
Integrating Finite Element Analysis with Systems
Engineering Models

Jerome Szarazi
(Koneksys, United Kingdom);

Axel Reichwein
(Koneksys, United States);

Conrad Bock
(National Institute of Standards and Technology, United States);

Abstract

In order to promote traceability, consistency, interoperability and better
collaboration between systems engineering and Finite Element Analysis
(FEA)-based simulation activities, we propose a tool-independent description
of FEA models that integrates with the Systems Modeling Language (SysML),
for future standardization. As technical systems become more complex, it is
important to support traceability between systems engineering artifacts, such as
requirements, and test cases, and corresponding FEA artifacts, such as FEA
models, simulation conditions, and results.

While there is a standard for model-based systems engineering in the form of
SysML, there is no standard description of FEA models. Existing FEA model
descriptions are incomplete, tool-specific, informal or a combination of these.
As a result, interoperability between FEA software applications is
compromised, and communication between engineers is inefficient. A standard
for the description of FEA models is difficult to develop, as the geometry,
mathematics and physics of finite elements can vary greatly.

We propose a finite element mathematics specification based on recent works
[1] and on the topological characteristics of finite elements that is formal,
precise, and understandable to engineers. Mathematical expertise is still
required to consistently set attributes of the specification but it can potentially
capture new kinds of elements. The specification removes dependence on finite
element names, which are sometimes inconsistent. We think that such a
description is suitable for broad adoption among both FEA and systems
engineers. We validate the new description of finite element mathematics by
solving FEA problems using Python code we developed and demonstrate that
these elements can be described in SysML.

© NAFEMS 2017 www.nafems.org

Presented at the NAFEMS World Congress 2017 Stockholm, Sweden | 11-14 June 2017

1. Introduction and motivation

The motivation of this work is to better integrate FEA expert activities into the
development lifecycle by integrating them with systems engineering modeling.
We believe that it will benefit cross-disciplinary communication, traceability,
model exchange, interoperability, model reusability, process knowledge and
eventually process automation.

Efficient cross-disciplinary communication is essential for collaboration.
System engineers have an overview of development activities by continually
taking input from many stakeholders, making system-level decisions for
improving the design, and communicating the results to cross-disciplinary
teams for further design and validation. Based on system-level decisions,
discipline-specific engineers create or reconfigure models for evaluating and
validating new and modified designs. FEA models are used for validation
across many engineering disciplines to simulate thermal, fluid, mechanical,
electrical, magnetic problems or a combination of these. It is essential that FEA
specialists, other engineering disciplines and system engineers share a common
understanding of FEA models across disciplines to leverage a cross-
disciplinary communication.

Sharing a common model representation across FEA tools will facilitate
traceability from system requirements to FEA models. Product development is
an iterative process where requirements change over time. The product
specification may undergo many changes that are often decided at system level,
but affect FEA models. To analyse the impact of a change, it is important that
system requirements can be traced to FEA model artefacts. For example, a
system cost reduction process may require a material replacement that should
be translated into a material parameter change of the FEA model used to
validate a safety requirement. By tracing links from requirements to models,
system engineers can directly identify the impact of cost reduction on safety
requirements and collaborate with FEA specialists to make better decisions. In
addition, FEA engineers can better understand the context and value of their
simulations in relation to customer needs.

Interoperability between applications is a major concern when selecting a tool,
as it improves the data and information sharing within the same or with
external organizations. It also avoids binding users to a single tool
environment, making migration to another tool framework difficult. A
standardized, tool independent FEA model representation will help to store and
load a model from one application to the other. With standardized model
interfaces, relationships and interdependencies between models of different
abstraction can be defined. For example, this has been applied to integration of
lumped parameter and systems engineering models [2].

© NAFEMS 2017 www.nafems.org

Presented at the NAFEMS World Congress 2017 Stockholm, Sweden | 11-14 June 2017

Interoperability has two main levels, syntactic and semantic. The first
facilitates the data exchange between tools by defining a common serialization
format. The second helps to share context and define concept equivalences,
enabling models to give the same simulation results across tools, and facilitate
transformation between different kinds of tools. A tool independent FEA
representation integrated with systems models will help to support syntactic
and semantic interoperability between FEA tools, as well as model
transformation between FEA tools and systems engineering tools.

Standards should help define unambiguous models that can be identified,
understood and become reusable knowledge in engineering processes. For
example, it is common that multiple simulations are required to validate a
design. Validation procedures and other FEA tasks can be mapped into a
workflow representing a chain of simulation actions performed on models,
where model input and output can be connected. When the models used in
workflows are interoperable, processes can be efficiently rearranged, process
knowledge can be shared, and processes continuously improved.

This process knowledge can be exchanged with other disciplines. An example
is the simulation of manufacturing processes using FEA. FEA is not only used
for product design verification but also to simulate manufacturing processes.
Typically, FEA calculates residual stress generated by forming, subtracting, or
joining material in the assembly process. These simulations help to evaluate
manufacturing process impact on design integrity by feeding-back residual
stress results to the design. Another benefit is the improvement of simulation
results and robustness by comparing simulation results to physical tests in a
consistent manner. These comparisons can increase the quality of simulations.

Integrating FEA into system engineering requires an abstraction of FEA
knowledge, leading to standards that will help overcome the heterogeneity of
FEA model syntax and semantics. We start by evaluating existing standards in
Section 2, then review FEA and some challenges in characterizing it abstractly
in Sections 3 and 4, respectively. Section 5 proposes a new tool-independent
specification for the mathematical portion of finite elements and provides a
SysML model for it. Section 6 summarizes the paper and outlines future work.

2. Status of standardization

SysML is an open graphical modeling specification that extends a subset of the
Unified Modeling Language (UML) [3,4]. UML has been successfully used for
architecting software applications, while SysML provides simple and efficient
constructs to model a large variety of systems engineering problems. It is tool
and methodology independent and supports model and data interchange via the
eXtensible Markup Language [5].

© NAFEMS 2017 www.nafems.org

Presented at the NAFEMS World Congress 2017 Stockholm, Sweden | 11-14 June 2017

Figure 1: Example of a FEA model definition in a P21 file following AP209

Interoperability between software applications and the communication between
engineers, including system engineers and FEA engineers, is therefore
compromised. In order to integrate finite element analysis with system
engineering we need to characterize FEA and define a tool-independent
abstraction that can then be modelled in SysML.

© NAFEMS 2017

SysML defines diagrams that illustrate system component relationships under
different views, as well as semantics for its notation. SysML provides diagrams
for requirements, structure, behavior and parametric relationships. These
diagrams support specification, analysis, design, verification of systems.
SysML supports syntactic and semantic interoperability for system engineering
models.

For FEA activities, International Standards Organization 10303 (STEP)
Application Protocol 209 edition 2 (AP209ed2) is the reference standard for
multidisciplinary analysis and design product data with respect to
interoperability, legacy data archiving and information reusability [6]. It
integrates simulation data management, computer aided design, computer aided
engineering and product data management. One of the main benefits of using a
STEP standard is that FEA uses Computer Aided Design (CAD) geometries as
input and STEP AP242 is a successful standard for CAD 3D geometry,
assembly and Product Manufacturing Information interoperability [7]. The use
of these two application protocols could support a seamless data exchange
between design and analysis. Considering that the transformation of CAD data
to FEA information is a major bottleneck in analysis activities, supporting
interaction between design and analysis in a bi-directional manner would
improve productivity.

Unfortunately, when reviewing STEP AP209, we noticed it mainly captures
Product Lifecycle Management (organisation, date, etc) and geometric
information. For the simulation part, AP209 defines a FEA model with a
collection of non-constrained string entities (analysis type, creating software,
finite element name, material…) leading to an informal FEA description, as in
Figure 1. STEP AP209 provides only syntactic interoperability, not semantic
interoperability. It cannot ensure the same simulation results across FEA tools
or support integration with other kinds of tools. A more formal FEA
description for data exchange is needed.

www.nafems.org

Presented at the NAFEMS World Congress 2017 Stockholm, Sweden | 11-14 June 2017

3. Overview of FEA

Finite element analysis is a numerical method for finding approximate
solutions to partial differential equation or energy minimizing problems by
solving linear algebraic equations for steady state or ordinary differential
equations for dynamic problems [8]. FEA models require derivatives of
functions of space (geometry) and time, as opposed to lump parameter systems,
which only involve derivatives of functions of time.

FEA is a very powerful numerical method with attractive properties:

• Modularity: A domain specific physics problem can be modelled
algebraically for a simple polygonal entity using interpolation
functions. The resulting algebraic model can be stored as a software
module or function, called a library element.

• Reusability: A library element can be reused in analyses of multiple
systems.

• Scalability: Library elements are mapped to mesh cells partitioning
system geometry. A complex system composed of multiple finite
elements can be assembled and described by a global stiffness matrix.

FEA is typically used to solve multidimensional physics problems describing a
system under the action of body and surface loads and kinematically
constrained. The algebraic element relating loads to unknowns is the stiffness
matrix K in case of static problems, and the mass matrix M and damping
matrix D in case of dynamic problems.

The FEA procedure is simple and reproducible. It can be described by a
workflow consisting of three steps, the pre-processing phase (mesh generation,
material assignment and boundary labelling), analysis definition phase (finite
element selection, model parameter setting, solver definition and output
settings), and post-processing phase (visualization and data export) [9].

FEA applications have software architecture that follows the workflow. At the
file level, a completed analysis will be composed of pre-processing files (CAD
and mesh files), an analysis definition file or input file, and results files.
Modern FEA software provides graphical user interfaces to support workflow.
This is very helpful considering that many parameter settings are geometrical,
such as boundary conditions definition. Another useful feature is the bi-
directional associative interface providing a seamless integration of CAD and
FEA data.

© NAFEMS 2017 www.nafems.org

Presented at the NAFEMS World Congress 2017 Stockholm, Sweden | 11-14 June 2017

4. Challenges in characterizing finite elements analysis

Finding a unified description of FEA is difficult in part because a large number
of possible FEA analyses result from the many options involved:

• Modern software provides a vast collection of FEA library elements to
simulate mechanical, thermal, electrostatics, magneto-statics, fluid and
electromagnetism. Multiphysics problems, which are systems
consisting of more than one component governed by their own physics
principles, are also supported.

• System studies can be time independent and will be evaluated by
running a steady state analysis. For time-dependent systems transient
analysis will be performed.

• System stability can be assessed by performing a modal analysis to find
resonance frequencies or modes. Buckling analysis helps to avoid
failure modes for solid system components under compression.

• The analyses above require material model definitions, which can be
linear or nonlinear. Material models can also involve coupling in
another physics, as for example in thermo-mechanical problems. For
solid material under some large deformation, geometric nonlinearities
will be considered, resulting in a re-meshing operation at each
simulation step.

• From a numerical perspective, discretizing an analysis by choosing one
or more discretization variables can affect simulation performance.

• Depending on the problem abstraction, a problem can be described in
1D, 2D or 3D. For symmetric systems or systems under rotation,
cylindric or polar coordinate system for example can be chosen to
simplify the analysis.

• To run an analysis on the discrete geometric system model (mesh), the
finite element type, which is the core numerical element of the analysis,
needs to be selected.

The total combination of these choices would provide a rough evaluation of the
number of possible FEA models. If we consider a line element for example, we
could apply 4 different physics and support simulation in 3 different
dimensions, then we would have 12 combinations and therefore 12 FEA library
elements. As a result, modern FEA applications involve a vast number of
choices and results that are difficult to track.
The FEA process generates many artefacts that are difficult to organize.
Multiphysics problems can be solved by custom code or tool vendor solutions
having their own artefacts. Software vendors define their own FEA model
referencing schemas, some of which are nonexplanatory while others try to
incorporate some of the model parameter information. Expert know-how is
required to find equivalences between models. As AP 209 does not provide any
schema to classify finite elements, tools use their proprietary names for their
APIs and for referencing their FEA models.

© NAFEMS 2017 www.nafems.org

Presented at the NAFEMS World Congress 2017 Stockholm, Sweden | 11-14 June 2017

5. New proposed FE mathematics specification

In order to ensure efficient communication between system engineering and
FEA, we need a standard convention to describe finite elements. It should
include a compact notation that contains all information necessary to solve an
FEA problems in a platform independent manner, by automatically generating
shape functions, element stiffness matrices based on a problem specification.
When characterizing an FE simulation, we had previously concluded that many
kinds of FEA library element models are possible. A classification schema for
these models is needed.

In this paper, we only discuss specification of FE mathematics, which we
define as the mathematical objects representing polynomials with one or many
variables over a geometric domain. These are the core objects of FEA
simulation. This section outlines the challenges in finding such a description
and propose a compact notation and SysML model that is unambiguous and
understandable by most engineers.

a. Previous work on FE mathematics classification

As we started our search for a finite element mathematics description, we soon
realised that most descriptions are ambiguous. The same FE-mathematics can
be referred to as many different names in the literature. For example, a linear
line element is also described as a Lagrange line element. Many FE
mathematics are named after their discoverer(s) but this is sometimes not even
clear as to which name to use. A Lagrange triangle can for example also be
called a Courant element. Furthermore, the use of mathematician names does
not provide any information for non-specialists.

Describing FE mathematics with engineering names, such as beam or bar
element, is also ambiguous. A beam, for example, can have 4 degrees of
freedom or 2 degrees of freedom. In the first case, the representation of 2
transversal displacements and 2 rotation angles requires a cubic polynomial or
Hermitte element. In the second case, it requires only a Lagrange element to
interpolate the moment. To find a description of FE mathematics, it is
important to remove name dependencies, separate the physics from the
mathematics, and classify or characterize FE mathematics by their properties.

FE mathematics classification work seems to have been first undertaken by
Ciarlet. Modern finite element literature refers also quite often to his definition.
In [10] an FE mathematics is defined as a triplet (𝑲𝑲, 𝑷𝑷, 𝚺𝚺) consisting of a
geometric figure 𝑲𝑲, a set of basis functions or basis space 𝑷𝑷 and degrees of
freedom 𝚺𝚺 (DOFs). Although the original definition is simple, it seems that
Ciarlet’s objective was to describe families of FE mathematics. To further
categorize them, Ciarlet introduced the typing of the geometry K. By doing so,
he could establish relationships between a typed geometry K and the degree of

© NAFEMS 2017 www.nafems.org

Presented at the NAFEMS World Congress 2017 Stockholm, Sweden | 11-14 June 2017

the basis functions that are valid for any dimension. Although this additional
categorization provided great insight on mathematical properties, it made the
description of FE mathematics more complex.

Ciarlet’s work was extended in [11], leading to a periodic table of finite
elements covering differential forms of all possible degrees for each function
space families. The table helps to understand the relationship between FE
mathematics families and the application scope of the captured FE
mathematics. The limitation is it does not classify some common elements.

b. New proposed FE mathematics specification

The new FE mathematics description is based on the generic finite element
definition of Ciarlet and the DOF type description as found in [1]. However,
the triplet (geometry, DOF and basis space) is described using topology.
Furthermore, the new FE mathematics description is coordinate-independent,
in contrast to Ciarlet’s more complex coordinate-dependant description. Also,
the description of DOFs is uncoupled from the finite element geometry. In
contrast, Ciarlet’s description is based on a coupling between DOFs, finite
element geometry and basis space, leading to a less compact and more complex
classification of finite elements.

To address the problem, we propose a compact, simple and unambiguous
description of the mathematics of finite elements. This description reflects the
mathematical properties of finite elements and provides all necessary
information for implementation. The proposed FE mathematics specification
can describe any finite element as it can be applied to any discrete geometry
and can specify any basis space. The description is composed of a triple as
defined in [10], but the information entities (geometry, DOFs, basis space) can
be defined independently of each other and are thereby reusable. Mathematical
expertise is required to consistently set attributes of the three entities in a finite
element, but the specification can potentially capture new kinds of elements.
The specification removes dependence on the finite element names which are
sometimes inconsistent.

© NAFEMS 2017 www.nafems.org

Presented at the NAFEMS World Congress 2017 Stockholm, Sweden | 11-14 June 2017

The new proposed FE mathematics specification is defined as follows:
• Geometry K (line, polygon, polyhedron, prism…)

• DOF sets on geometry K:

𝚺𝚺(𝐾𝐾): = {𝚺𝚺𝐶𝐶𝐶𝐶(𝐾𝐾), 𝚺𝚺𝐶𝐶𝐶𝐶−1(𝐾𝐾), … , 𝚺𝚺𝐶𝐶0(𝐾𝐾)}

where 𝚺𝚺Cn(𝐾𝐾) is the set of DOFs applied to all n-faces of the
geometry (0-faces 𝐂𝐂0: vertices, 1-faces 𝐂𝐂1: edges, 2-faces 𝐂𝐂2:
faces, 3-face 𝐂𝐂3: volumes).

A DOF is defined by a type and a count which specifies the number of
evaluated requirements on one n-face of K.

• Basis functions set or basis space 𝑷𝑷, defined by a string

Geometry type

The table below show a non-exhaustive list of geometries used in FE-
mathematics and their respective string encodings.

Table 1: Listing of common geometric figures used in FEA and their
corresponding encoding string

Geometry Geometry name Encoding
string

Line L

Triangle T2

Square S

Tetrahedron T3

Square pyramid SP

Cube C

Triangular prism TP

© NAFEMS 2017 www.nafems.org

Presented at the NAFEMS World Congress 2017 Stockholm, Sweden | 11-14 June 2017

Degrees of Freedom type (DOF type)

The set of all possible DOFs 𝚺𝚺𝒇𝒇 types is given by:

Σ𝑓𝑓 = {𝑝𝑝(𝒙𝒙):𝑷𝑷𝑷𝑷; ∇𝑝𝑝(𝒙𝒙): 𝑭𝑭𝑭𝑭 ;
𝜕𝜕2𝑝𝑝(𝒙𝒙)
𝜕𝜕2𝒙𝒙

: 𝑺𝑺𝑺𝑺 ; … . }

where 𝑝𝑝(𝒙𝒙) is a scalar or 𝒑𝒑(𝒙𝒙) a vector-valued polynomial describing physical
quantities. To facilitate reading, acronyms are used for literal operator
definition as in [1], such as PE for point evaluation, see the table below.

Table 2: Definition of DOF types and corresponding encodings
according to [1]

DOF type Definition [1] Symbol
Mathematical expression of
the linear form and shape

function definition

Point
evaluation

Point evaluation of a
function P at a vertex of
the geometry

PE 𝑝𝑝(𝒙𝒙)

First
derivative

Point evaluation of all first
derivatives of the function
P at a vertex of the
geometry

FD 𝛻𝛻𝛻𝛻(𝒙𝒙)

Second
derivative

Point evaluation of all
second derivatives of the
function P at a vertex of
the geometry

SD 𝜕𝜕2𝑝𝑝(𝒙𝒙)
𝜕𝜕2𝒙𝒙

Directional
derivative

Evaluation of the
directional derivative of
the scalar function v in the
direction n at the point x.

DD 𝛻𝛻𝛻𝛻(𝒙𝒙). 𝒏𝒏

Tangential
component

Evaluation of the vector-
valued function v in the
tangential direction along
line of the geometry at the
point x

VT � 𝒑𝒑(𝒙𝒙). 𝒕𝒕
𝒍𝒍

𝟎𝟎
𝒅𝒅𝒅𝒅

Normal
component

Evaluation of the vector-
valued function v in the
normal direction along a
face of the geometry at
the point x

VN � 𝒑𝒑(𝒙𝒙).𝒏𝒏
𝒍𝒍

𝟎𝟎
𝒅𝒅𝒅𝒅

Interior
moment

Interior moment degrees
of freedom; that is,
degrees of freedom
defined by integration
against a weight
function over the interior
of the domain K

IM � 𝒑𝒑. 𝑞𝑞
𝐾𝐾

𝑑𝑑𝑑𝑑

© NAFEMS 2017 www.nafems.org

Presented at the NAFEMS World Congress 2017 Stockholm, Sweden | 11-14 June 2017

Basis space P

The FE mathematics specification also defines basis space 𝑷𝑷. The geometry K,
the DOFs 𝚺𝚺(𝐾𝐾) and the basis space 𝑷𝑷 are interdependent attributes. In [10] and
[11], FE mathematics is further categorized by defining a family of basis space
P. Its definition is abstract and difficult for engineers to read.

To facilitate implementation of FE mathematics, the specification provides a
mechanism to capture the set of basis functions 𝑷𝑷 using lexicographic ordering
of monomials, following many symbolic computing programs that generate
monomials this way. The method consists of creating a dictionary of all
possible monomials combinations or words. These generated words are then
ordered and indexed. We chose graded lexicographic ordering, which first sorts
by total degree, then lexicographically. As an example, the set 𝑆𝑆2 =
{1, 𝑥𝑥, 𝑦𝑦, 𝑥𝑥𝑥𝑥, 𝑥𝑥2, 𝑦𝑦2, … } of generated monomials can be ordered by
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔: … 𝑦𝑦2 ≻ 𝑥𝑥𝑥𝑥 ≻ 𝑥𝑥2 ≻ 𝑦𝑦 ≻ 𝑥𝑥 ≻ 1, following graded lexicographic
ordering. In general, the representation of the monomials of the basis space 𝑷𝑷
would only require using a subset of this ordered list. To represent this subset,
we set 0 or 1 depending on whether a monomial word is used or not. A bit
string to capture the monomials of the basis space P is then created following
the graded lexicographic ordering. For example, the basis space 𝑃𝑃1 = {1, 𝑥𝑥, 𝑦𝑦,
𝑥𝑥𝑥𝑥} used for a square can be represented as 11101. This bit string can be
further compacted into the hexadecimal number 0x1D.

To complete the FE mathematics specification, we need to define the
dimension. To create monomial words, we use predefined alphabet letters. This
monomial alphabet is composed of a set of letters or symbols where one of the
symbols represents a dimension. The set of generated monomials is therefore
dimension dependant. In our examples, the letters 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 are used and
represent space dimension. The set 𝑆𝑆1 = {1, 𝑥𝑥, 𝑥𝑥2, 𝑥𝑥3, … } represents one
dimensional monomials and 𝑆𝑆2 would be the set of two-dimensional
monomials. The space dimension is prefixed with ND where N is the space
dimension. Depending on the field type, a function space can have one or many
components. (scalar polynomial field, vector polynomial field, …) The
component index is specified by NC where N is the component index. The
basis space 𝑃𝑃1 = {1, 𝑥𝑥, 𝑦𝑦, 𝑥𝑥𝑥𝑥} would be encoded as in the table below.

Table 3: Example of scalar polynomial encoding

Space dimension Field component Basis space code

2D 1C 0x1D

© NAFEMS 2017 www.nafems.org

Presented at the NAFEMS World Congress 2017 Stockholm, Sweden | 11-14 June 2017

The encoding depicted in Table 3 (2D-1C-0x1D) can be translated into a
symbolic math program capable of translating it to a human readable form. To
illustrate we decode 2D-1C0x1FB. Again, the “2D” gives the dimension,
which means the basis functions use two variables (x and y, see below). A set
of monomials can be generated and then ordered following graded
lexicographic ordering. The “1C” indicates that we have only one component
therefore representing a scalar polynomial. The “0X1FB” is a hexadecimal
number which can be translated into a bit word declaring what monomial to
use in the ordered list. The resulting basis space is 𝑃𝑃2 =
{1, 𝑥𝑥, 𝑦𝑦, 𝑥𝑥2, 𝑥𝑥𝑥𝑥, 𝑦𝑦2, 𝑥𝑥2𝑦𝑦, 𝑥𝑥𝑥𝑥2}, which is used for an FE mathematics of type
“serendipity element” as described in [12].

Table 4: Reading basis functions from basis space code 2D-1C0x1FB

monomials set
𝑆𝑆2

𝑥𝑥5 𝑥𝑥𝑥𝑥2 1 𝑥𝑥2 𝑥𝑥3𝑦𝑦 ….

Graded
lexicographic

ordering
1 𝑥𝑥 𝑦𝑦 𝑥𝑥2 𝑥𝑥𝑥𝑥 𝑦𝑦2 𝑥𝑥3 𝑥𝑥2𝑦𝑦 𝑥𝑥𝑥𝑥2 𝑦𝑦3

0x1FB 1 1 1 1 1 1 0 1 1 0

Basis functions 1 𝑥𝑥 𝑦𝑦 𝑥𝑥2 𝑥𝑥𝑥𝑥 𝑦𝑦2 0 𝑥𝑥2𝑦𝑦 𝑥𝑥𝑥𝑥2 0

The main benefit of this representation of basis space 𝑷𝑷 is to provide all
necessary information for a straightforward implementation, without requiring
abstract mathematical knowledge. The basis space 𝑃𝑃1for example is referred to
as a tensor space and is constructed by computing the tensor product of the
basis space 𝐵𝐵1 = {1, 𝑥𝑥} and the basis space 𝐵𝐵2 = {1, 𝑦𝑦}, which requires
special expertise [13]. Using the representation above, the implementation of
FE mathematics in custom code does not require knowledge about constructing
spaces of basis functions.

Application examples

Figure 2 shows an example of a mathematical finite element used for beam
calculation. This would read: “𝚺𝚺0(𝐾𝐾) defines a point evaluation and a first
derivative requirement applied to each 0-face (vertex) of the line geometry 𝐾𝐾”.
This is a compact definition of a 1D-Hermitte element. Aggregation of physical
information (transversal displacement, rotation) or geometric information
(dimension, Cartesian…) can extend the specification.

© NAFEMS 2017 www.nafems.org

Presented at the NAFEMS World Congress 2017 Stockholm, Sweden | 11-14 June 2017

Figure 2: Application example for a Hermitte element

Figure 3 shows another FE mathematics example used in thermal simulation.
FE mathematics specification describes it as a triangle geometry K composed
of two DOFs sets 𝚺𝚺0(𝐾𝐾) and 𝚺𝚺1(𝐾𝐾) where 𝚺𝚺0(𝐾𝐾) defines point evaluation
applied to each 0-face of K and 𝚺𝚺1(𝐾𝐾) defines one point evaluation applied to
each 1-face (edge) of K.

Figure 3: Application example for “a parabolic triangle”

The specification can potentially capture new elements. For example, the
requirements previously defined for the triangle of Fig 3 could be reused and
applied to any geometry, such as the hexagonal prism in Fig 4.

Figure 4: Application example for “a parabolic triangle”

Additional examples and their respective encodings are shown in the table
below.

 © NAFEMS 2017 www.nafems.org

Presented at the NAFEMS World Congress 2017 Stockholm, Sweden | 11-14 June 2017

Table 4: Application examples of the FE specification

Figure Common
name Compact description Code

Linear element,
Lagrange
element, bar
element….

K = Line
Σ𝐶𝐶0(𝐾𝐾) = {𝑃𝑃𝑃𝑃}
𝑃𝑃𝐾𝐾 = 1D-1C0x3

L
C0PE
1D-1C0x3

Quadratic
element,
Lagrange
quadratic

K = Line
Σ𝐶𝐶1(𝐾𝐾) = {𝑃𝑃𝑃𝑃, 1}
Σ𝐶𝐶0(𝐾𝐾) = {𝑃𝑃𝑃𝑃}
𝑃𝑃𝐾𝐾 = 1D-1C0x7

L
C0PEC1PE1
1D-1C0x7

Linear triangle,
Lagrange linear
triangle, courant
element, T3…

K = Triangle
Σ𝐶𝐶0(𝐾𝐾) = {𝑃𝑃𝑃𝑃}
𝑃𝑃𝐾𝐾 = 2D-1C0x7

T2
C0PE
2D-1C0x7

Quadratic
triangle, T6…

K = Triangle
Σ𝐶𝐶1(𝐾𝐾) = {𝑃𝑃𝑃𝑃, 1}
Σ𝐶𝐶0(𝐾𝐾) = {𝑃𝑃𝑃𝑃}
𝑃𝑃𝐾𝐾 = 2D-1C0x3F

T2
C0PEC1PE1
2D-1C0x3F

Hermitte triangle
K = Triangle
Σ𝐶𝐶2(𝐾𝐾) = {𝑃𝑃𝑃𝑃, 1}
Σ𝐶𝐶0(𝐾𝐾) = {𝑃𝑃𝑃𝑃, 𝐹𝐹𝐹𝐹}
𝑃𝑃𝐾𝐾 =2D-1C0x3FF

T2
C0PEFDC2PE1
2D-1C0x3FF

Linear square
element,
Lagrange square
element

K = Square
Σ𝐶𝐶0(𝐾𝐾) = {𝑃𝑃𝑃𝑃}
𝑃𝑃𝐾𝐾 = 2D-1C0x1D

S
C0PE
2D-1C0x1D

Serendipity
quadratic
element

K = Square
Σ𝐶𝐶1(𝐾𝐾) = {𝑃𝑃𝑃𝑃, 1}
Σ𝐶𝐶0(𝐾𝐾) = {𝑃𝑃𝑃𝑃}
𝑃𝑃𝐾𝐾 = 2D-1C0xFB

S
COPEC1PE1
2D-1C0x1FB

Argyris element

K =Triangle
Σ𝐶𝐶1(𝐾𝐾) = {𝐹𝐹𝐹𝐹, 1}
Σ𝐶𝐶0(𝐾𝐾) = {𝑃𝑃𝑃𝑃, 𝐹𝐹𝐹𝐹, 𝑑𝑑𝐹𝐹}
𝑃𝑃𝐾𝐾 = 2D-1C0xFFFFF

T2
C0PEFDSDC1DD1
2D-1C0x1FFFFF

Raviart-Thomas
K = Square
Σ𝐶𝐶1(𝐾𝐾) = {VN, 1}
𝑃𝑃𝐾𝐾 = 2D-1C0x3-2C0x5

S
C1VN1
2D-1C0x3-2C0x5

Linear
Tetrahedron, 3-
simplex linear
Lagrange
element…

K = Tetrahedron
Σ𝐶𝐶0(𝐾𝐾) = {𝑃𝑃𝑃𝑃}
𝑃𝑃𝐾𝐾 = 3D-1C0xF

T3
C0PE
3D-1C0xF

© NAFEMS 2017 www.nafems.org

Presented at the NAFEMS World Congress 2017 Stockholm, Sweden | 11-14 June 2017

Figure 5: SysML block definition diagram of the FE mathematics specification

© NAFEMS 2017

Representation in SysML

The new specification provides a compact and precise description of FE
mathematics that can be modeled in a SysML block definition diagram.
SysML block definition diagrams are based on UML class diagrams, where
blocks are based on UML classes. A FE mathematics block composes a
geometry block, one to many DOF set block(s) and a basis space block. Blocks
are detailed by properties that specify types for their values. The model uses
integers for space dimension and DOF count on a face. The basis space
definition is of type string. The DOF type, the face type and the geometry are
defined by enumeration literals, which are an ordered set of names. The
enumeration for geometry, for naming of the faces and DOF type are shown in
the diagram. Property values can be produced (derived) from other
information, indicated by a forward slash (‘/’). Such properties could be the
number of faces composing the geometry or the total count of DOFs.

www.nafems.org

Presented at the NAFEMS World Congress 2017 Stockholm, Sweden | 11-14 June 2017

Figure 6: SysML diagram of an FE Mathematics instance

Validation and testing

The FE mathematics specification is used to calculate shape functions space,
which form the basis of the dual space of linear forms represented by the
DOFs. To find shape functions, the procedure transforms the basis space P into
the shape function space, which is another basis, where one DOF, or by
extension a discrete physics value (temperature, displacement, etc) located at a
point or distributed on a point set of the geometry is represented by a shape
function.

This procedure requires a definition for the reference coordinates of the
geometry, which can be arbitrarily chosen. Depending on the coordinate
choice, the shape functions will be different. The coordinate information is
therefore implementation dependent and set by the FE code developer. This is
one of the reasons why the FE mathematics specification has been defined in a
coordinate independent manner. If shape function information is shared, then
the reference coordinates of the geometry need to be communicated.

© NAFEMS 2017

The FE mathematics block definition diagram is an abstract model reflecting
the general description of FE mathematics. An instance diagrams is derived
from it and shows objects specified by property values.

The serendipity element of table 5 is captured in the instance diagram of figure
6 which specifies the geometry type as Square, basis space with the encoding
“2D-1C0x1FB”, the two DOFs set “C1PE1” and “C0PE” with their respectives
DOFs type, DOF number and the facetype to which they are applied. FE
mathematics objects can therefore be captured and documented in instance
diagrams.

www.nafems.org

Presented at the NAFEMS World Congress 2017 Stockholm, Sweden | 11-14 June 2017

To validate the specification, we developed our own symbolic code using the
Sympy library, a python based library for symbolic mathematics [14,15].
Another implementation of symbolic FE mathematics can be also found in
[16]. Symbolic code promotes interoperability by supporting many
serialization formats. In Sympy, a mathematical expression is stored as an
object which can be “printed” into many formats such as a string, LaTex
expression, MathML, some image formats such JPEG and help with the
documentation process, as illustrated in the figures below. Other methods can
transform the symbolic mathematical expression into code such C, Fortran,
Javascript, Theano or python. We implemented our python code to calculate
shape functions based upon the specification information. The figure below
shows the information model for a linear triangle.

Figure 7: Computation of shape function’s symbolic expression

Figure 8: Python object of a “parabolic triangle” for specific reference geometry
coordinates

Shape functions are the basis of the discretization process and therefore an
essential step in the FEA procedure. Physics variables are expressed with shape
functions and DOFs. This expression is then implemented into the weak form,
an equation, minimizing the approximation error or the energy of the physics
problem, depending on the approach.

NAFEMS 2017 www.nafems.org

Presented at the NAFEMS World Congress 2017 Stockholm, Sweden | 11-14 June 2017

The resulting expression leads to an algebraic system relating DOFs to loads.
In the case of steady state problems, stiffness matrices relate DOFs to loads.
The figure below shows a stiffness matrix symbolically computed for a finite
element describing a line element under the influence of axial loads in a 2D
space. A Sympy module can transform symbolic expressions of stiffness
matrices into lambda functions, by stating coordinates as inputs and stiffness
matrix components as outputs. Lambda functions can calculate numerical
values very fast. Using a lambda function of the stiffness matrix, a problem
composed by many line elements can be assembled for a solver.

Figure 9: Symbolic stiffness matrix

6. Conclusion and future work

Model interoperability is essential to improving collaboration between FEA
and other engineering disciplines. This is facilitated by systems engineering
models acting as information hubs, which need to integrate FEA information.
A successful integration of systems engineering models and FEA improves
communication, traceability, model reusability and process knowledge in the
development process. A key enabler for successful integration is standards.
While there is a standard for systems engineering models (SysML), we found
that standards for FEA are imprecise and ambiguous. A unified description of
FEA is difficult in part because a large number of possible FEA analyses result
from the many options involved.

To overcome this difficulty, we first decomposed FEA information by
describing FE mathematics in a compact way that does not require abstract
mathematical knowledge. The representation assigns degrees of freedom to
topological entity types and provides a systematic method to capture basis
functions. We tested the compact description on most FE mathematics and then
created a SysML model to represent it. We tested this model by implementing
symbolic code to generate shape functions. Some of these shape functions were
also used to generated symbolic stiffness matrices.

We believe that the new FE mathematics representation can be consistently
exchanged, providing all necessary information for implementation and FE
mathematics model reusability. Implementation using symbolic computing
further supports model reusability and the serialization of symbolic expressions
into many formats promotes interoperability. As a result, we have an

© NAFEMS 2017 www.nafems.org

Presented at the NAFEMS World Congress 2017 Stockholm, Sweden | 11-14 June 2017

This work was performed under grant awards 70NANB14H251 and
70NANB16H174 from the U.S. National Institute of Standards and
Technology.

Commercial equipment and materials might be identified to adequately specify
certain procedures. In no case does such identification imply recommendation
or endorsement by the U.S. National Institute of Standards and Technology,
nor does it imply that the materials or equipment identified are necessarily the
best available for the purpose.

References

[1] Logg A. et Al. (2012). Automated solution of differential equation by the
finite element method: Springer.

[2] Dadfarnia, M., Bock, C., Barbau, R. (2016). An Improved Method of
Physical Interaction and Signal Flow Modeling for Systems Engineering:
Conference on Systems Engineering Research.

[3] Object Management Group (September 2015). OMG Systems Modeling
LanguageTM, version 1.4: http://www.omg.org/spec/SysML/1.4.

[4] Object Management Group (March 2015). OMG Unified Modeling
LanguageTM, version 2.5: http://www.omg.org/spec/UML/2.5.

[5] W3C (September 2006) Extensible Markup Language (XML) 1.1 (Second
Edition)

© NAFEMS 2017

unambiguous and compact specification of FE mathematics that is readable by
most engineers and can potentially capture new elements.

The code is currently limited to using the string encoding of the FE
specification, which will be addressed by a translator between SysML and the
code, still under development. The specification of FE mathematics is a first
step to consistently represent FEA problems. Extension of the new finite
element specification to cover FEA physics is on-going work. The ultimate
objective is to describe FEA models using SysML by extending the FE
mathematics specification to capture relationships between systems
engineering and FEA-related simulation information. This FEA information
model should provide all information necessary to assemble a problem for a
solver.

Acknowledgements

We would like to thank Peter Denno and Li Ma for input to this paper.

www.nafems.org

Presented at the NAFEMS World Congress 2017 Stockholm, Sweden | 11-14 June 2017

[6] ISO 10303 STEP AP 209 ed2 (2013). Composite and metallic structural
analysis and related design: ISO – International Organization for
Standardization.

[7] ISO 10303-242 STEP AP 242 “Managed model based 3D engineering: ISO
– International Organization for Standardization

[8] Hulbert, G. (1992). Time finite element methods for structural dynamics:
International journal for numerical methods in engineering. vol. 33, 307-
331.

[9] Bathe, K-J. (1996). Finite element procedures: Prentice hall.

[10] Ciarlet, P. (2002). The finite element method for elliptic problems: SIAM.

[11] Logg, A., Arnold D. (2014). Periodic table of finite elements: Siam News.

[12] Arnold, D., Awanou, G. (2011). The Serendipity Family of Finite
Elements: The journal for the Society for the foundations of
Computational Mathematics.

[13] McRac, A., Bercea, G-T., Mitchell, L., Ham, D., Cotter, C. (2014).
Automated generation and symbolic manipulation of tensor product finite
elements: SIAM Journal on Scientific Computing.

[14] Van Rossum, G. (2007). Python programming language:
http://www.python.org.

[15] Meurer A, Smith CP, Paprocki M, Čertík O, Kirpichev SB, Rocklin M,
Kumar A, Ivanov S, Moore JK, Singh S, Rathnayake T, Vig S, Granger
BE, Muller RP, Bonazzi F, Gupta H, Vats S, Johansson F, Pedregosa F,
Curry MJ, Terrel AR, Roučka Š, Saboo A, Fernando I, Kulal S, Cimrman
R, Scopatz A. (2017). SymPy: symbolic computing in Python: PeerJ
Computer Science.

[16] Alnaes, M.S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, C.,
Richardson, J., Ring, J., Rognes, M. E., Well, G.N. (2015): The FEniCS
Project Version 1.5: Archive of Numerical Software. vol. 3.

© NAFEMS 2017 www.nafems.org

Presented at the NAFEMS World Congress 2017 Stockholm, Sweden | 11-14 June 2017

	Integrating Finite Element Analysis with Systems Engineering Models
	1. Introduction and motivation
	2. Status of standardization
	3. Overview of FEA
	4. Challenges in characterizing finite elements analysis
	5. New proposed FE mathematics specification
	a. Previous work on FE mathematics classification
	b. New proposed FE mathematics specification
	Geometry type
	Degrees of freedom type (DOF type)
	Basis space P
	Representation in SysML
	Validation and testing

	6. Conclusion and future work
	Acknowledgements
	References

