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Abstract 

In order to promote traceability, consistency, interoperability and better 
collaboration between systems engineering and Finite Element Analysis 
(FEA)-based simulation activities, we propose a tool-independent description 
of FEA models that integrates with the Systems Modeling Language (SysML), 
for future standardization. As technical systems become more complex, it is 
important to support traceability between systems engineering artifacts, such as 
requirements, and test cases, and corresponding FEA artifacts, such as FEA 
models, simulation conditions, and results.  

While there is a standard for model-based systems engineering in the form of 
SysML, there is no standard description of FEA models. Existing FEA model 
descriptions are incomplete, tool-specific, informal or a combination of these. 
As a result, interoperability between FEA software applications is 
compromised, and communication between engineers is inefficient. A standard 
for the description of FEA models is difficult to develop, as the geometry, 
mathematics and physics of finite elements can vary greatly.  

We propose a finite element mathematics specification based on recent works 
[1] and on the topological characteristics of finite elements that is formal,
precise, and understandable to engineers. Mathematical expertise is still
required to consistently set attributes of the specification but it can potentially
capture new kinds of elements. The specification removes dependence on finite
element names, which are sometimes inconsistent. We think that such a
description is suitable for broad adoption among both FEA and systems
engineers. We validate the new description of finite element mathematics by
solving FEA problems using Python code we developed and demonstrate that
these elements can be described in SysML.
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1. Introduction and motivation

The motivation of this work is to better integrate FEA expert activities into the 
development lifecycle by integrating them with systems engineering modeling. 
We believe that it will benefit cross-disciplinary communication, traceability, 
model exchange, interoperability, model reusability, process knowledge and 
eventually process automation. 

Efficient cross-disciplinary communication is essential for collaboration. 
System engineers have an overview of development activities by continually 
taking input from many stakeholders, making system-level decisions for 
improving the design, and communicating the results to cross-disciplinary 
teams for further design and validation. Based on system-level decisions, 
discipline-specific engineers create or reconfigure models for evaluating and 
validating new and modified designs. FEA models are used for validation 
across many engineering disciplines to simulate thermal, fluid, mechanical, 
electrical, magnetic problems or a combination of these. It is essential that FEA 
specialists, other engineering disciplines and system engineers share a common 
understanding of FEA models across disciplines to leverage a cross-
disciplinary communication. 

Sharing a common model representation across FEA tools will facilitate 
traceability from system requirements to FEA models. Product development is 
an iterative process where requirements change over time. The product 
specification may undergo many changes that are often decided at system level, 
but affect FEA models. To analyse the impact of a change, it is important that 
system requirements can be traced to FEA model artefacts. For example, a 
system cost reduction process may require a material replacement that should 
be translated into a material parameter change of the FEA model used to 
validate a safety requirement. By tracing links from requirements to models, 
system engineers can directly identify the impact of cost reduction on safety 
requirements and collaborate with FEA specialists to make better decisions. In 
addition, FEA engineers can better understand the context and value of their 
simulations in relation to customer needs. 

Interoperability between applications is a major concern when selecting a tool, 
as it improves the data and information sharing within the same or with 
external organizations. It also avoids binding users to a single tool 
environment, making migration to another tool framework difficult. A 
standardized, tool independent FEA model representation will help to store and 
load a model from one application to the other. With standardized model 
interfaces, relationships and interdependencies between models of different 
abstraction can be defined. For example, this has been applied to integration of 
lumped parameter and systems engineering models [2]. 
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Interoperability has two main levels, syntactic and semantic. The first 
facilitates the data exchange between tools by defining a common serialization 
format. The second helps to share context and define concept equivalences, 
enabling models to give the same simulation results across tools, and facilitate 
transformation between different kinds of tools. A tool independent FEA 
representation integrated with systems models will help to support syntactic 
and semantic interoperability between FEA tools, as well as model 
transformation between FEA tools and systems engineering tools. 

Standards should help define unambiguous models that can be identified, 
understood and become reusable knowledge in engineering processes. For 
example, it is common that multiple simulations are required to validate a 
design. Validation procedures and other FEA tasks can be mapped into a 
workflow representing a chain of simulation actions performed on models, 
where model input and output can be connected. When the models used in 
workflows are interoperable, processes can be efficiently rearranged, process 
knowledge can be shared, and processes continuously improved.  

This process knowledge can be exchanged with other disciplines. An example 
is the simulation of manufacturing processes using FEA. FEA is not only used 
for product design verification but also to simulate manufacturing processes. 
Typically, FEA calculates residual stress generated by forming, subtracting, or 
joining material in the assembly process. These simulations help to evaluate 
manufacturing process impact on design integrity by feeding-back residual 
stress results to the design. Another benefit is the improvement of simulation 
results and robustness by comparing simulation results to physical tests in a 
consistent manner. These comparisons can increase the quality of simulations. 

Integrating FEA into system engineering requires an abstraction of FEA 
knowledge, leading to standards that will help overcome the heterogeneity of 
FEA model syntax and semantics. We start by evaluating existing standards in 
Section 2, then review FEA and some challenges in characterizing it abstractly 
in Sections 3 and 4, respectively.  Section 5 proposes a new tool-independent 
specification for the mathematical portion of finite elements and provides a 
SysML model for it.  Section 6 summarizes the paper and outlines future work. 

2. Status of standardization

SysML is an open graphical modeling specification that extends a subset of the 
Unified Modeling Language (UML) [3,4]. UML has been successfully used for 
architecting software applications, while SysML provides simple and efficient 
constructs to model a large variety of systems engineering problems. It is tool 
and methodology independent and supports model and data interchange via the 
eXtensible Markup Language [5]. 
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Figure 1: Example of a FEA model definition in a P21 file following AP209

Interoperability between software applications and the communication between 
engineers, including system engineers and FEA engineers, is therefore 
compromised. In order to integrate finite element analysis with system 
engineering we need to characterize FEA and define a tool-independent 
abstraction that can then be modelled in SysML. 

© NAFEMS 2017

SysML defines diagrams that illustrate system component relationships under 
different views, as well as semantics for its notation. SysML provides diagrams 
for requirements, structure, behavior and parametric relationships. These 
diagrams support specification, analysis, design, verification of systems. 
SysML supports syntactic and semantic interoperability for system engineering 
models. 

For FEA activities, International Standards Organization 10303 (STEP) 
Application Protocol 209 edition 2 (AP209ed2) is the reference standard for 
multidisciplinary analysis and design product data with respect to 
interoperability, legacy data archiving and information reusability [6]. It 
integrates simulation data management, computer aided design, computer aided 
engineering and product data management. One of the main benefits of using a 
STEP standard is that FEA uses Computer Aided Design (CAD) geometries as 
input and STEP AP242 is a successful standard for CAD 3D geometry, 
assembly and Product Manufacturing Information interoperability [7]. The use 
of these two application protocols could support a seamless data exchange 
between design and analysis. Considering that the transformation of CAD data 
to FEA information is a major bottleneck in analysis activities, supporting 
interaction between design and analysis in a bi-directional manner would 
improve productivity. 

Unfortunately, when reviewing STEP AP209, we noticed it mainly captures 
Product Lifecycle Management (organisation, date, etc) and geometric 
information. For the simulation part, AP209 defines a FEA model with a 
collection of non-constrained string entities (analysis type, creating software, 
finite element name, material…) leading to an informal FEA description, as in 
Figure 1. STEP AP209 provides only syntactic interoperability, not semantic 
interoperability. It cannot ensure the same simulation results across FEA tools 
or support integration with other kinds of tools. A more formal FEA 
description for data exchange is needed. 
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3. Overview of FEA

Finite element analysis is a numerical method for finding approximate 
solutions to partial differential equation or energy minimizing problems by 
solving linear algebraic equations for steady state or ordinary differential 
equations for dynamic problems [8]. FEA models require derivatives of 
functions of space (geometry) and time, as opposed to lump parameter systems, 
which only involve derivatives of functions of time. 

FEA is a very powerful numerical method with attractive properties: 

• Modularity:  A domain specific physics problem can be modelled
algebraically for a simple polygonal entity using interpolation
functions. The resulting algebraic model can be stored as a software
module or function, called a library element.

• Reusability:  A library element can be reused in analyses of multiple
systems.

• Scalability: Library elements are mapped to mesh cells partitioning
system geometry. A complex system composed of multiple finite
elements can be assembled and described by a global stiffness matrix.

FEA is typically used to solve multidimensional physics problems describing a 
system under the action of body and surface loads and kinematically 
constrained. The algebraic element relating loads to unknowns is the stiffness 
matrix K in case of static problems, and the mass matrix M and damping 
matrix D in case of dynamic problems.  

The FEA procedure is simple and reproducible. It can be described by a 
workflow consisting of three steps, the pre-processing phase (mesh generation, 
material assignment and boundary labelling), analysis definition phase (finite 
element selection, model parameter setting, solver definition and output 
settings), and post-processing phase (visualization and data export) [9]. 

FEA applications have software architecture that follows the workflow. At the 
file level, a completed analysis will be composed of pre-processing files (CAD 
and mesh files), an analysis definition file or input file, and results files. 
Modern FEA software provides graphical user interfaces to support workflow. 
This is very helpful considering that many parameter settings are geometrical, 
such as boundary conditions definition. Another useful feature is the bi-
directional associative interface providing a seamless integration of CAD and 
FEA data. 
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4. Challenges in characterizing finite elements analysis

Finding a unified description of FEA is difficult in part because a large number 
of possible FEA analyses result from the many options involved: 

• Modern software provides a vast collection of FEA library elements to
simulate mechanical, thermal, electrostatics, magneto-statics, fluid and
electromagnetism. Multiphysics problems, which are systems
consisting of more than one component governed by their own physics
principles, are also supported.

• System studies can be time independent and will be evaluated by
running a steady state analysis. For time-dependent systems transient
analysis will be performed.

• System stability can be assessed by performing a modal analysis to find
resonance frequencies or modes. Buckling analysis helps to avoid
failure modes for solid system components under compression.

• The analyses above require material model definitions, which can be
linear or nonlinear. Material models can also involve coupling in
another physics, as for example in thermo-mechanical problems. For
solid material under some large deformation, geometric nonlinearities
will be considered, resulting in a re-meshing operation at each
simulation step.

• From a numerical perspective, discretizing an analysis by choosing one
or more discretization variables can affect simulation performance.

• Depending on the problem abstraction, a problem can be described in
1D, 2D or 3D. For symmetric systems or systems under rotation,
cylindric or polar coordinate system for example can be chosen to
simplify the analysis.

• To run an analysis on the discrete geometric system model (mesh), the
finite element type, which is the core numerical element of the analysis,
needs to be selected.

The total combination of these choices would provide a rough evaluation of the 
number of possible FEA models. If we consider a line element for example, we 
could apply 4 different physics and support simulation in 3 different 
dimensions, then we would have 12 combinations and therefore 12 FEA library 
elements. As a result, modern FEA applications involve a vast number of 
choices and results that are difficult to track.  
The FEA process generates many artefacts that are difficult to organize. 
Multiphysics problems can be solved by custom code or tool vendor solutions 
having their own artefacts. Software vendors define their own FEA model 
referencing schemas, some of which are nonexplanatory while others try to 
incorporate some of the model parameter information. Expert know-how is 
required to find equivalences between models. As AP 209 does not provide any 
schema to classify finite elements, tools use their proprietary names for their 
APIs and for referencing their FEA models. 

© NAFEMS 2017 www.nafems.org

Presented at the NAFEMS World Congress 2017 Stockholm, Sweden | 11-14 June 2017



5. New proposed FE mathematics specification

In order to ensure efficient communication between system engineering and 
FEA, we need a standard convention to describe finite elements. It should 
include a compact notation that contains all information necessary to solve an 
FEA problems in a platform independent manner, by automatically generating 
shape functions, element stiffness matrices based on a problem specification. 
When characterizing an FE simulation, we had previously concluded that many 
kinds of FEA library element models are possible. A classification schema for 
these models is needed.  

In this paper, we only discuss specification of FE mathematics, which we 
define as the mathematical objects representing polynomials with one or many 
variables over a geometric domain. These are the core objects of FEA 
simulation. This section outlines the challenges in finding such a description 
and propose a compact notation and SysML model that is unambiguous and 
understandable by most engineers.  

a. Previous work on FE mathematics classification

As we started our search for a finite element mathematics description, we soon 
realised that most descriptions are ambiguous. The same FE-mathematics can 
be referred to as many different names in the literature. For example, a linear 
line element is also described as a Lagrange line element. Many FE 
mathematics are named after their discoverer(s) but this is sometimes not even 
clear as to which name to use. A Lagrange triangle can for example also be 
called a Courant element. Furthermore, the use of mathematician names does 
not provide any information for non-specialists. 

Describing FE mathematics with engineering names, such as beam or bar 
element, is also ambiguous. A beam, for example, can have 4 degrees of 
freedom or 2 degrees of freedom. In the first case, the representation of 2 
transversal displacements and 2 rotation angles requires a cubic polynomial or 
Hermitte element. In the second case, it requires only a Lagrange element to 
interpolate the moment. To find a description of FE mathematics, it is 
important to remove name dependencies, separate the physics from the 
mathematics, and classify or characterize FE mathematics by their properties. 

FE mathematics classification work seems to have been first undertaken by 
Ciarlet. Modern finite element literature refers also quite often to his definition. 
In [10] an FE mathematics is defined as a triplet (𝑲𝑲, 𝑷𝑷, 𝚺𝚺) consisting of a 
geometric figure 𝑲𝑲, a set of basis functions or basis space 𝑷𝑷 and degrees of 
freedom 𝚺𝚺 (DOFs). Although the original definition is simple, it seems that 
Ciarlet’s objective was to describe families of FE mathematics. To further 
categorize them, Ciarlet introduced the typing of the geometry K. By doing so, 
he could establish relationships between a typed geometry K and the degree of 
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the basis functions that are valid for any dimension. Although this additional 
categorization provided great insight on mathematical properties, it made the 
description of FE mathematics more complex.  

Ciarlet’s work was extended in [11], leading to a periodic table of finite 
elements covering differential forms of all possible degrees for each function 
space families.  The table helps to understand the relationship between FE 
mathematics families and the application scope of the captured FE 
mathematics. The limitation is it does not classify some common elements. 

b. New proposed FE mathematics specification

The new FE mathematics description is based on the generic finite element 
definition of Ciarlet and the DOF type description as found in [1]. However, 
the triplet (geometry, DOF and basis space) is described using topology. 
Furthermore, the new FE mathematics description is coordinate-independent, 
in contrast to Ciarlet’s more complex coordinate-dependant description. Also, 
the description of DOFs is uncoupled from the finite element geometry. In 
contrast, Ciarlet’s description is based on a coupling between DOFs, finite 
element geometry and basis space, leading to a less compact and more complex 
classification of finite elements. 

To address the problem, we propose a compact, simple and unambiguous 
description of the mathematics of finite elements. This description reflects the 
mathematical properties of finite elements and provides all necessary 
information for implementation. The proposed FE mathematics specification 
can describe any finite element as it can be applied to any discrete geometry 
and can specify any basis space. The description is composed of a triple as 
defined in [10], but the information entities (geometry, DOFs, basis space) can 
be defined independently of each other and are thereby reusable. Mathematical 
expertise is required to consistently set attributes of the three entities in a finite 
element, but the specification can potentially capture new kinds of elements. 
The specification removes dependence on the finite element names which are 
sometimes inconsistent.  
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The new proposed FE mathematics specification is defined as follows: 
• Geometry K (line, polygon, polyhedron, prism…)

• DOF sets on geometry K:

𝚺𝚺(𝐾𝐾): = {𝚺𝚺𝐶𝐶𝐶𝐶(𝐾𝐾), 𝚺𝚺𝐶𝐶𝐶𝐶−1(𝐾𝐾), … , 𝚺𝚺𝐶𝐶0(𝐾𝐾)}

where 𝚺𝚺Cn(𝐾𝐾) is the set of DOFs applied to all n-faces of the 
geometry (0-faces 𝐂𝐂0: vertices, 1-faces 𝐂𝐂1: edges, 2-faces 𝐂𝐂2:
faces, 3-face 𝐂𝐂3: volumes). 

A DOF is defined by a type and a count which specifies the number of 
evaluated requirements on one n-face of K.

• Basis functions set or basis space 𝑷𝑷, defined by a string

Geometry type

The table below show a non-exhaustive list of geometries used in FE-
mathematics and their respective string encodings. 

Table 1: Listing of common geometric figures used in FEA and their 
corresponding encoding string

Geometry Geometry name Encoding 
string 

Line L 

Triangle T2 

Square S 

Tetrahedron T3 

Square pyramid SP 

Cube C 

Triangular prism TP 
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Degrees of Freedom type (DOF type) 

The set of all possible DOFs 𝚺𝚺𝒇𝒇 types is given by: 

Σ𝑓𝑓 = {𝑝𝑝(𝒙𝒙):𝑷𝑷𝑷𝑷;  ∇𝑝𝑝(𝒙𝒙): 𝑭𝑭𝑭𝑭 ;  
𝜕𝜕2𝑝𝑝(𝒙𝒙)
𝜕𝜕2𝒙𝒙

: 𝑺𝑺𝑺𝑺 ; … . }  

where 𝑝𝑝(𝒙𝒙) is a scalar or 𝒑𝒑(𝒙𝒙) a vector-valued polynomial describing physical 
quantities. To facilitate reading, acronyms are used for literal operator 
definition as in [1], such as PE for point evaluation, see the table below. 

Table 2: Definition of DOF types and corresponding encodings 
according to [1] 

DOF type Definition [1] Symbol 
Mathematical expression of 
the linear form and shape 

function definition 

Point 
evaluation 

Point evaluation of a 
function P at a vertex of 
the geometry 

PE 𝑝𝑝(𝒙𝒙) 

First 
derivative 

Point evaluation of all first 
derivatives of the function 
P at a vertex of the 
geometry 

FD 𝛻𝛻𝛻𝛻(𝒙𝒙) 

Second 
derivative 

Point evaluation of all 
second derivatives of the 
function P at a vertex of 
the geometry 

SD 𝜕𝜕2𝑝𝑝(𝒙𝒙)
𝜕𝜕2𝒙𝒙

Directional 
derivative 

Evaluation of the 
directional derivative of 
the scalar function v in the 
direction n at the point x. 

DD 𝛻𝛻𝛻𝛻(𝒙𝒙). 𝒏𝒏 

Tangential 
component 

Evaluation of the vector-
valued function v in the 
tangential direction along 
line of the geometry at the 
point x 

VT � 𝒑𝒑(𝒙𝒙). 𝒕𝒕
𝒍𝒍

𝟎𝟎
𝒅𝒅𝒅𝒅 

Normal 
component 

Evaluation of the vector-
valued function v in the 
normal direction along a 
face of the geometry at 
the point x 

VN � 𝒑𝒑(𝒙𝒙).𝒏𝒏
𝒍𝒍

𝟎𝟎
𝒅𝒅𝒅𝒅 

Interior 
moment 

Interior moment degrees 
of freedom; that is, 
degrees of freedom 
defined by integration 
against a weight 
function over the interior 
of the domain K 

IM � 𝒑𝒑. 𝑞𝑞
𝐾𝐾

𝑑𝑑𝑑𝑑 
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Basis space P 

The FE mathematics specification also defines basis space 𝑷𝑷. The geometry K, 
the DOFs 𝚺𝚺(𝐾𝐾) and the basis space 𝑷𝑷 are interdependent attributes. In [10] and 
[11], FE mathematics is further categorized by defining a family of basis space 
P. Its definition is abstract and difficult for engineers to read.

To facilitate implementation of FE mathematics, the specification provides a 
mechanism to capture the set of basis functions 𝑷𝑷 using lexicographic ordering 
of monomials, following many symbolic computing programs that generate 
monomials this way. The method consists of creating a dictionary of all 
possible monomials combinations or words. These generated words are then 
ordered and indexed. We chose graded lexicographic ordering, which first sorts 
by total degree, then lexicographically. As an example, the set 𝑆𝑆2 =
{1, 𝑥𝑥, 𝑦𝑦, 𝑥𝑥𝑥𝑥, 𝑥𝑥2, 𝑦𝑦2, … } of generated monomials can be ordered by 
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔: … 𝑦𝑦2 ≻ 𝑥𝑥𝑥𝑥 ≻ 𝑥𝑥2 ≻ 𝑦𝑦 ≻ 𝑥𝑥 ≻ 1, following graded lexicographic 
ordering. In general, the representation of the monomials of the basis space 𝑷𝑷 
would only require using a subset of this ordered list. To represent this subset, 
we set 0 or 1 depending on whether a monomial word is used or not. A bit 
string to capture the monomials of the basis space P is then created following 
the graded lexicographic ordering. For example, the basis space 𝑃𝑃1 = {1, 𝑥𝑥, 𝑦𝑦,
𝑥𝑥𝑥𝑥} used for a square can be represented as 11101. This bit string can be 
further compacted into the hexadecimal number 0x1D. 

To complete the FE mathematics specification, we need to define the 
dimension. To create monomial words, we use predefined alphabet letters. This 
monomial alphabet is composed of a set of letters or symbols where one of the 
symbols represents a dimension. The set of generated monomials is therefore 
dimension dependant. In our examples, the letters 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 are used and 
represent space dimension. The set 𝑆𝑆1 = {1, 𝑥𝑥, 𝑥𝑥2, 𝑥𝑥3, … } represents one 
dimensional monomials and 𝑆𝑆2 would be the set of two-dimensional 
monomials. The space dimension is prefixed with ND where N is the space 
dimension. Depending on the field type, a function space can have one or many 
components. (scalar polynomial field, vector polynomial field, …) The 
component index is specified by NC where N is the component index. The 
basis space 𝑃𝑃1 = {1, 𝑥𝑥, 𝑦𝑦, 𝑥𝑥𝑥𝑥} would be encoded as in the table below. 

Table 3: Example of scalar polynomial encoding 

Space dimension Field component Basis space code 

2D 1C 0x1D 
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The encoding depicted in Table 3 (2D-1C-0x1D) can be translated into a 
symbolic math program capable of translating it to a human readable form. To 
illustrate we decode 2D-1C0x1FB. Again, the “2D” gives the dimension, 
which means the basis functions use two variables (x and y, see below). A set 
of monomials can be generated and then ordered following graded 
lexicographic ordering. The “1C” indicates that we have only one component 
therefore representing a scalar polynomial. The “0X1FB” is a hexadecimal 
number which can be translated into a bit word declaring what monomial to 
use in the ordered list. The resulting basis space is 𝑃𝑃2 =
{1, 𝑥𝑥, 𝑦𝑦, 𝑥𝑥2, 𝑥𝑥𝑥𝑥, 𝑦𝑦2, 𝑥𝑥2𝑦𝑦, 𝑥𝑥𝑥𝑥2}, which is used for an FE mathematics of type 
“serendipity element” as described in [12]. 

Table 4: Reading basis functions from basis space code 2D-1C0x1FB 

monomials set 
𝑆𝑆2 

𝑥𝑥5 𝑥𝑥𝑥𝑥2 1 𝑥𝑥2 𝑥𝑥3𝑦𝑦 …. 

Graded 
lexicographic 

ordering 
1 𝑥𝑥 𝑦𝑦 𝑥𝑥2 𝑥𝑥𝑥𝑥 𝑦𝑦2 𝑥𝑥3 𝑥𝑥2𝑦𝑦 𝑥𝑥𝑥𝑥2 𝑦𝑦3 

0x1FB 1 1 1 1 1 1 0 1 1 0 

Basis functions 1 𝑥𝑥 𝑦𝑦 𝑥𝑥2 𝑥𝑥𝑥𝑥 𝑦𝑦2 0 𝑥𝑥2𝑦𝑦 𝑥𝑥𝑥𝑥2 0 

The main benefit of this representation of basis space 𝑷𝑷 is to provide all 
necessary information for a straightforward implementation, without requiring 
abstract mathematical knowledge. The basis space 𝑃𝑃1for example is referred to 
as a tensor space and is constructed by computing the tensor product of the 
basis space 𝐵𝐵1 = {1, 𝑥𝑥} and the basis space 𝐵𝐵2 = {1, 𝑦𝑦}, which requires 
special expertise [13]. Using the representation above, the implementation of 
FE mathematics in custom code does not require knowledge about constructing 
spaces of basis functions. 

Application examples 

Figure 2 shows an example of a mathematical finite element used for beam 
calculation. This would read: “𝚺𝚺0(𝐾𝐾) defines a point evaluation and a first 
derivative requirement applied to each 0-face (vertex) of the line geometry 𝐾𝐾”. 
This is a compact definition of a 1D-Hermitte element. Aggregation of physical 
information (transversal displacement, rotation) or geometric information 
(dimension, Cartesian…) can extend the specification. 
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Figure 2: Application example for a Hermitte element

Figure 3 shows another FE mathematics example used in thermal simulation. 
FE mathematics specification describes it as a triangle geometry K composed 
of two DOFs sets 𝚺𝚺0(𝐾𝐾) and 𝚺𝚺1(𝐾𝐾) where 𝚺𝚺0(𝐾𝐾) defines point evaluation 
applied to each 0-face of K and 𝚺𝚺1(𝐾𝐾) defines one point evaluation applied to 
each 1-face (edge) of K.

Figure 3: Application example for “a parabolic triangle” 

The specification can potentially capture new elements. For example, the 
requirements previously defined for the triangle of Fig 3 could be reused and 
applied to any geometry, such as the hexagonal prism in Fig 4. 

Figure 4: Application example for “a parabolic triangle”

Additional examples and their respective encodings are shown in the table 
below. 
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Table 4: Application examples of the FE specification

Figure Common 
name Compact description Code 

Linear element, 
Lagrange 
element, bar 
element….

K = Line
Σ𝐶𝐶0(𝐾𝐾) = {𝑃𝑃𝑃𝑃}
𝑃𝑃𝐾𝐾 = 1D-1C0x3

L 
C0PE
1D-1C0x3

Quadratic 
element, 
Lagrange 
quadratic

K = Line
Σ𝐶𝐶1(𝐾𝐾) = {𝑃𝑃𝑃𝑃, 1}
Σ𝐶𝐶0(𝐾𝐾) = {𝑃𝑃𝑃𝑃}
𝑃𝑃𝐾𝐾 = 1D-1C0x7

L 
C0PEC1PE1
1D-1C0x7 

Linear triangle, 
Lagrange linear 
triangle, courant 
element, T3…

K = Triangle
Σ𝐶𝐶0(𝐾𝐾) = {𝑃𝑃𝑃𝑃}
𝑃𝑃𝐾𝐾 = 2D-1C0x7

T2
C0PE
2D-1C0x7

Quadratic 
triangle, T6…

K = Triangle
Σ𝐶𝐶1(𝐾𝐾) = {𝑃𝑃𝑃𝑃, 1}
Σ𝐶𝐶0(𝐾𝐾) = {𝑃𝑃𝑃𝑃}
𝑃𝑃𝐾𝐾 = 2D-1C0x3F

T2
C0PEC1PE1
2D-1C0x3F

Hermitte triangle
K = Triangle
Σ𝐶𝐶2(𝐾𝐾) = {𝑃𝑃𝑃𝑃, 1}
Σ𝐶𝐶0(𝐾𝐾) = {𝑃𝑃𝑃𝑃, 𝐹𝐹𝐹𝐹}
𝑃𝑃𝐾𝐾 =2D-1C0x3FF

T2
C0PEFDC2PE1
2D-1C0x3FF

Linear square 
element, 
Lagrange square 
element

K = Square
Σ𝐶𝐶0(𝐾𝐾) = {𝑃𝑃𝑃𝑃}
𝑃𝑃𝐾𝐾 = 2D-1C0x1D

S 
C0PE
2D-1C0x1D

Serendipity 
quadratic 
element

K = Square
Σ𝐶𝐶1(𝐾𝐾) = {𝑃𝑃𝑃𝑃, 1}
Σ𝐶𝐶0(𝐾𝐾) = {𝑃𝑃𝑃𝑃}
𝑃𝑃𝐾𝐾 = 2D-1C0xFB

S 
COPEC1PE1
2D-1C0x1FB 

Argyris element

K =Triangle
Σ𝐶𝐶1(𝐾𝐾) = {𝐹𝐹𝐹𝐹, 1}
Σ𝐶𝐶0(𝐾𝐾) = {𝑃𝑃𝑃𝑃, 𝐹𝐹𝐹𝐹, 𝑑𝑑𝐹𝐹}
𝑃𝑃𝐾𝐾 = 2D-1C0xFFFFF

T2
C0PEFDSDC1DD1
2D-1C0x1FFFFF

Raviart-Thomas
K = Square
Σ𝐶𝐶1(𝐾𝐾) = {VN, 1}
𝑃𝑃𝐾𝐾 = 2D-1C0x3-2C0x5

S 
C1VN1 
2D-1C0x3-2C0x5

Linear
Tetrahedron, 3-
simplex linear 
Lagrange 
element…

K = Tetrahedron
Σ𝐶𝐶0(𝐾𝐾) = {𝑃𝑃𝑃𝑃}
𝑃𝑃𝐾𝐾 = 3D-1C0xF

T3
C0PE
3D-1C0xF
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Figure 5: SysML block definition diagram of the FE mathematics specification

© NAFEMS 2017

Representation in SysML

The new specification provides a compact and precise description of FE 
mathematics that can be modeled in a SysML block definition diagram.  
SysML block definition diagrams are based on UML class diagrams, where 
blocks are based on UML classes. A FE mathematics block composes a 
geometry block, one to many DOF set block(s) and a basis space block. Blocks 
are detailed by properties that specify types for their values. The model uses 
integers for space dimension and DOF count on a face. The basis space 
definition is of type string. The DOF type, the face type and the geometry are 
defined by enumeration literals, which are an ordered set of names. The 
enumeration for geometry, for naming of the faces and DOF type are shown in 
the diagram. Property values can be produced (derived) from other 
information, indicated by a forward slash (‘/’). Such properties could be the 
number of faces composing the geometry or the total count of DOFs.
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Figure 6: SysML diagram of an FE Mathematics instance

Validation and testing 

The FE mathematics specification is used to calculate shape functions space,
which form the basis of the dual space of linear forms represented by the 
DOFs. To find shape functions, the procedure transforms the basis space P into 
the shape function space, which is another basis, where one DOF, or by 
extension a discrete physics value (temperature, displacement, etc) located at a 
point or distributed on a point set of the geometry is represented by a shape 
function. 

This procedure requires a definition for the reference coordinates of the 
geometry, which can be arbitrarily chosen. Depending on the coordinate 
choice, the shape functions will be different. The coordinate information is 
therefore implementation dependent and set by the FE code developer. This is 
one of the reasons why the FE mathematics specification has been defined in a 
coordinate independent manner. If shape function information is shared, then 
the reference coordinates of the geometry need to be communicated. 

© NAFEMS 2017

The FE mathematics block definition diagram is an abstract model reflecting 
the general description of FE mathematics. An instance diagrams is derived 
from it and shows objects specified by property values. 

The serendipity element of table 5 is captured in the instance diagram of figure 
6 which specifies the geometry type as Square, basis space with the encoding 
“2D-1C0x1FB”, the two DOFs set “C1PE1” and “C0PE” with their respectives 
DOFs type, DOF number and the facetype to which they are applied. FE 
mathematics objects can therefore be captured and documented in instance 
diagrams.
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To validate the specification, we developed our own symbolic code using the 
Sympy library, a python based library for symbolic mathematics [14,15]. 
Another implementation of symbolic FE mathematics can be also found in 
[16]. Symbolic code promotes interoperability by supporting many 
serialization formats. In Sympy, a mathematical expression is stored as an 
object which can be “printed” into many formats such as a string, LaTex 
expression, MathML, some image formats such JPEG and help with the 
documentation process, as illustrated in the figures below. Other methods can 
transform the symbolic mathematical expression into code such C, Fortran, 
Javascript, Theano or python. We implemented our python code to calculate 
shape functions based upon the specification information. The figure below 
shows the information model for a linear triangle.  

Figure 7: Computation of shape function’s symbolic expression

Figure 8: Python object of a “parabolic triangle” for specific reference geometry 
coordinates

Shape functions are the basis of the discretization process and therefore an 
essential step in the FEA procedure. Physics variables are expressed with shape 
functions and DOFs. This expression is then implemented into the weak form, 
an equation, minimizing the approximation error or the energy of the physics 
problem, depending on the approach.  
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The resulting expression leads to an algebraic system relating DOFs to loads. 
In the case of steady state problems, stiffness matrices relate DOFs to loads. 
The figure below shows a stiffness matrix symbolically computed for a finite 
element describing a line element under the influence of axial loads in a 2D 
space. A Sympy module can transform symbolic expressions of stiffness 
matrices into lambda functions, by stating coordinates as inputs and stiffness 
matrix components as outputs. Lambda functions can calculate numerical 
values very fast. Using a lambda function of the stiffness matrix, a problem 
composed by many line elements can be assembled for a solver.

Figure 9: Symbolic stiffness matrix

6. Conclusion and future work

Model interoperability is essential to improving collaboration between FEA 
and other engineering disciplines. This is facilitated by systems engineering 
models acting as information hubs, which need to integrate FEA information. 
A successful integration of systems engineering models and FEA improves 
communication, traceability, model reusability and process knowledge in the 
development process. A key enabler for successful integration is standards. 
While there is a standard for systems engineering models (SysML), we found 
that standards for FEA are imprecise and ambiguous. A unified description of 
FEA is difficult in part because a large number of possible FEA analyses result 
from the many options involved. 

To overcome this difficulty, we first decomposed FEA information by 
describing FE mathematics in a compact way that does not require abstract 
mathematical knowledge. The representation assigns degrees of freedom to 
topological entity types and provides a systematic method to capture basis 
functions. We tested the compact description on most FE mathematics and then 
created a SysML model to represent it. We tested this model by implementing 
symbolic code to generate shape functions. Some of these shape functions were 
also used to generated symbolic stiffness matrices.

We believe that the new FE mathematics representation can be consistently 
exchanged, providing all necessary information for implementation and FE 
mathematics model reusability. Implementation using symbolic computing 
further supports model reusability and the serialization of symbolic expressions 
into many formats promotes interoperability. As a result, we have an 
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