the bc plane indicating the Cu zigzag chain and (b) the (1, 0.7352, 0.7352) plane facilitating
the J2 and J3 superexchange pathways.
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FIG. 8. Magnetic susceptibility as a function of temperature with
H ‖ b. (a) The broad peak at around 50 K is compared to the
QMC simulations with 2J (green and blue line) and 3J (red solid
line) models. The red dashed line is a direct result from the DFT
calculation. (b) The discrepancy between the calculation and data for
2J and 3J models.

of the exchange interactions Ji , the magnetic susceptibility
calculated from the QMC simulations were refitted to the
H ‖ b data. The details of the QMC simulation and fitting
are described elsewhere [13,25].

To reexamine our previous work, we first refitted the 2J

model with the same J1 : J2 ratios of 1 : 0.45 and 0.65 : 1, the
results of which are represented in Fig. 8(a) by the green
and blue lines, respectively. The discrepancy between the
experiment and calculations especially around the broad peak
shown in the residue plot of Fig. 8(b) suggests that the 2J

model falls short of capturing the accurate spin correlations.
In the inset of Fig. 8(a), the maximum position of the broad
peak is higher than those obtained from the calculations using
the 2J model, which implies that the actual average value
of the Ji must be higher than our previous estimation. We
then compare the data to the QMC simulation with the 3J

model by using the values of Ji obtained directly from the
DFT calculations to construct the spin network. However, as
shown by the red dashed line in Fig. 8(a), the results do not
fit the experimental data very well. The discrepancy is most
likely due to extra terms in the spin Hamiltonian, representing
the anisotropic exchange and antisymmetric DM interactions

[26,27]. A more precise spin Hamiltonian which includes all
relevant interactions as well as the Zeeman energy can be
described by

H =
∑

i,j

Jij Si · Sj +
∑

k,l

Gkl

(
Sx

k Sx
l − S

y

k S
y

l − Sz
kS

z
l

)

+
∑

k,l

Dkl · (Sk × Sl) − geμB

∑

i

Si · B, (2)

where the summation
∑

i,j (
∑

k,l) is taken over the nearest,
second-nearest, and third-nearest neighbors (nearest neigh-
bors). The nearest-neighbor anisotropic exchange interaction
Gkl is denoted by G1 and the DM vector Dkl = (D1a,D1b,0),
where D1a and D1b represent the a and b component, respec-
tively. The c component of the DM vector, even if present,
cannot be determined by the magnetization or spin-wave
data [13,27]. As previously mentioned, to first approximation
these extra terms beyond the dominating isotropic exchange
interactions are not fitted to the result of the DFT total
energy calculations nor included in the QMC calculations,
which are used to fit the susceptibility above TN , due to
the extremely complex degrees of freedom. The obtained
exchange parameters are therefore slightly overestimated
when compared with the values obtained from the spin-wave
data as shown in Table I. The anisotropic exchange interaction
G1 results in the collinear spin structure along the a axis while
the a component of the DM vector D1a favors the helical
spin structure in the bc plane. The competitive nature of
these incompatible interactions gives rise to the nonreciprocal
magnons and the low-field collinear structure but high-field
helical structure [27]. On the other hand, the b component of
the DM vector D1b gives rise to the canted moments observed
at low field for H ‖ c [13] and at high field for H ‖ a, which
will be discussed below.

In order to obtain a better estimate of the exchange
interactions Ji based on the 3J model, we slightly adjusted
the values of exchange interactions obtained from the DFT
calculations by converting them into a fraction with respect to
J1; this model is called the modified 3J model. As a result, the
J1 : J2 : J3 ratio is fixed at 1 : 1.12 : 2.03. The spin network
corresponding to the three values of the exchange parameters
were then used for the QMC simulation, and the calculated
magnetic susceptibility was again fitted to the experimental
data [red solid line in Fig. 8(a)] yielding J1 = 2.45(1) meV,

TABLE I. Parameters obtained from the fit of magnetic suscepti-
bility with H ‖ b using different lattice models, which are compared
with the values obtained from fitting the spin-waves data [27].

Modified 3J 2J model Spin waves
model (refitted) [13] [27]

J1 (meV) 2.45(1) 5.79(1) 4.10(1) 2.67(1)
J2 (meV) 2.77 2.61 6.31 2.99
J3 (meV) 4.97 − − 5.42
G1 (meV) − − − 0.282(1)
D1a (meV) − − − 2.79(1)
D1b (meV) 0.41(1) 0.814(1) 0.576(1) −
g factor 2.35(1) 2.24(1) 2.25(1) 2.00
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which differs by about 20% from the unnormalized DFT value.
The fitted value of the Landé g factor is 2.35(1), which is
sufficiently close to the value of 2.44(3) obtained from the
Curie-Weiss fit at high temperature (T > 100 K). The modified
3J model fits the experimental data much better than the 2J

model especially around the broad peak as shown in the inset
of Fig. 8(a) and in the residue plot in Fig. 8(b). The obtained
fitted parameters are summarized in Table I. In contrast to our
previous report [13], our new analysis on the broad peak at 50 K
of the H ‖ b data indicates that the third nearest-neighbor J3

is in fact the strongest interaction, which is consistent with
the previous work [15,16]. Using the combined DFT and
QMC calculations, we were able to determine the magnitudes
of the exchange interactions more accurately than before.
Furthermore, it should be noted that our DFT calculations
indicate that J1, J2, and J3 are all antiferromagnetic, which is
in disagreement with the work by Sannigrahi et al. where J2

is ferromagnetic [15].

C. High-field magnetization

The high-field magnetization of single-crystal α-Cu2V2O7

was measured in the pulsed magnetic field applied along two
orthogonal directions, i.e., H ‖ a and H ⊥ a. The results
at 1.4 K are shown in Fig. 9. When the field is applied
perpendicular to the a axis [Fig. 9(a)], the magnetization
abruptly increases to about 0.08 μB near zero field, which
is consistent with that observed from the MPMS measurement
with H ‖ c. From the value of M(0), it can be inferred that the
c axis of the crystal was closely aligned parallel to the applied
field. The magnetization was found to linearly increases with
the field up to 56 T without saturation or further appearance
of a phase transition. On the other hand, when the field was
applied along the a axis [Fig. 9(b)], we observed two magnetic
phase transitions, indicated by the peaks in dM/dH , the first
transition at Hc1 = 6.5 T, which was already observed in
the MPMS measurement (inset of Fig. 2), and the second
at Hc2 = 18.2 T (18.0 T) upon increasing (decreasing) field.
In the ordered state, as previously stated, the S = 1/2 Cu2+

spins align antiparallel with their nearest and next-nearest
neighbors, and the majority of the spin component is along the
crystallographic a axis with small field-induced canting along
the c axis. When the applied magnetic field along the a axis
is between Hc1 and Hc2 (6.5 < H < 18 T), the competition
between the exchange energy and Zeeman energy forces the
spins to minimize the total energy by flopping altogether into
the bc plane making the spin direction perpendicular to the
applied magnetic field. Due to the presence of the a component
of the DM vector, the in-plane spin components form a helical
structure with the helical axis along the a axis. This helical
structure is confirmed by the neutron scattering data, which
will be discussed in Sec. III D. The remnant magnetization
at zero field M(0) in the spin-flop state also approaches zero
as shown by the linear fit in Fig. 9(b). In addition, as shown
in the inset of Fig. 4(a), the magnetic susceptibility shows
only a small upturn through the spin-flop transition below
T 
 20 K where the magnetic susceptibility stays constant at
about 0.004 μB as the temperature decreases toward 1.8 K.
The small value of the remnant magnetization at the base
temperature suggests that after the transition into the spin-flop

 ≅ 

Δ

⊥ 

FIG. 9. Magnetization as a function of magnetic field when the
field is applied parallel and perpendicular to the crystallographic
a axis at 1.4 K. (a) The magnetization when the field is applied
perpendicular to the crystallographic a axis. The main panel in
(b) shows all the data up to 56 T for H ‖ a. The red lines are the
linear fit to the data at 8 < H < 14 T yielding M(0) → 0 T, and at
H > 20 T for the calculation of �M as described in the text. The inset
shows the transition field at Hc1 = 6.5 T and Hc2 = 18.2 T (18.0 T)
upon the increasing (decreasing) field defined by dM/dH in the red
curve. A small amount of hysteresis can be observed at Hc2.

state, the small canted moments along the a axis resulting from
the b component of the DM interaction remain anti-aligned as
depicted in the spin diagram in region II of Fig. 11, which
is consistent with the antiferromagnetic anisotropic exchange
interaction in the a component [27]. The spin-flop transition
was in fact also observed in its cousin phase β-Cu2V2O7 where
the easy axis is along the c axis [9]. However, the magnetization
data up to 5 T only showed a single spin-flop transition for
H ‖ c at around 1.5 T in contrast to the two transitions in the
α phase.

When the applied magnetic field reaches 18 T, we observed
a second magnetic phase transition with a small hysteresis
[inset of Fig. 9(b)]. This second phase transition at Hc2 =
18 T is a result of the Zeeman energy that overcomes the
antiferromagnetic anisotropic exchange interactions making
the a-axis component of the canted moments that previously
anti-align below Hc2 align along the applied field giving
rise to a nonzero M(0). The change of magnetization �M

at the antiferromagnetic-to-ferromagnetic transition at Hc2

is considerably larger than that at the spin-flop transition at
Hc1. In order to estimate the canting angle along the a axis
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FIG. 10. Magnetization at different temperatures from 1.4 to
35 K. The stack is due to the offset for visualization. The transition
field Hc1(T ) (red arrows) and Hc2(T ) (blue arrows) denotes the
spin-flop and spin-flip transitions, respectively. The third transi-
tion denoted by Hc3(T ) (black arrows) appears between T = 15
and 25 K.

in the H > 18 T regime, a linear fit to the magnetization
was performed to acquire the value of �M at Hc2, i.e., the
change of magnetization where the second phase transition
occurs relative to the value in the spin-flop state as depicted
in Fig. 9(b). The obtained high-field �M along the a axis at
1.4 K is 0.081(1) μB , which is consistent with the value of
0.082(1) μB obtained from the H ‖ c data implying the same
order of spin canting and a similar underlying mechanism. The
value of �M = 0.081(1) μB yields a canting angle of 4.65(6)◦
along the a axis.

To further explore the magnetic phase transition for H ‖ a,
the magnetization was measured at higher temperatures up to
35 K, i.e., above TN . A series of data points collected from 1.4
to 35 K is shown in Fig. 10. The phase transition denoted by
Hc1 and Hc2 for the first and second jumps in magnetization
are indicated by the red and blue arrows, respectively. The
position of Hc1 (Hc2) was found to increase (decrease) as
the temperature increases toward TN . The resulting critical
fields as a function of temperature Hc(T ) are presented as a
magnetic phase diagram in Fig. 11. In addition, we observed
the unexpected third anomaly at Hc3 as indicated by the black
arrows in Fig. 10, which starts to appear at T = 15 K and
seems to merge with Hc2 at around T = 25 K. Similar behavior
was also observed in the kagome lattice antiferromagnet
KFe3(OH)6(SO4)2 where the spins on the alternating planes
rotate 180◦ forcing the previous oppositely canted moments
between the alternating layers to ferromagnetically align along
the applied field [28]. However, it is not clear from the available
data whether the same mechanism occurs in α-Cu2V2O7.
We believe that there are two possible explanations for the
presence of the intermediate transition at Hc3; one is the spin
rotation and the other is the spin flip. In the former case, the
applied magnetic field must simultaneously overcome both
the isotropic and anisotropic interactions. On the other hand,
in the latter case, it takes considerably lower energy to flip the

FIG. 11. Magnetic phase diagram of α-Cu2V2O7. Solid and
dashed lines serve as guides to the eye. The solid lines at Hc1(T ) and
Hc2(T ) represent the spin-flop and spin-flip transition, respectively,
whereas Hc3(T ) represents the intermediate spin reorientation which
occurs between T = 15 and 25 K. Red (blue) symbols indicate the
magnetic phase transition upon increasing (decreasing) field. The
black diamond is the Hc2 obtained from the Lorentzian fit to the peak
at the transition temperature of the data in the inset of Fig. 4(a). The
dashed line represents the crossover between region III and region IV.

spins along the applied magnetic field in order to overcome
only the antiferromagnetic anisotropic interaction, which is
much weaker than the exchange interactions. Given that
Hc2 = 18 T (∼1 meV) at Hc2, it is most probable that the
magnetic phase transition at Hc2 is due to the spin flip and
the anomaly at Hc3 is a result of the competition between the
applied magnetic field and the anisotropic exchange interaction
with the presence of thermal fluctuations. The dashed line in
Fig. 11 represents the crossover between the ordered stated
in region III and the paramagnetic state in region IV, which
has not been resolved. In order to verify the spin-flop state in
region II, in-field neutron scattering, which will be presented
in the next section, is necessary. However, even using the
strongest magnet currently available for neutron scattering, we
still cannot reach the second phase transition at Hc2, making
it impossible to provide further evidence for the proposed
spin-flip state in region III.

D. Neutron scattering

In order to microscopically investigate the spin-flop state
in region II, elastic neutron scattering was performed on the
single crystal with the applied magnetic fields of up to 10 T.
The vertical field is applied along the a axis with the bc

plane in the neutron scattering plane. The field dependence
of the magnetic Bragg intensity was measured around Q =
(0,2,0). At zero field, the spins align antiparallel along the
crystallographic a axis resulting in the only observable (0,2,0)
magnetic Bragg reflection. As the applied magnetic field is
increased, the intensity of (0,2,0) decreases as shown in
Fig. 12. On the other hand, we observed two extra Bragg
peaks at (0,2 ± δ,0) where δ = 0.23(1) for H > 6 T, which
coincides with the first jump in the high-field magnetization
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FIG. 12. Elastic neutron scattering with applied magnetic fields
from 0 to 10 T along K at T = 2.5 K. The inset shows harmonic peaks
at H = 10 T, indicated by the arrows, that occurs at (0,2 ± 2δ,0) with
δ = 0.23(1).

data at Hc1. In addition, two much smaller Bragg peaks were
observed at δ = 0.46(1), which can be interpreted as the
second harmonic reflections (the arrows in the inset of Fig. 12),
indicative of the incommensurate magnetic Bragg peaks. In
contrast to a conventional spin-flop state, where the spins
remains collinear, in the spin-flop state of α-Cu2V2O7, the
spins form a helical structure. The shift of the magnetic Bragg
intensity from the zone center to the incommensurate wave
vectors is consistent with the transition from the collinear spin
structure for H < Hc1, where the spins antiferromagnetically
align along the a axis, to the helical spin structure for H > Hc1,
where the spins lie within the bc plane with the helical
axis along the a axis. The helical structure results from the
a component of the DM vector [27]. Furthermore, in the
spin-flop state (Hc1 < H < Hc2), we did not observe a shift
of the incommensurate peaks as a function of magnetic field
(Fig. 12), indicative of no change in the modulation of the
helical spin structure within the spin-flop state or at least up to
the field of 10 T. Therefore, the modulation is determined by
the DM interaction and not the applied field.

The magnetic scattering intensity as a function of temper-
ature was measured at (0,2,0) and (0,1.766,0) to represent
the order parameters in the collinear state and spin-flop state,
respectively. At 10 T, as temperature decreases from above
TN , the intensity of the (0,2,0) magnetic Bragg reflection
monotonically increases before abruptly decreasing to zero
at the same temperature (∼23 K) as the onset of the scattering
intensity at the incommensurate (0,1.766,0) reflection as
shown in Fig. 13. We note that the (0,2,0) intensity is
background subtracted and then divided by two, assuming that,
at the transition from the spin-flop state to the collinear state,
the two incommensurate peaks merge to form (0,2,0) and their
intensities combine. However, it is clear that the maximum
intensity at (0,2,0) after the normalization is still higher than
that at (0,1.766,0). Qualitatively, this result confirms the fact
that in the spin-flop state, the majority of the spin component
lies in the bc plane, i.e., the neutron scattering plane, hence
resulting in a lower incommensurate magnetic intensity due to

  

FIG. 13. Order parameter scans as a function of temperature
at H = 10 T of the magnetic (0,2,0) (black triangles), and the
incommensurate (0,1.766,0) (red circle) reflections. The intensity
at (0,2,0) is background subtracted and divided by two. The Néel
temperature TN = 33.4 K is indicated by the black arrow.

the geometric factor of the scattering intensity [29]. We note
that with the current neutron diffraction data of the spin-flop
state, we are unable to determine precisely the helical spin
structure. However, having already studied the spin dynamics
of the nonreciprocal magnons in this system [27], we expect
that the ordered spins in the spin-flop state arrange in the
pattern closely similar to the spin structure shown in Fig. S9
in the Supplemental Materials of Ref. [27], assuming that the
closing of the spin gap of the nonreciprocal magnons gives rise
to the helical spin structure at approximately the same wave
vector.

IV. CONCLUSION

We have studied the magnetic properties of single-crystal
α-Cu2V2O7 by means of low-field and high-field magneti-
zation measurements, as well as elastic neutron scattering.
The combined DFT and QMC calculations confirm that the
third nearest-neighbor interaction J3 is the strongest exchange
coupling, in agreement with the previous studies, and refine
the values of the spin Hamiltonian parameters. The high-field
magnetization measurements for H ‖ a reveal two consecutive
magnetic phase transitions at Hc1 and Hc2. The first transition
at Hc1 is due to the typical spin-flop transition similar to that
observed in its cousin phase β-Cu2V2O7. In the spin-flop state,
the spins form the helical structure within the bc plane with
anti-aligned canted moments along the a axis. As with the
previously reported canted moments along the c axis, the a

axis canted moments are a result of the DM interaction along
the b axis. The anti-alignment of the canted moments is a result
of the antiferromagnetic anisotropic exchange interaction.
Neutron scattering experiments reveal that for Hc1 < H <

Hc2, the incommensurate magnetic Bragg reflections emerge
suggesting the modulation of the helical magnetic structure
with the majority of the spin component lying within the bc

plane. The second transition at Hc2 is believed to be the
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spin-flip transition where the previously anti-aligned canted
moments become aligned with the applied magnetic field as the
Zeeman energy overcomes the anisotropic exchange energy.
The magnetic phase diagram was drawn from the high-field
magnetization data showing the presence of the intermediate
phase, which might be related to the thermal effects, between
the spin-flop and spin-flip states.
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