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Experimental evidence for field-induced emergent clock anisotropies in the XY pyrochlore Er2Ti2O7
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The XY pyrochlore antiferromagnet Er2Ti2O7 exhibits a rare case of Z6 discrete symmetry breaking in its ψ2

magnetic ground state. Despite being well-studied theoretically, systems with high discrete symmetry breakings
are uncommon in nature. Thus, Er2Ti2O7 provides an experimental playground for the study of broken Zn

symmetry, for n > 2. A recent theoretical work examined the effect of a magnetic field on a pyrochlore lattice
with broken Z6 symmetry and applied it to Er2Ti2O7. This study predicted multiple domain transitions depending
on the crystallographic orientation of the magnetic field, inducing rich and controllable magnetothermodynamic
behavior. In this work, we present neutron scattering measurements on Er2Ti2O7 with a magnetic field applied
along the [001] and [111] directions and provide experimental observation of these exotic domain transitions.
In a [001] field, we observe a ψ2 to ψ3 transition at a critical field of 0.18 ± 0.05 T. We are thus able to extend
the concept of the spin-flop transition, which has long been observed in Ising systems, to higher discrete Zn

symmetries. In a [111] field, we observe a series of domain-based phase transitions for fields of 0.15 ± 0.03 T
and 0.40 ± 0.03 T. We show that these field-induced transitions are consistent with the emergence of twofold,
threefold, and possibly sixfold Zeeman terms. Considering all the possible ψ2 and ψ3 domains, these Zeeman
terms can be mapped onto an analog clock—exemplifying a literal clock anisotropy. Lastly, our quantitative
analysis of the [001] domain transition in Er2Ti2O7 is consistent with order-by-disorder as the dominant ground
state selection mechanism.

DOI: 10.1103/PhysRevB.95.054407

I. INTRODUCTION

The pyrochlore lattice is a face centered cubic structure
with a basis of corner-sharing tetrahedra. In the case of the
pyrochlore Er2Ti2O7, the spins residing on this network of
tetrahedra are known to have a k = 0, �5 magnetic structure,
for which all the spins lie in the plane perpendicular to the
local 〈111〉 axis [1]. A representation of this �5 structure
is shown in Fig. 1(a) with its associated basis vectors ψ2

and ψ3. The linear combination of these two basis vectors
can generate any spin orientation spanning the local XY
plane, which is the entire U(1) manifold. An appropriate
model Hamiltonian that includes anisotropic exchange and
dipolar interactions, with experimentally determined exchange
parameters for Er2Ti2O7, has its energy minimized by the U(1)
manifold, which is degenerate at the mean field level [2,3].
However, in the real material, this degeneracy is lifted when the
Er3+ moments order antiferromagnetically into a pure ψ2 state
below TN = 1.2 K [4]. The mechanism responsible for this
degeneracy breaking in Er2Ti2O7 has attracted much attention,
as it could be the first demonstration of ground state selection
via order-by-disorder [5,6]. Indeed, it is widely believed
that instead of ordering via energetic selection, thermal and
quantum fluctuations drive this system to an entropically
favorable magnetically ordered state [1–3,7–9]. This scenario
is not yet definitive, however, as a competing theory has been
proposed that might explain the ground-state selection via
energetic selection [10–12]. Regardless, Er2Ti2O7 remains the
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most promising candidate for ground state selection via the
order-by-disorder mechanism.

Another interesting aspect of the phase transition in
Er2Ti2O7 is that it represents a rare case of higher order discrete
symmetry breaking. Indeed, time inversion and rotational
symmetry allow six distinct spin orientations within the ψ2

state, i.e., a Z6 symmetry breaking. The Ising model, with Z2

symmetry breaking, is known to capture the salient physics
of many magnetic materials and a wealth of other physical
systems [13,14]. Although many theoretical models for sys-
tems with higher Zn symmetry breaking have been proposed,
there are in fact few experimental realizations [15,16]. Thus,
Er2Ti2O7 provides a rare and possibly unique opportunity to
investigate the properties of such discrete symmetry breaking.
Recently, Maryasin et al. [17] developed a theory for the
effect of a magnetic field on the properties of a Z6 pyrochlore
magnet and predicted rich and exotic domain effects to occur
in Er2Ti2O7 due to the emergence of twofold, threefold, and
sixfold anisotropic Zeeman terms. The degeneracy as well as
the local XY angle of the states minimized by each of these
Zeeman terms can be mapped out in analogy to a conventional
clock, where the twelve hours of the clock are represented by
the six ψ2 and the six ψ3 states [Figs. 1(b) and 1(c)].

In this paper, we use time-of-flight neutron scattering on
Er2Ti2O7 with a magnetic field applied along high symmetry
cubic directions to provide experimental evidence of these
predicted domain effects. We find a host of low field domain
selections and reorientations, which henceforth we will col-
lectively refer to as “domain transitions,” not to be confused
with a change of representation manifold [U(1) or �5], which
would be a thermodynamic phase transition. Indeed, we find
that for a field applied along the [001] direction, Er2Ti2O7
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FIG. 1. (a) The k = 0, �5 magnetic structure on the pyrochlore
(Fd 3̄m) lattice, which is constructed by the ψ2 (red) and ψ3 (blue)
basis vectors. Within the local XY plane, six specific spin orientations
are allowed by (b) ψ2 and six interleaving angles are allowed by (c)
ψ3. The ensemble of the full ψ2 and ψ3 states mimic a literal clock
and can be used to represent the different anisotropic Zeeman terms
via the selection of different hours (angles) on the clock.

exhibits a clear ψ2 to ψ3 transition at a critical field of
0.18 ± 0.05 T. This domain transition can be seen as the
Zn generalization of the spin-flop transition that occurs in
Ising Z2 systems. Our neutron scattering results also indicate
possible domain transitions at 0.15 ± 0.03 T and 0.40 ± 0.03 T
in a [111] magnetic field. We provide a complete description
of the domains transitions that occur in Er2Ti2O7 and show
that our observations are consistent with the predicted emer-
gent Zeeman twofold, threefold, and possibly sixfold clock
terms.

II. EXPERIMENTAL DETAILS

A large single crystal of Er2Ti2O7 was grown in a floating
zone image furnace in 3 atm. of air and with a growth
rate of 7 mm h−1. This method of crystal growth is well
established for the rare earth titanate pyrochlores [18–20].
This crystal was cut into two 2–3 gram segments, which were
respectively aligned in the (H,K,0) and the (K+H,K-H, -2K)
scattering planes using x-ray Laue diffraction. Time-of-flight
neutron scattering measurements were performed using the
Disc Chopper Spectrometer (DCS) at the NIST Center for
Neutron Research [21]. An incident wavelength of 5 Å was
employed, giving a maximum energy transfer of ∼ 2 meV
and an energy resolution of 0.09 meV. All uncertainties
correspond to one standard deviation. A magnetic field was
applied perpendicular to the scattering plane. Thus, for the
sample aligned in the (H,K,0) scattering plane, the field is
applied along the [001] direction. For the sample aligned
in the (K+H,K-H, -2K) scattering plane, the field is applied
along the [111] direction. For both alignments, the (220)
or (2-20) Bragg peak was observed only within the central
bank of our detectors providing a 2◦ upper limit on the
possible misalignment of our magnetic field. Scans with a
total sample rotation of 35◦ with 0.25◦ steps were performed,
centered on the (220) or (2-20) Bragg peak [these positions are
symmetrically equivalent and will henceforth be referred to as
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FIG. 2. The elastic scattering of Er2Ti2O7 above and below the
Neel ordering transition for crystals aligned in the (a,b) (H,H,L)
plane, (c,d) (H,K,0) plane, and (e,f) (K+H,K-H, -2K) plane. At high
temperature, the intensity of the (220) Bragg peak is purely structural,
while at low temperature a magnetic Bragg peak also forms on the
(220) position. Each of these data sets has been integrated in energy
from −0.1 to 0.1 meV, which is approximately the resolution of
elastic scattering in this experiment. Within the magnetically ordered
state, this integration picks up a component of the magnetic inelastic
scattering, giving the appearance of a significantly broadened peak.
The dashed white lines indicate the areas of integration described in
the text.

(220)]. Lastly, for completeness, we also present previously
published measurements of Er2Ti2O7 aligned in the (H,H,L)
scattering plane, with a magnetic field applied along the
[1-10] direction. This earlier experiment was performed on
the same spectrometer (DCS at NIST) but with a different
single crystal; the full experimental details can be found in
Ref. [22].

Typical elastic scattering maps of Er2Ti2O7 for each of
the three sample orientations above (T = 8 K or 2 K) and
below (T = 60 mK or 30 mK) the Neel ordering transition
are shown in Fig. 2. At high temperature, we observe a
resolution limited Bragg peak that is purely structural in origin.
At low temperature, passing into the magnetically ordered
state, additional magnetic Bragg and diffuse scattering can be
observed at the (220) position for all sample orientations. In
the subsequent analysis, elastic cuts have been extracted for
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FIG. 3. Representative selection of elastic cuts over the (220)
Bragg peak in varying magnetic field strength, for fields applied
along (a) the [1-10] direction, (c) the [001] direction, and (e) the
[111] direction. The solid lines in these panels are the fits to the Bragg
peak, which were used to extract the integrated intensity. The resultant
field dependence of the magnetic elastic intensity at (220) with the
field applied along the (b) [1-10], (d) [001], and (f) [111] direction,
revealing multiple low field domain transitions in Er2Ti2O7. The
red curves in these panels correspond to the theoretically predicted
domain transitions [17]. Note that the (2-20) Bragg position is
symmetrically equivalent to (220), as it is referred to in the main
text.

each data set with varying magnetic field, as indicated by the
white dashed lines in Figs. 2(a), 2(c), and 2(e). Those cuts have
been obtained by integrating the respective data sets in energy
from −0.1 to 0.1 meV with an additional integration (i) from
−0.3 to 0.3 in the [0,0,L] direction for the [1-10] sample,
(ii) from 1.8 to 2.2 in the [H00] direction for the [001]
sample, and (iii) from 0.8 to 1.2 in the [H′,0,-H′] direction
for the [111] sample [Figs. 3(a), 3(c) and 3(e)]. The inelastic
spectra, which are shown for each field direction in Fig. 4,
are extracted by using the same directional integrations, but
without the integration in energy. Integrations of the total
inelastic signal about (220) are presented in Fig. 5, where the
area of integration corresponds to the white dashed boxes in
Figs. 2(b), 2(d), and 2(f). Those spectra are obtained using the
same directional integrations as above, but with an additional
integration (i) from 1.7 to 2.3 in [H,H,0] for the [1-10]
sample, (ii) from 1.8 to 2.2 in [0K0] for the [001] sample, and
(iii) from 0.8 to 1.2 in [K′,-2K′, K′] for the [111] sample.

III. RESULTS

A. Magnetic field dependence of the elastic scattering at (220)

Neutron scattering spectra of Er2Ti2O7 were collected at
very low temperature, below 100 mK, with a magnetic field
ranging from 0 T to 3 T applied along three crystallographic
directions: [1-10], [001], and [111]. As can be seen by
comparing the high temperature data sets [Figs. 2(a), 2(c),
and 2(e)] with the low temperature data sets [Figs. 2(b), 2(d),
and 2(f)], there is considerable magnetic diffuse scattering at
low temperature for all field directions. This diffuse scattering
is far broader than a resolution limited Bragg peak typical of
long range order. The origin of this diffuse scattering is an
intense quasi-Goldstone mode, which softens towards (220)
[2,11,22]. The quasi-Goldstone-mode excitations have been
previously measured in detail and are known to be gapped
by 0.053 ± 0.006 meV [11,23]. As the energy resolution of
this experiment is 0.09 meV, we inevitably integrate over a
portion of this low energy inelastic scattering when extracting
the elastic component. Thus, the diffuse scattering observed in
Figs. 2(b), 2(d), and 2(f) originates from a partial integration
of the quasi-Goldstone-mode magnetic excitations.

To investigate the field dependence of the elastic scattering,
we performed integrations along the (220) Bragg peak for each
data set at low temperature, with varying field strength and
direction. A representative selection of these elastic scattering
cuts are shown in Figs. 3(a), 3(c) and 3(e). At low temperature,
there is a significant increase in the intensity of the resolution-
limited Bragg scattering, due to the long range magnetic order,
and also, a diffuse contribution originating from the inelastic
scattering as discussed above. These two contributions to
the scattering at the magnetic Bragg position necessitate a
two component fit [24]. These fits were performed with a
Gaussian function, to account for the resolution limited elastic
Bragg scattering, and a Lorentzian function, which captures
the inelastic contribution to the scattering. The Q width of the
elastic Gaussian peak was fixed to the value determined from
fitting the high temperature data set, for which the scattering at
(220) is purely structural. The width of the Lorentzian function
was allowed to freely vary. A sloping background was also
used to account for the instrumental background. The solid
lines seen in Figs. 3(a), 3(c), and 3(e) are examples of typical
fits obtained from following this procedure, giving excellent
agreement with the measured data. The resulting integrated
intensity for the elastic (Gaussian) component as a function of
the [1-10], [001], and [111] applied magnetic field are shown in
Figs. 3(b), 3(d), and 3(f), respectively. The field dependence
of the Lorentzian part of the scattering is presented in the
Appendix for all field directions.

The elastic scattering dependence of the (220) magnetic
Bragg peak in a [1-10] field is shown in Fig. 3(b). At low
field, we observe an abrupt doubling of the intensity at (220).
Above 0.5 T, the elastic scattering smoothly diminishes as
a function of field and reaches zero intensity by 1.5 T. This
smooth diminution of the (220) elastic scattering at high field
corresponds to the transition towards the field polarized state
[17,22,25–27]. For the [001] field direction, the magnetic
elastic intensity at (220) falls off precipitously under the
application of a small field [Fig. 3(d)]. Indeed, the elastic
magnetic scattering at (220) reaches zero intensity in a field
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FIG. 4. Magnetic field dependence of the inelastic neutron scattering spectrum of Er2Ti2O7 centered on the (220) Bragg position. These
energy spectra are plotted along (a) the [H,H,0] direction for a [1-10] field, (b) the [2,K,0] direction for a [001] field, and (c) the [1+K′,-2K′,K′-1]
direction for a [111] field. For the [1-10] field orientation, there is an immediate diminution of the quasi Goldstone-mode excitations at 0.5 T.
For the [001] field orientation, the quasi-Goldstone mode excitations at (220) are intensified by the application of a field up to 1 T. In a [111]
field, the quasi-Goldstone mode excitations have their intensity continuously decreased for fields ranging from 0.15 to 1 T. Above 1.5 T, the
response of the spin wave spectra is due to the transition towards the field polarized state for all field orientations.

as small as 0.2 T. As the field is further increased, up to
3 T, the intensity remains zero. Finally, for the [111] field,
the elastic scattering at (220) is unaffected up to 0.15 T
[Fig. 3(f)]. Between 0.15 T and 0.4 T, the elastic scattering
abruptly increases, reaching an intensity that is 1.75 times
larger than the zero field value. The intensity then remains
constant from 0.4 T to 1 T. Above 1 T, the intensity decreases,
ultimately reaching zero intensity for fields larger than 1.5 T.
This decrease of the elastic scattering at (220) above 1.5 T, as
before, is concomitant with the phase transition towards the
field polarized state [25,26].

B. Magnetic field dependence of the inelastic scattering at (220)

Now, turning our attention to the inelastic scattering, we
can first look at Fig. 4, which shows the spin wave spectra
of Er2Ti2O7 as a function of [1-10], [001], and [111] field.
Integrations as a function of energy centered on the (220)
Bragg peak for each field direction are also shown in Fig. 5.
The spin wave spectra at 0 T is dominated by low energy quasi-
Goldstone-mode excitations centered on (220). These low
energy excitations have a linear dispersion and are maximally
intense approaching the (220) Bragg position. Accordingly,
in the 0 T energy cuts of Fig. 5, the integration over the
quasi-Goldstone-mode excitations produces the first inelastic
feature, centered just below 0.2 meV. At slightly higher energy,
0.35 meV, we also observe weaker flat modes. The structure of
the spin wave spectra in an applied field are further analyzed
in, first, the low field regime and second, in the high field
regime crossing into the field polarized state. The critical field

of the transition to the field polarized state depends on the
field orientation and is known, from bulk measurements, to be
1.5–1.7 T [25,26].

The application of a small [1-10] field results in a complete
diminishment of the low energy scattering at 0.5 T, indicating
the removal of the quasi-Goldstone-mode excitations at (220)
[Figs. 4(a) and 5(a)]. However, the opposite scenario is
observed upon the application of a weak [001] field. Indeed, an
immediate increase in the scattering of the quasi-Goldstone-
mode excitations is observed. This enhancement of the
scattering can be seen by comparing the 0 T and 0.5 T data
sets in Figs. 4(b) and 5(b). For the [111] field direction, the
quasi-Goldstone-mode excitations show no field dependence
up to 0.15 T [Figs. 4(c) and 5(c)]. Above 0.15 T, we observe
a suppression of the quasi-Goldstone-modes excitations, but
without their complete removal, as in the case of a [1-10]
field. In fact, while continuously decreasing up to 1 T,
the intensity of these excitations remains finite in a [111]
field.

Lastly, we can examine the changes in the spin wave spectra
upon transitioning into the field polarized state, which is known
to occur at 1.5–1.7 T [25,26]. The evolution of the spin wave
spectra when passing into the field polarized state gives similar
behavior for [1-10] and [111] fields. Figures 4(a) and 4(c)
show that the spectral weight for these two field orientations
softens towards the elastic line in a 1.5 T field. Upon further
increasing the magnetic field to 3 T, this quasielastic scattering
moves to higher energies and forms weakly-dispersing spin
wave modes. A qualitatively different behavior is observed in
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FIG. 5. The inelastic intensity centered on (220) as a function of energy for varying (a) [1-10] magnetic fields, (b) [001] magnetic fields,
and (c) [111] magnetic fields. In a [1-10] field, the low energy scattering is completely suppressed upon the application of a 0.5 T field. In a
[001] field, the inelastic intensity at low energies strongly increases for fields as small as 0.1 T. Further increasing the field shifts the spectral
weight to higher energies. In a [111] field, the inelastic spectra is unaffected by fields up to 0.15 T. At larger [111] fields, the intensity at low
energies continuously decreases. The integrations performed in Q are given in the experimental methods section.

the case of a [001] field. Approaching the polarized state for a
[001] field, coherent low energy excitations are still observed,
but with an increasing spin wave gap at (220). In Fig. 5(b), the
opening of the spin wave gap is demonstrated by the shifting of
the low energy feature upwards in energy. Upon the application
of a [001] field greater than 1.5 T, the dispersion of the low
energy quasi-Goldstone-mode excitations smoothly evolves to
a nondispersive mode, as seen at 3 T.

IV. DISCUSSION

The magnetic ground state of Er2Ti2O7 in zero magnetic
field is well established and corresponds to an equiprobable
distribution of the six ψ2 domains within �5 [4]. The
elastic neutron scattering profile of this magnetic structure
is characterized, in part, by an intense (220) magnetic Bragg
peak [1,10,22]. Once a weak magnetic field is applied along
any direction, the degeneracy of the six ψ2 domains is lifted.
However, it is important to re-emphasize that this does not
correspond to a thermodynamic phase transition or a change of
representation manifold. Rather, the spins remain constrained
to the U(1) plane (�5 manifold), as has been previously
shown by heat capacity [22,26], magnetization [25], and
neutron scattering [22,27]. Depending on the field orientation,
this degeneracy breaking results in an increase or decrease
of the (220) Bragg peak intensity due to domain effects.
To understand these intensity changes, it is important to
understand that the scattered intensity at (220) follows an I ∝
cos2(θ ) relationship, where θ is the local XY angle (Fig. 6).
As neutron scattering is only sensitive to the component of the
magnetization perpendicular to the direction of the scattering
vector, a variation in the scattered intensity is observed due to
the different orientations of the moments in each domain. Thus,
by using the results of the calculation in Fig. 6 and the fact that
the magnetic state at 0 T is well known (six ψ2 states), it is
possible to deduce the distribution of the domains that occurs
in a magnetic field by measuring the relative change of the
(220) elastic intensity.

A. Domain selection in a [1-10] magnetic field

Before discussing the [001] and [111] field evolution of
the (220) Bragg peak, we briefly review the well-established
domain effects for a field applied along the [1-10] direction.
For this field orientation, an increase of the scattering at (220)
is observed for fields above 0.1 T [Fig. 3(b)] [1,22]. The origin
of this intensity gain is well understood: The application of
a [1-10] field on Er2Ti2O7 in its ψ2 magnetic ground state
induces a twofold clock term that favors the ψ2 states with XY
angles of 0 and π [2,17]. These two angles are highlighted
by the dashed black circles in Fig. 6(a) and are the ones that
maximize the scattered intensity of the (220) magnetic Bragg
peak. These two angles give a factor two intensity increase to
(220) from the average value for the six zero field ψ2 states.
These two domains selected by the Zeeman-clock term for a
[1-10] field are also selected by the sixfold anisotropic term at
0 T. No further domain transitions are observed or predicted
at low field. Beyond that, at high field, a continuous transition
towards the field polarized state is observed at 1.5 T which
is indicated by the smooth diminution of the (220) intensity
[Fig. 3(b)]. This diminution of the (220) intensity occurs due
to canting effects that become non-negligible approaching the
field polarized state. This canting effect introduces a nonzero
spin component away from the XY local plane. Several studies
have modeled this behavior [10,22,27], but we reproduced via
the red line in Fig. 3(b) the results using the method found
in Maryasin et al. [17], which captures well the experimental
data.

B. Domain selection and reorientation in a [001] magnetic field

As was the case for a [1-10] field, it has been predicted
that in a [001] field, the Zeeman coupling will give rise to a
twofold clock term [17]. The states that are selected in a [001]
field are rotated by π/2 with respect to the states favored by
a [1-10] field. Thus, the Zeeman energy is fully minimized by
the ψ3 states with XY local angles of π/2 and 3π/2. However,
at very low fields, where the Zeeman energy is much smaller
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FIG. 6. The scattered intensity at the (220) Bragg position in
Er2Ti2O7 as a function of the angle, θ , in the XY local plane. The
red dots represent the six ψ2 domains and the blue dots represent
the six ψ3 domains. In (a) the two ψ2 domains circled in black are
the ones selected when a magnetic field of order 0.1 T is applied
along the [1-10] direction. In (b) the four domains circled in black are
the four ψ2 states immediately selected in a [001] field. These states
then cant towards the two ψ3 states indicated by the black squares,
which are selected by a 0.18 ± 0.05 T [001] magnetic field. In (c) the
three ψ2 domains circled in black are the ones selected for magnetic
fields up to 0.15 T applied along the [111] direction. At higher fields,
these domains are predicted to split by an angle, θ , as indicated by the
arrows. Our measurement in a [111] field measured the (2-20) Bragg
peak, which is symmetrically equivalent to (220).

than the sixfold ψ2 clock term that dominates at 0 T, it is not
possible to select these two ψ3 domains. Instead, the system
compromises by selecting the nearest ψ2 domains, those with
XY local angles of 2π/6, 4π/6, 8π/6, and 10π/6 [see black
dashed circles in Fig. 6(b)]. Compared to 0 T, this new domain
distribution should decrease the (220) intensity by a factor of
two. Experimentally, referring back to Fig. 3(d), we do indeed
observe a clear decrease of the scattering at low field.

The application of a field along [001] is inherently more
interesting than a [1-10] field, as no ψ2 state can fully
minimize the Zeeman energy. Thus, there is competition
between the emergent twofold Zeeman term and the 0 T
sixfold clock term. At higher fields, as the Zeeman energy
begins to overwhelm the 0 T sixfold clock term, there will
be a continuous rotation of the spins towards a pure ψ3 state
made up of π/2 and 3π/2 domains, where the (220) intensity
should decrease to zero. In our experiment, the intensity of
(220) continuously and drastically decreases to reach zero
intensity by 0.2 T [Fig. 3(b)]. We associate this dramatic
intensity loss with the above-described ψ2 to ψ3 transition,

which is an XY spin-flop transition. As opposed to the ψ2

state, all the spins within the ψ3 states point perpendicular to
the [001] direction [see Fig. 1(a)]. This result generalizes the
well known concept of spin-flop transitions seen in the Ising
system (Z2) to systems with discrete symmetry breaking Zn

with n > 2.
The domain transition in a [001] field also opens an

interesting line of inquiry, as the critical field for the ψ2

to ψ3 transition occurs when the Zeeman energy equals the
energy of the 0 T sixfold clock term. Thus, we are able to
provide an independent measurement of the 0 T sixfold clock
term in Er2Ti2O7, which is of course relevant to the zero
field ground state selection, be it order-by-disorder and/or
energetic selection involving virtual crystal field processes.
Using analytical equations from Ref. [17], which account for
the field dependence of the XY local angle upon the application
of a [001] field, it is possible to model the decrease of the
elastic scattering, the result of which is shown by the red
line in Fig. 3(d). This fit is optimized as a function of the
critical field, and the value we obtained is 0.18 ± 0.05 T.
Calculations using only the quantum order-by-disorder term
have predicted a critical field of 0.2 T [17], which is in
excellent agreement with our experimental value. Naively,
such a result can be interpreted as the ψ2 selection in Er2Ti2O7

being largely dominated by order-by-disorder effects, with
virtual crystal-field excitations contributing relatively little
to the ψ2 selection. However, the critical field for the ψ2

to ψ3 spin-flop transition can only be indirectly modeled,
introducing a degree of uncertainty. Further analysis, perhaps
via numerical methods, may allow a more accurate comparison
between the strength of the 0 T order-by-disorder sixfold clock
term and the experimental data. Nonetheless, in principle, our
measurement of the 0 T sixfold clock term should provide
important information that would allow the ground state
selection in Er2Ti2O7 to be definitively understood.

C. Domain selection and reorientation in a [111] magnetic field

The Zeeman coupling for a field along the [111] direction
is predicted to induce a combination of threefold and sixfold
clock terms and, hence, the domain behavior of Er2Ti2O7 in a
[111] field is expected to be rich [17]. The threefold clock term
selects the ψ2 states with angles corresponding to ±π/3 and π .
However, the sixfold clock term is not the same as the one that
selects the 0 T ψ2 states. Instead, this [111] sixfold Zeeman
clock term selects states which are rotated with respect to both
the ψ2 and ψ3 states. This term then competes with both the
threefold Zeeman clock term and also against the 0 T sixfold
clock term that favors the ψ2 states.

At low field, it is predicted that the domain selection
behavior should be dominated by the combination of both
the threefold Zeeman clock term and the 0 T sixfold clock
term. First, at very low fields, the three domains with an
angle of ±π/3 and π should be selected [see black circles
in Fig. 6(c)], which would result in no change in the (220)
intensity. Experimentally, we refer back to our measurement
shown in Fig. 3(f), which shows that the elastic scattering
is constant up to 0.15 T. This is then consistent with the
theoretical prediction that the three indicated ψ2 states are
selected for small [111] fields. Moreover, our data is in good
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agreement with the theoretical prediction that a weak [111]
field induces an emergent threefold clock term.

Upon further increasing the [111] field, it is predicted that
Er2Ti2O7 should experience two additional domain transitions
prior to entering its classical field polarized state. The origin
of these transitions is the emergent sixfold Zeeman clock
term. The first of these transitions is theoretically predicted to
occur at Hc1 = 0.16 T and results in the formation of six new
domains. These six new domains are related to the previously
selected ±π/3 and π domains, but with a splitting angle of
±θ [see black arrows in Fig. 6(c)]. This splitting angle θ is
predicted to have the same value for all domains and should
increase as a function of the applied field. At still higher fields,
Hc2 = 0.4 T, a second transition decreases the splitting angle
back to zero, returning the system to a state with ±π/3 and π

domains. These transitions would be difficult to verify using
unpolarized neutron scattering, as the domain splitting by an
angle θ would have zero net effect on the intensity of (220).
Thus, for a [111] field, the (220) Bragg peak is predicted to
have no changes to its intensity up until the transition to the
field polarized state. The predicted (220) behavior calculated
by Maryasin et al. [17] is indicated by the red line in Fig. 3(f),
and it is apparent that our experimental observations are not
fully consistent with the predicted scenario, as the intensity
of (220) is observed to substantially vary above 0.15 ± 0.03
T. We note, however, the predicted critical fields for these
transitions, Hc1 = 0.16 T and Hc2 = 0.4 T do appear to be
meaningful in Er2Ti2O7: The first, Hc1, corresponds with the
observed increase in elastic intensity at (220) by a factor of
1.75 and the second, Hc2, corresponds quite well with the field
at which the intensity flattens, 0.4 ± 0.03 T.

To account for the observed intensity gain of (220) above
0.15 T, we propose a scenario of nonequiprobable domain
distribution or inequivalent splitting angles [Fig. 6(c)]. Such
scenarios would explain the increase in the elastic scattering
at (220) but would require an additional Zeeman clock term
that would favor the π domain over the ±π/3 domains. In the
theoretical work of Maryasin et al., no such term is predicted
for a perfectly aligned sample [17]. One possible origin of such
a Zeeman clock term is a slight misalignment of the field along
the [111] direction. While we can place an upper bound of 2◦
on the error in our alignment, it is worth noting that very small
misalignments in a [111] field are known to be enhanced by
demagnetization effects in spin ice [28]. However, in contrast
to the spin ice case, Er2Ti2O7 is an antiferromagnet where
such demagnetization effects are naively expected to be far less
important. Another possible origin of additional Zeeman terms
is out-of-plane coupling, which wasn’t included in the model
of Maryasin et al.. Thus, the precise domain distributions and
orientations occurring for fields between 0.15 and 0.4 T in a
[111] field remain an open question at present.

D. Effect of domain selection on the quasi-Goldstone-mode
excitations

Finally, it is interesting to comment on the low field
behavior of the quasi-Goldstone-mode excitations centered on
(220). In a small [1-10] field, as we discussed in Sec. III B., the
quasi-Goldstone-mode excitations disappear at this particular
ordering wave vector. This is best observed by comparing the

inelastic spectra of 0 T and 0.5 T in Fig. 4(a) and Fig. 5(a).
The disappearance of the quasi-Goldstone-mode excitations
is concomitant with the increase of the elastic scattering at
(220) [Fig. 3(b)]. The exact opposite behavior is observed
for a field along the [001] direction, where we observe that
the quasi Goldstone-mode excitations increase for small fields
[Fig. 4(b) and Fig. 5(b)], while the elastic scattering [Fig. 3(d)]
decreases for the same field range. Thus, there is a clear
tradeoff between the intensities of the elastic scattering and
the quasi-Goldstone-mode scattering at the (220) magnetic
Bragg peak while transitioning into states with different XY
local angles. To understand this observation, we suggest that
the intensity of the quasi-Goldstone mode at (220) goes like
I ∝ sin2(θ ). This can be understood by first pointing out that
for magnetic neutron scattering, it is the component of the
moment perpendicular to Q that couples to the neutron [i.e., in
this case perpendicular to (220)]. The domains for which the
(220) elastic scattering is maximized have their spin directions
maximally perpendicular to the (220) direction, and vice versa.
However, for low fields, the spins remain constrained to lie
within the local XY plane. Thus, in the case of a [1-10] field,
where the spins are maximally perpendicular to the scattering
vector, the quasi-Goldstone-mode excitations must necessarily
have their intensity reduced, as the spins will become more
parallel to Q and will become less visible to neutron scattering.
The opposite is true for a [001] field, where the spins are
maximally parallel to the scattering vector and must excite
into a more perpendicular orientation. The effects of a field
on the scattered intensity of the quasi-Goldstone mode are
thus, another direct signature of the domain effects. Moreover,
the field dependence of the inelastic and elastic scattering in
Er2Ti2O7 are consistent with each other.

V. CONCLUSIONS

We have performed comprehensive time-of-flight neutron
scattering measurements on single crystals of Er2Ti2O7 with
a magnetic field applied along the [001] and [111] directions.
For fields smaller than 1 T, the field induced effects can
be attributed to domain selection. The zero field state of
Er2Ti2O7 assumes the ψ2 antiferromagnetic structure, which
is composed of six equally probable domains. For small fields
applied along the [001] direction, we observe a dramatic
decrease of the (220) magnetic Bragg peak intensity, which
agrees very well with the predicted transition from the six
ψ2 domains to two ψ3 domains. For the [111] field direction,
we observe that the elastic scattering at (220) is independent
of field for low fields, consistent with an emergent threefold
Zeeman clock term. Further increasing the field results in
a large enhancement of the (220) Bragg peak intensity,
inconsistent with the predicted domain selection scenario and
hinting at an even richer phase behavior. Lastly, our experiment
provides a measure of the zero field sixfold clock term strength,
0.18 ± 0.05 T. This result should prove useful in establishing
a complete understanding of the mechanism of ground state
selection in Er2Ti2O7.

The work presented here experimentally confirms the
rich and exotic magnetothermodynamic behavior predicted
to exist in the XY pyrochlore antiferromagnet Er2Ti2O7, or
any other pyrochlore magnet ordering into the �5 manifold.
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We demonstrate that, depending on the field direction, a
combination of two-, three-, and possibly sixfold Zeeman
clock terms emerge and compete with the sixfold clock
term present in zero field. We anticipate this work will help
determine the ground state selection and field effects in other
topical �5 pyrochlores, such as NaCaCo2F7 [29], Er2Ge2O7

[30], and Yb2Ge2O7 [30,31].
Note added in proof. A related experimental study of

Er2Ti2O7 recently appeared as a preprint [32].
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APPENDIX: FIELD EFFECTS ON THE LORENTZIAN
CONTRIBUTION OF THE (220) MAGNETIC BRAGG PEAK

As discussed in the paper, elastic cuts of the (220) magnetic
Bragg peak have been carefully modeled with a two component
fit for all field strengths and orientations. An example of one
such fit is shown in Fig. 7(a) for the [111] sample at 0 T. The
Gaussian component of the scattering originates from the nu-
clear and magnetic long-range order, and its field dependence
is thoroughly discussed in the paper. The second component
of the scattering at (220) is captured by a Lorentzian function
and accounts for the inelastic part of the scattering due to the
partial integration over the quasi-Goldstone-mode excitations.
The Lorentzian contribution of the scattering is somewhat
interesting as it provides information on the very low energy
inelastic field dependence. The field evolution of the integrated
intensity of the Lorentzian component is shown for all field
directions in Figs. 7(b)–7(d).

For the [1-10] field direction, the Lorentzian part of the
scattering reaches zero intensity for a field of 0.5 T [Fig. 7(b)].
This decrease of scattering is consistent with the complete
removal of the quasi-Goldstone-mode excitations [Fig. 4(a)].
The Lorentzian contribution of the scattering maintains zero
intensity up to 1.5 T, at which point a clear and abrupt increase
is observed. This originates from the softening of the spin wave
excitations towards the elastic line [Fig. 4(a) and Fig. 5(a)] and,
thus, are picked up by our integration over the elastic channel.
Above 1.5 T, no Lorentzian contribution of the scattering is
observed in a [1-10] field.

For the [001] field direction, the Lorentzian contribution
increases dramatically at 0.1 T, due to the enhancement
of the scattering from the quasi-Goldstone-mode excitations
[Fig. 7(c)]. Indeed, as seen in Fig. 4(b) and Fig. 5(b), the
quasi-Goldstone-mode excitations are clearly enhanced upon
application of fields up to 0.5 T. Referring once again to

FIG. 7. (a) A typical fit of the scattering at the (220) Bragg peak
position using both a Gaussian function and a Lorentzian function,
to capture the elastic and inelastic contributions to the scattering,
respectively. The field dependence of the Lorentzian contribution of
the scattering for a (b) [1-10] magnetic field, (c) [001] magnetic field,
and (d) [111] magnetic field. The field dependence of the Lorentzian
contribution tracks the intensity of the low energy quasi-Goldstone-
mode excitations.

Fig. 7(c), we can see that above 0.1 T, the inelastic (Lorentzian)
contribution steadily decreases, reaching zero intensity for
fields above 0.75 T. This effect can also be explained by
examining the energy cuts of Fig. 5(b). Comparing the data
sets between 0.1 T and 1 T, we see that the inelastic intensity
shifts to progressively higher energies with increasing field. As
we are integrating over our elastic resolution in Fig. 7(c), from
−0.1 to 0.1 meV, this integration picks up less of the inelastic
contribution at higher fields as the intensity moves out of our
elastic window. This shifting of the inelastic intensity to higher
energies signals that the spin wave gap of the quasi-Goldstone
mode is growing from 0.1 T up to 1 T. Above 1 T, the
Lorentzian part of the scattering completely disappears as
the (220) magnetic Bragg peak has zero intensity in the field
polarized state.

Lastly, we turn our attention to the field evolution of the
Lorentzian component in a [111] field which is shown in
Fig. 7(d). Similar to the low field dependence of the elastic
scattering [Fig. 3(f)], we observe that the inelastic intensity is
flat up to 0.15 T. Above 0.15 T, the intensity falls off abruptly up
to 1 T. This decrease of scattering is consistent with the reduced
intensity of the quasi-Goldstone-mode excitations [Fig. 4(c)
and Fig. 5(c)]. As was the case for the [1-10] field, for 1.5 T,
we observe a large enhancement of the Lorentzian intensity.
This originates from the softening of the spin wave excitations
towards the elastic line. This feature is best observed by
looking at the 1.5 T energy slice shown in Fig. 4(c). Above
1.5 T, the spin wave excitations are pushed to higher energy,
and the Lorentzian contribution of the scattering remains at
zero intensity.
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