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The Impact of Data Dependence on Speaker
Recognition Evaluation
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Abstract—The data dependence due to multiple use of the same
subjects has impact on the standard error (SE) of the detection
cost function (DCF) in speaker recognition evaluation. The DCF
is defined as a weighted sum of the probabilities of type I and
type II errors at a given threshold. A two-layer data structure is
constructed: Target scores are grouped into target sets based on
the dependence, and likewise for non-target scores. On account
of the needed equal probabilities for scores being selected when
resampling, target sets must contain the same number of target
scores, and so must non-target sets. In addition to the bootstrap
method with i.i.d. assumption, the nonparametric two-sample one-
layer and two-layer bootstrap methods are carried out based on
whether the resampling takes place only on sets, or subsequently
on scores within the sets. Due to the stochastic nature of the boot-
strap, the distributions of the SEs of the DCF estimated using the
three different bootstrap methods are created and compared. Af-
ter performing hypothesis testing, it is found that data dependence
increases not only the SE but also the variation of the SE, and the
two-layer bootstrap is more conservative than the one-layer boot-
strap. The rationale regarding the different impacts of the three
bootstrap methods on the estimated SEs is investigated.

Index Terms—Bootstrap, data dependence, multinomial
probability, resampling, speaker recognition, standard error (SE).

I. INTRODUCTION

THE National Institute of Standards and Technology (NIST)
conducts an ongoing series of Speaker Recognition Eval-

uations (SREs) [1]. The NIST SREs have made important con-
tributions to the direction of research efforts and the calibration
of the technical capabilities of the research community working
on the general problem of text independent speaker recognition
[2]–[4].

Each test in our SREs consists of a sequence of trials. Each
trial consists of a model speech segment defined by the training
speech data and spoken by a training model speaker, along with
a test speech segment spoken by a test speaker. For each trial, the
speaker recognition system generates a similarity score based on
the two speech segments. A higher score indicates greater confi-
dence that the test speaker is the training model speaker. Target
(non-target) trials are those where the test speaker is (is not) the
training model speaker, which is the known ground truth.
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Fig. 1. (A): A schematic diagram of two continuous distributions of target and
non-target scores, in which type I error α(t) and type II error β(t) are determined
at a given threshold t. (B): A schematic drawing of an ROC curve and the point
P (β(t), 1 - α(t)).

The speaker detection performance is measured using a de-
tection cost function (DCF) that is defined as a weighted sum
of the probabilities of type I error α(t) (miss) and type II error
β(t) (false alarm) at a given threshold t [1]. This relates to ROC
analysis [5]–[7]. Fig. 1 (A) shows a schematic diagram of two
continuous distributions of target scores and non-target scores
in which α(t) and β(t) are determined at a given threshold t.
Fig. 1 (B) shows a schematic drawing of an ROC curve and the
corresponding point P (β(t), 1 – α(t)).

These two error rates α(t) and β(t) are generally traded off
and thus negatively correlated as the threshold t varies. An ex-
ception might occur at either end of the two score distributions,
where there could be only target scores or only non-target scores
causing one of the two rates to be zero. But such regions are
very narrow and can hardly be identified in the DET curves as
derived from our practices [4]. In addition, it is unreasonable to
choose thresholds in these regions.

Notice that the correlation here refers to the relationship be-
tween α(t) and β(t). The former is determined solely by the
distribution of target scores, and the latter solely by the distri-
bution of non-target scores, regardless of how these scores are
generated, which is simply an issue of how the test is designed
and is not an issue of how the standard error (SE) of the DCF is
estimated.

Measures must be employed in SREs [8]–[11]. However,
a measure without an estimated SE is incomplete, because it
cannot be used in the practice of evaluating and comparing the
performance levels of different systems.

The SE of the DCF is important and may be used to clas-
sify speaker recognition systems in terms of their performance
accuracies and determine whether the performance differences
between systems are statistically significant when evaluating
and comparing systems. How to effectively estimate the SE of
the DCF for the SREs is a void that needs to be filled.
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Fig. 2. Distributions of target scores (red) and non-target scores (green) for
speaker recognition systems EL (left) and CH (right).

The SE of the DCF was calculated analytically [3], [12]. But
it is difficult to do so due to the covariance between α(t) and
β(t). Moreover, the analytical method does not take account of
how target scores and non-target scores are distributed, which
is related to the recognition abilities of speaker verification sys-
tems, nor does it take into account the data dependency. All
these may cause the analytical method to underestimate the SE
of the measure (see Section VIII) [13].

Nevertheless, an upper bound of the analytically computed SE
of the DCF can be obtained by setting the negative covariance to
zero. This will hold even if the thresholds were at the ends of the
two score distributions as described above. The only difference
is that if one error rate is equal to zero, the analytical SE might
reach its upper bound, depending on how the covariance is
defined (the Pearson’s correlation coefficient is undefined in
this case); and if both error rates are nonzero, the analytical SE
of the DCF is definitely smaller than its upper bound because of
the negative covariance.

The bootstrap method takes account of all these issues intrin-
sically and thus estimates the SE of the DCF effectively [5], [13].
For estimating the SE, the bootstrap algorithm was originally
designed as follows [14], [15]. If n data values are independent
and identically distributed (i.i.d.), the bootstrap algorithm se-
lects randomly with replacement (WR) n data values from these
n original data values, and computes a bootstrap replication of
the statistic of interest using the n selected data values. Such an
iteration is repeated B times. Finally, the SE of the statistic is
estimated by the sample standard deviation of the B bootstrap
replications of the statistic.

The ROC analysis in SRE generally involves NT target scores
and NN non-target scores, which characterize the speaker recog-
nition system that generates them and usually do not have well
defined parametric distributions as shown in Fig. 2 for systems
EL and CH (see Section VIII) with long tails towards higher
scores [5], [16]. The parametric bootstrap method is based on a
mathematical model [14], [15]. Hence, it cannot be used.

If all scores are i.i.d., the nonparametric two-sample boot-
strap algorithm is used to compute the SE of the DCF based
on our extensive bootstrap variability studies in ROC analy-
sis on large datasets [5]–[7], [14], [15]. The two samples in-
volved are referred to as a set of target scores and a set of
non-target scores. The algorithm selects randomly WR NT tar-
get scores and NN non-target scores from the two original sets

of scores, respectively, and then computes a bootstrap repli-
cation of the DCF using these two new sets of scores. After
taking B iterations, the SE of the DCF is computed using the
sample standard deviation of the B bootstrap replications of
the DCF.

However, in reality, the data do contain dependencies due to
various reasons, such as the time factor, etc. [15], [17]. It is very
often that the data dependency basically arises from multiple
use of the same subjects in order to create more target and non-
target scores because of limited resources. For instance, a single
speaker appears several times within an SRE corpus. The calls
from a single speaker are not independent.

Therefore, in this article, the data dependency is determined
based purely upon whether the training speaker identification
(id) number is used multiple times. Those target scores gen-
erated using the same training speaker id number are grouped
into a target set, and those non-target scores created using the
same training speaker id number are grouped into a non-target
set. This can preserve the data dependency while the bootstrap
resampling takes place. Thus, a two-layer data structure is con-
structed: The first layer consists of target sets and non-target sets,
and the second layer consists of target scores and non-target
scores within these sets.

Based on this two-layer data structure, in addition to a
conventional bootstrap method, the nonparametric two-sample
one-layer and two-layer bootstrap methods are carried out, de-
pending on whether the resampling takes place randomly WR
only on the first layer of the data while the bootstrap units are
sets, or subsequently on the second layer while the bootstrap
units are the scores within a set, where the similarity scores are
assumed to be conditionally independent. This is because scores
in the same set are generated by speech segments in which ei-
ther id numbers of model speech segments or id numbers of test
speech segments or both of them are different.

Different sets could have different numbers of similarity
scores. This would result in each target (non-target) score not
having the same probability of being selected when using the
two-layer bootstrap method. It would also mean that the numbers
of scores obtained would be different from iteration to iteration
when using the one-layer and two-layer bootstrap methods. To
avoid all these, the datasets are adjusted in such a way that all
target sets contain the same number of target scores, and like-
wise for the non-target sets. As a result, the three resampling
methods are placed on an equal footing, and the variance of the
computations can be reduced as well [18].

The SEs of the DCF and the variations of the SEs generated by
the three bootstrap methods are compared. Due to the stochastic
nature of bootstrap methods, different runs may produce slightly
different estimated SEs. Some results may be more probable
and others less probable. Thus, a probability distribution of SEs
is created. Hence, the comparisons of SEs turn out to be the
comparisons of the distributions of SEs.

After performing the hypothesis testing, it is found that the
data dependency increases the SE of the DCF and the variation of
the SE as well; and the two-layer bootstrap more conservatively
estimates the impact of the data dependency on the SE of the
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DCF than other two bootstrap methods. So, the impact of data
dependency should be taken into account when designing a test
and estimating the SE of the DCF thereafter.

The validation of the nonparametric two-sample bootstrap
in ROC analysis on large datasets was studied in Ref. [7]. In
this article, large datasets are also assumed [19], [20]. Even if
the thresholds were at either end of the two score distributions,
as mentioned above, this would have no impact on how the
bootstrap algorithm is employed to estimate the SE of the DCF.
Moreover, the bootstrap algorithm only resamples target scores
and non-target scores separately. It is unrelated to how scores
are generated, which is out of the scope of this article.

The bootstrap method on datasets with dependencies was
initially studied in Refs. [15], [17], and applied to biomet-
rics later [21], [22]. In this article, however, five important
issues are addressed and investigated. First, speaker recogni-
tion is taken as the application, in which the statistic of inter-
est is the DCF, defined as a weighted sum of the probabilities
of type I and type II errors at a given threshold, which is rather
more complicated than the usual measures in biometrics. Sec-
ond, the nonparametric two-sample, rather than one-sample,
bootstrap is employed. The two-sample bootstrap may be used
to compute the SEs of all different measures in ROC analy-
sis, as opposed to the one-sample bootstrap that can only be
used to calculate the SEs of true acceptance rate and false
acceptance rate in biometrics, which are not the statistics of
interest in SREs [5]. The SE of the DCF can only be com-
puted using the two-sample bootstrap, not the one-sample
bootstrap.

Third, the related probability issues due to the bootstrap re-
sampling nature are taken into account. The nonparametric boot-
strap method requires that the objects have equal probabilities
of being selected in the random resampling. As a result, the
numbers of scores in the target sets and in the non-target sets
should be equal, respectively. Fourth, the bootstrap method has
a stochastic nature, i.e., different runs can produce different re-
sults. Thus, the distributions of the SEs of the DCF estimated
using different bootstrap approaches should be created, and then
compared by conducting the hypothesis testing to reveal the im-
pact of data dependency on the SRE. The conclusions cannot
be obtained based solely on the results from a single random
execution of the bootstrap.

Fifth, the rationale for why the three different bootstrap meth-
ods have different impacts on the estimated SEs of the DCF is
investigated in terms of the multinomial probabilities of select-
ing bootstrap samples from the original scores as well as the
distributions of the bootstrap replications of the DCF.

The issue of data dependency was preliminarily studied in
our previous work [23]. Much more comprehensive research
is presented in this article. For instance, how the SRE re-
lates to ROC analysis is explicitly shown. The results of eval-
uating 12 rather than just two speaker recognition systems
are presented. Most importantly, it is only in this article that
the rationale is investigated for why the SEs computed using
three bootstrap methods are different where data dependency is
involved.

The DCF is shown in Section II. The analytical approach is
presented in Section III. The two-layer data structure is in-
troduced in Section IV. The three resampling methods and
the probabilities for a score being selected are explored in
Section V. The three nonparametric two-sample bootstrap al-
gorithms are presented in Section VI. A method of gener-
ating distributions of the SEs of the DCF is provided in
Section VII. The results of 12 speaker recognition systems1,2

used in SREs are shown in Section VIII. The conclusions and
discussion are in Section IX. The proof of the probability for
a score being selected for one-layer resampling is presented in
Appendix I. The rationale for the different impacts of the three
bootstrap methods on the SEs is investigated in Appendix II.

II. THE DCF IN SRES

In SREs, for the convenience of computing cumulative prob-
abilities for type I error and type II error, for a speaker recog-
nition system, the scores are all converted to integer values
if they are not, and expressed inclusively using the set
s = {smin , smin + 1, . . . , smax}. While converting, as many
decimal places of scores as possible are kept. Thus, such a con-
version does not result in loss of precision.

Let fi(s), s ∈ s and i � {T, N}, denote the continuous prob-
ability density functions of target scores, and non-target scores.
The two corresponding discrete probability distribution func-
tions, denoted by Pi(s), s ∈ s and i ∈ {T, N}, are expressed
as

P i = {Pi (s) |∀s ∈ s and
Smax∑

s=Smin

Pi(s) = 1}, i ∈ {T, N}.

(1)
The probability of type I error at a given threshold t∈ s for

target scores, denoted by α(t), is cumulated from the lowest
score smin . The probability of type II error at t for non-target
scores, denoted by β(t), is cumulated from the highest score
smax . For discrete probability distributions, when computing
α(t) and β(t) at t, the probabilities of the scores at this threshold
t should be included [24].

Thus, at a threshold value t � s, their estimators are expressed,
respectively, as

α(t) =
∫ t

−∞
fT (s)ds =

t∑

s=Smin

PT (s) = 1−
Smax∑

s=t+1

PT (s),

β(t) =
∫ +∞

t
fN (s)ds =

Smax∑

s=t

PN (s), (2)

where PT (smax + 1) = 0 is assumed and the normalization
in Eq. (1) is employed [5], [16]. In practice, these error rates

1Specific hardware and software products identified in this paper were used
in order to adequately support the development of technology to conduct the
performance evaluations described in this document. In no case does such
identification imply recommendation or endorsement by the National Institute
of Standards and Technology, nor does it imply that the products and equipment
identified are necessarily the best available for the purpose.

2The speaker recognition systems are proprietary. Hence, they cannot be
disclosed.
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can be obtained by moving the score from the highest score
smax down to the threshold t one score at a time to cumulate the
probabilities of target scores and of non-target scores.

In the SREs, the metric of interest is the DCF defined as a
weighted sum of the probabilities of type I and type II errors at
a given threshold t [1]

CFDet (t) = CMiss × α (t) × PTarget

+ CFalseAlarm × β (t) × (1 − PTarget) . (3)

The threshold t plays an important role here, which may be
determined in many ways. It is a challenging research problem
to determine appropriate decision thresholds. In this article,
the thresholds were provided by the tested speaker recognition
systems in order to make an explicit speaker detection decision
for each trial [1].

The parameters CMiss and CFalseAlarm are the relative costs of
detection errors, and the parameter PTarget is the a priori proba-
bility of the specified model speaker. For the primary evaluation
of speaker recognition performance for all speaker detection
tests, the parameters CMiss , CFalseAlarm , and PTarget were set
to be 10, 1, and 0.01, respectively [1].

How to design the DCF, how to choose the threshold, how
to set these parameters, and how to generate target scores and
non-target scores are all out of the scope of this article. These
issues have no impact on how to estimate the SE of the DCF
using the bootstrap algorithms described in this article and on
how to compute the upper bound of the analytical SE, as pointed
out in Section I and described in Section III.

III. THE ANALYTICAL APPROACH

Based on Eq. (3), the analytically estimated SE of the DCF is
usually expressed as

SE(t)2
det = a2SE2

α(t) + b2SE2
β (t) + 2abCov (α (t) , β (t))

(4)
where a = CMiss PTarget , b = CFalseAlarm (1 − Ptarget), and
Cov(α(t), β(t)) is the covariance between α(t) and β(t) [3],
[25]. SEα( t ) and SEβ ( t ) may be estimated using SE = sqrt [p
(1 – p) / n], but the drawback of this is discussed in Ref. [26].

It is difficult to estimate this covariance. However, as pointed
out in Section I, α(t) and β(t) are generally traded off and thus
negatively correlated as the threshold t varies. Hence, Cov(α(t),
β(t)) is negative [25]. As a result, the upper bound of the analyti-
cally computed SE(t)det can be obtained by setting the negative
Cov(α(t), β(t)) in Eq. (4) to zero [13]. It is noted that the analyt-
ically computed SE(t)det must be smaller than its upper bound.
Due to the stochastic nature of the bootstrap method, such up-
per bounds will be compared with the 95% CI of the bootstrap
estimated SEs in Sections VIII-B and VIII-C.

IV. THE TWO-LAYER DATA STRUCTURE

The target scores and non-target scores are grouped into target
sets and non-target sets, respectively, based on the data depen-
dency. Thus the data structure has two layers: the first layer
consists of target sets and non-target sets, and the second layer

consists of target scores and non-target scores within these sets.
In the following, let S denote score sets, α similarity scores, and
μ the number of scores in a set. The first subscript stands for
whether it is referred to as target (T) or non-target (N), the sec-
ond the ordinal number of sets, and the third the ordinal number
of scores in a set. In Sections IV and V, scores are denoted
by α.

Suppose that there are mT target sets and mN non-target sets.
Thus, the set ST of all target sets and the set SN of all non-target
sets are expressed by

Si = {Sij|j = 1, . . . ,mi} , i ∈ {T,N} , (5)

where STj are target sets and SNj are non-target sets. Each set
is expressed in terms of scores by

Sij = {αijk | k = 1, . . . , μij}, j = 1, . . . mi and i ∈ {T,N},
(6)

where αTjk are target scores, αNjk are non-target scores, and μij
stands for the number of scores in the corresponding set.

In other words, the mT target sets S
T 1 , S

T 2 , . . . , STmT

contain μ
T 1 , μ

T 2 , . . . , μTmT
target scores {α

T 1 1 , α
T 1 2 , . . . ,

α
T 1 μ

T 1
}, {α

T 2 1 , α
T 2 2 , . . . , α

T 2 μ
T 2
}, . . . , {αTmT1 , αTmT2 ,

. . . , αTmT μT m T
}, respectively; and the mN non-target sets

S
N 1 ,SN 2 , . . . , SNmN

have μ
N 1 , μ

N 2 , . . . , μNmN
non-target

scores {α
N 1 1 , α

N 1 2 , . . . , αN 1 μ
N 1
}, {α

N 2 1 , α
N 2 2 , . . . , α

N 2 μ
N 2
},

. . . , {αNmN 1, αNmN 2, . . . , αNmN μN m N
}, respectively.

The set of all target scores and the set of all non-target scores
can be denoted, respectively, as

T = {αTjk |k = 1, . . . , μTj and j = 1, . . . ,mT }, (7)

and

N = {αNjk |k = 1, . . . , μNj and j = 1, . . . ,mN }. (8)

The sets Si j , T , and N are all viewed in the sense of a mul-
tiset, in which members are allowed to appear more than once.
All similarity scores are treated as separate objects because they
were generated by different trials in the test, even though some
of them may have common values. The empirical distribution
is assumed for each of the observed scores [15]. That is, the
probability of each score is assigned to be the reciprocal of the
total number of observed target or non-target scores.

Finally, the total numbers of target scores and non-target
scores, i.e., NT and NN , satisfy

Ni =
m i∑

j=1

μij , where i ∈ {T, N} . (9)

V. THE THREE RESAMPLING METHODS AND THE

PROBABILITIES FOR A SCORE BEING SELECTED

A. Resampling With the i.i.d. Assumption

The first method is that the resampling takes place with the
assumption that the data are i.i.d. Then, the resampling units
are all of the similarity scores. The probability for a score being
selected with respect to the total number of scores selected is
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1/NT equally for each target score and 1/NN equally for each
non-target score.

B. One-Layer Resampling

The second method is the one-layer resampling that takes
place randomly WR only on the first layer of the data, i.e.,
target sets and non-target sets, whereas the data dependency
is preserved while resampling [15], [17]. Then, the resampling
units are all score sets. Hence, if a set is selected, then all scores
within the set are selected. It is readily seen that the probability
of selecting a score in regard to the total number of selections
approaches 1/mi , i � {T, N}.

However, if the probability of selecting a score is defined with
respect to the total number of scores selected, then it follows
from the Law of Large Numbers that the probability for a score
α i j k being selected is

P1−layer (αijk) =
1
Ni

,

k = 1, . . . , μij , j = 1, . . . ,mi and i ∈ {T, N}. (10)

The proof of Eq. (10) is presented in Appendix I.
In estimating the SE of the DCF using the bootstrap method,

what matters is all scores that have been chosen by the one-layer
resampling. In addition, the probability definition leading to
Eq. (10) is consistent with the probability definition for the other
two resampling methods. Hence, such a definition is adopted in
this article. So, the probabilities for each target score and each
non-target score being selected are 1/NT and 1/NN , respectively.

C. Two-Layer Resampling

The third method is the two-layer resampling. The selection
takes place randomly WR not only at the first layer of the data
but also at the second layer of the data, i.e., target scores and non-
target scores in the sets, which are assumed to be conditionally
independent as discussed in Section I. The resampling units for
the first layer are sets and for the second layer are scores in the
sets.

The probability for a score αijk in set Si j being selected is

P2−layer (αijk) = P (Sij) × P (αijk | Sij)

= 1
m i

× 1
μ i j

, (11)

k = 1, . . . , μij , j = 1, . . . ,mi and i ∈ {T, N}.

This is with respect to the total number of scores selected. These
probabilities are the same for all scores within a set, but different
from set to set due to different numbers of scores in different
sets as indicated by μij for both target and non-target. This is
different from the previous two resampling methods.

D. The Requirement of Datasets Based on the Probability for
a Score Being Selected

The nonparametric bootstrap method demands that the ob-
jects have equal probabilities to be selected in the random
resampling [15]. Thus, it is not appropriate that target scores are
selected with unequal probabilities in the random resampling

1: function WR_Random_Sampling_Set (N, Γ,Θ)
2: for i = 1 to N do
3: select randomly WR an index j � {1, . . . , N}
4: θi = γj
5: end for
6: end function

for the two-layer bootstrap, and the same holds for non-target
scores. The impact of varied numbers of scores in sets on the
probabilities for a score being selected should be eliminated.

In the two-layer resampling, if the numbers of scores in the
target sets, i.e., μT j , j = 1, . . . , mT , are all set to be equal to
μT , then the probability for each target score being selected will
be 1/NT due to Eq. (9). Analogously, it will be 1/NN for each
non-target score, if all μN j , j = 1, . . . , mN , are set to be equal
to μN . Thus, the probabilities for each target score and each
non-target score being selected in the two-layer resampling will
be the same as those in the other two resampling methods.

In addition, this dataset requirement can ensure that the same
numbers of target scores and of non-target scores are obtained at
different iterations using the three different bootstrap methods
(see Sections VI-C and VI-D). Such a structure of datasets can
reduce the variance of the computation [18]. Further, the SEs of
the DCFs calculated using the three resampling methods can be
compared on an equal footing.

Our datasets had 132 target sets (130 non-target sets), each
of which contained 96 target scores (244 non-target scores).
Thus, the total number of target (non-target) scores was 12,672
(31,720). Thus, there are tens of thousands of scores in our
datasets [20].

VI. THE THREE NONPARAMETRIC TWO-SAMPLE BOOTSTRAP

ALGORITHMS

The estimate of the SE of the DCF at a threshold t is computed
using the three different nonparametric two-sample bootstrap
resampling methods based on our extensive studies of bootstrap
variability in ROC analysis on large datasets [5]–[7], [14], [15].
From here on, the superscript indices are used for the numeration
of the resampling iterations.

A. A Function WR_Random_Sampling_Set

First of all, a function WR_Random_Sampling_Set is shown
above, which will be frequently employed in the following al-
gorithms. In this function, Γ stands for a set of sets or a set of
scores, N is the cardinality of the set Γ, Θ represents a new set of
sets or a new set of scores accordingly with the same cardinality,
and γj and θi are members of the sets Γ and Θ, respectively.
Notice that this function can be applied to either a set of sets
or a set of scores. It runs N iterations as shown from Step 2 to
Step 5. In the i-th iteration, a member of the set Γ is randomly
selected WR to become a member of a new set Θ, as indicated
in Steps 3 and 4. As a result, N members (sets or scores) are
randomly selected WR from the set Γ to form a new set Θ.
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Algorithm I (two-sample bootstrap with i.i.d. assumption)
1: for i = 1 to B do
2: WR_Random_Sampling_Set (NT , T, Θi)
3: WR_Random_Sampling_Set (NN , N, Ξi)
4: Θi and Ξi = > statistic ĈFi

5: end for
6: {ĈFi| i=1, . . .,B}=> SÊ and (Q̂ (α/2), Q̂(1− α/2))
7: end

B. An Algorithm With the i.i.d. Assumption

With the i.i.d. assumption for the data, the resampling units are
scores. Thus the nonparametric two-sample bootstrap algorithm
with the i.i.d. assumption—Algorithm I is shown above. In this
algorithm, B is the number of bootstrap replications, T is the
set of all NT original target scores and N is the set of all NN
original non-target scores as shown in Eqs. (7) and (8).

This algorithm runs B times. As shown from Step 1 to 5, in the
i-th iteration by calling the function in Section VI-A twice, NT
target scores are randomly selected WR from the set T to form
a new set Θi, NN non-target scores are randomly selected WR
from the set N to constitute a new set Ξi, and then all target and
non-target scores in these two new sets Θi and Ξi are employed
to generate the i-th bootstrap replication of the DCF at a given
threshold, ĈFi , using Eqs. (2) and (3).

Finally, as indicated in Step 6, from the set {ĈFi | i = 1,
. . . , B}, the standard error SÊ of the DCF is estimated by the
sample standard deviation of the B replications, and the (1 - α)
100% confidence interval (CI) (Q̂ (α/2), Q̂ (1 − α/2)) at the
significance level α is estimated by the α/2 100% and (1 - α/2)
100% quantiles of the bootstrap distribution [15]. Definition 2
of quantile in Ref. [27] is adopted. That is, the sample quantile
is obtained by inverting the empirical distribution function with
averaging at discontinuities [28]. If the 95% CÎ is of interest,
then α is set to be 0.05.

The remaining issue is to determine how many iterations
this bootstrap algorithm needs to run in order to reduce the
bootstrap variance and ensure the computation accuracy for our
applications. That is, what is an appropriate number B for the
nonparametric two-sample bootstrap replications? In our appli-
cations, such as biometrics and speaker recognition, the sizes of
datasets are tens or hundreds of thousands of scores, which are
much larger than those in some other applications of bootstrap
methods, such as medical decision making. In ROC analysis,
the statistics of interest are mostly probabilities or a weighted
sum of probabilities rather than a simple sample mean. And our
data samples of scores have no parametric model to fit. Thus,
the bootstrap variability was re-studied empirically. The appro-
priate number of bootstrap replications B for our applications
was determined to be 2,000 [5]–[7].

C. An Algorithm for the Nonparametric Two-Sample
One-Layer Bootstrap

As discussed in Section V, the one-layer resampling takes
place only on the first layer of the new data structure, namely,

Algorithm II (two-sample one-layer bootstrap)
1: for i = 1 to B do
2: WR_Random_Sampling_Set

(mT , ST , S’T
i = {S’Tj

i | j = 1, . . . , mT })
3: WR_Random_Sampling_Set

(mN , SN , S
′
N

i = {S’Nj
i | j = 1, . . . , mN })

4: S’T
i and S’N

i = > statistic ĈFi

5: end for
6: {ĈFi | i = 1, . . . , B} => SÊ and (Q̂ (α/2), Q̂ (1 − α/2))
7: end

the resampling units are target sets and non-target sets, respec-
tively. Thus, the nonparametric two-sample one-layer bootstrap
algorithm – Algorithm II is shown above. In this algorithm, B
is the number of bootstrap replications, the set ST of all target
sets and the set SN of all non-target sets are expressed in Eq.
(5), and mT and mN are the cardinalities of the sets ST and SN ,
respectively.

In the i-th iteration, as indicated in Step 2 and Step 3, the
function in Section VI-A is applied twice to sets rather than
scores. That is, mT target sets are randomly selected WR from
the set ST to constitute a new set S’T

i = {S’Tj
i | j = 1, . . . ,

mT }, and mN non-target sets are randomly selected WR from
the set SN to form a new set S’N

i = {S’Nj
i | j = 1, . . . ,

mN }. As noted in Step 4, all target scores in the new set S’T
i

and all non-target scores in the new set S’N
i are employed

to generate the i-th bootstrap replication of the estimated DCF
ĈFi . Everything else here is the same as in the algorithm shown
in Section VI-B.

With the data structure shown in Section V-D, the same num-
bers of target scores and the same numbers of non-target scores
are always obtained in Step 4 to compute the estimate of the
statistic of interest at different iterations of the nonparametric
two-sample one-layer bootstrap. This can reduce the variance
of the computation [18].

D. An Algorithm for the Nonparametric Two-Sample
Two-Layer Bootstrap

As described in Section V, the two-layer resampling is car-
ried out not only on the first layer of the new data structure
where the resampling units are target sets and non-target sets,
but also on the second layer of the data where the resampling
units are target scores and non-target scores in the sets. Hence,
the nonparametric two-sample two-layer bootstrap algorithm—
Algorithm III is presented. In this algorithm, B is the num-
ber of bootstrap replications, the set ST of all target sets
and the set SN of all non-target sets are in Eq. (5), and mT

and mN are the cardinalities of the sets ST and SN . In the
i-th iteration, as shown in Step 2 and Step 6, the function in
Section VI-A is applied to the first layer of datasets twice,
which is the same as in the one-layer bootstrap Algorithm II
in Section VI-C.

Subsequently, the same function is applied to the second layer
of datasets, i.e., to the similarity scores in the sets as well. As
shown from Step 3 to 5, mT iterations take place after the
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Algorithm III (two-sample two-layer bootstrap)
1: for i = 1 to B do
2: WR_Random_Sampling_Set

(mT , ST , S’T
i = {S’Tj

i | j = 1, . . . , mT })
3: for k = 1 to mT do
4: WR_Random_Sampling_Set (μT , S’Tk

i, S "Tk
i)

5: end for

6: WR_Random_Sampling_Set
(mN , SN , S’N

i = {S’Nj
i | j = 1, . . . , mN })

7: for k = 1 to mN do
8: WR_Random_Sampling_Set (μN , S’Nk

i, S "Nk
i)

9: end for

10: S "T
i = {S "Tj

i | j = 1, . . . , mT } and

S "N
i = {S "Nj

i | j = 1, . . . , mN } = > statistic ĈFi

11: end for
12: {ĈFi | i = 1, . . . , B} => SÊ and (Q̂ (α/2), Q̂ (1 − α/2))
13: end

first-layer resampling of the target sets in Step 2. In the k-th
iteration, μT target scores are randomly selected WR from the
target set S’Tk

i, which is the k-th new target set from the first-
layer resampling, to form the k-th new target set S "Tk

i of the
second-layer resampling. The analogous interpretation can be
applied to non-target scores in the non-target set S’Nk

i as shown
from Step 7 to 9.

As shown in Step 10, all target scores in the new set S "T
i =

{S "Tj
i | j = 1, . . . , mT } and all non-target scores in the new set

S "N
i = {S "Nj

i | j = 1, . . . , mN } are employed to generate the
i-th bootstrap replication of the estimated DCF ĈFi . Everything
else in this algorithm is the same as in the algorithm shown in
Section VI-B.

With the data structure described in Section V-D, not only
does each target (non-target) score have the same probability to
be selected, but also the same numbers of target scores and of
non-target scores are obtained in Step 10 to estimate the DCF at
different iterations of the nonparametric two-sample two-layer
bootstrap. These can reduce the variance of computation [18].

VII. A METHOD OF GENERATING DISTRIBUTIONS OF SES OF

THE STATISTIC OF INTEREST

If the SEs obtained by using different bootstrap algorithms
need to be compared, using just one estimate of SE is far from
enough due to the stochastic nature of the bootstrap method.
Hence, a distribution of the SÊs of the DCF, which are each
estimated to be the sample standard deviation of 2,000 bootstrap
replications of the DCF, needs to be investigated.

All three algorithms in Section VI create one estimated SÊ
of the DCF at a time. Running an algorithm multiple times
can generate a distribution of estimated SÊs of DCF. Based on
our studies, to create a stable distribution, it is enough that the
algorithm be executed 500 times [5]–[7].

Hence, the algorithms shown in Sections VI-B, VI-C, and
VI-D are executed 500 times each to create a distribution {SÊ i

| i = 1, . . . , 500}. Then, the estimated mean, SE and 95% CI of

such a distribution are calculated, where Definition 2 of quantile
in Ref. [27] is adopted as shown in Section VI-B.

VIII. RESULTS

Twelve speaker recognition systems were tested. It is time
consuming to generate a distribution of estimated SÊs of the
DCF as described in Section VII. To make the presentation
clear, the four systems EL, LZ, PB, and CH were arbitrarily
chosen from the 12 systems. However, these four systems do
represent a range of performance levels (see the DCFs shown
in Tables I and III below). The results of the four systems are
described in detail. And the results of the other eight systems
UJ, BK, DL, AF, FI, PM, CO, and DG are briefly discussed.
The distributions of the SÊs computed using the three different
bootstrap approaches are explored.

A. The SÊ and CÎ of the DCF for the Four Systems

The estimated DCFs, and the estimated SÊs (relative error)
and 95% CÎs of the DCFs for the four systems computed using
the three different bootstrap approaches are shown in Table I.
They have different matching accuracies—the smaller the DCF,
the more accurate the speaker recognition system. The relative
errors defined by (1.96 x SÊ / DCF) show the significance of the
estimated SÊs with respect to the DCFs.

The estimated 95% CÎs shown in Table I were all calculated
using the quantile method as described in Section VI-B. They
can also be computed by multiplying 1.96 by the estimated SÊ,
assuming that the distribution of 2000 bootstrap replications of
the DCF is normal.

These two types of 95% CÎs are matched up to the third or
fourth decimal place in all cases. For instance, for System EL
using the two-layer resampling, the 95% CÎ derived from the
quantile method is (0.018384, 0.026084) as shown in Table I,
while it is (0.018374, 0.026024) based on the normality assump-
tion.

In addition, the Shapiro-Wilk normality test [28] was con-
ducted on the distributions of the DCFs. As many as seven
p-values were between 7% and 68%. Two p-values were about
1%, and three were less than 1%. All these indicate that the DCF
may be regarded as approximately normally distributed.

B. The Distributions of the SÊs Estimated Using the Three
Different Bootstrap Algorithms and the Analytically Computed
SÊs for the Four Systems

The estimated means, SÊs (relative error) and 95% CÎs of
the distributions of SEs of the DCFs for the four systems esti-
mated using the i.i.d. bootstrap, the one-layer bootstrap, and the
two-layer bootstrap, respectively, are all presented in Table II.
The relative errors defined by (1.96 x SÊ / mean) show the sig-
nificance of the estimated SÊs with respect to the means. The
corresponding distributions of the SEs of the DCFs along with
the estimated means represented by black circles are depicted
in Fig. 3.
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TABLE I
THE ESTIMATED DCFS, SÊS (RELATIVE ERROR) AND 95% CÎS OF THE DCFS COMPUTED USING THE I.I.D. BOOTSTRAP, THE ONE-LAYER BOOTSTRAP, AND THE

TWO-LAYER BOOTSTRAP FOR FOUR SPEAKER RECOGNITION SYSTEMS LABELED AS EL, LZ, PB, AND CH

System DCF SÊ (relative error) and 95% CÎ of DCF

i.i.d. Bootstrap One-Layer Bootstrap Two-Layer Bootstrap

EL 0.022199 0.000696 (6.15%) (0.020855, 0.023575) 0.001909 (16.85%) (0.018549, 0.026151) 0.001952 (17.23%) (0.018384, 0.026084)
LZ 0.040098 0.000894 (4.37%) (0.038227, 0.041792) 0.002810 (13.74%) (0.034972, 0.045794) 0.002897 (14.16%) (0.034641, 0.045880)
PB 0.098744 0.001115 (2.21%) (0.096640, 0.101104) 0.004226 (8.39%) (0.090678, 0.107155) 0.004301 (8.54%) (0.090357, 0.107294)
CH 0.236771 0.002318 (1.92%) (0.232121, 0.240992) 0.004669 (3.87%) (0.227487, 0.246115) 0.005092 (4.22%) (0.226647, 0.247300)

TABLE II
THE UPPER BOUND OF THE ANALYTICAL SÊS, AND THE ESTIMATED MEANS, SÊS (RELATIVE ERROR) AND 95% CÎS OF DISTRIBUTIONS OF SES OF THE DCFS

COMPUTED USING THE I.I.D. BOOTSTRAP, THE ONE-LAYER BOOTSTRAP, AND THE TWO-LAYER BOOTSTRAP FOR FOUR SPEAKER RECOGNITION SYSTEMS EL, LZ,
PB, AND CH

System Upper bound of the analytical SÊ Mean, SÊ (relative error) and 95% CÎ of the distribution of the SEs of the DCF

i.i.d. Bootstrap One-Layer Bootstrap Two-Layer Bootstrap

EL 0.000686 0.000687 0.105594 × 10-4 0.001859 0.292555 × 10-4 0.001975 0.329929 × 10-4

(3.01%) (0.000666, 0.000706) (3.08%) (0.001806, 0.001920) (3.27%) (0.001916, 0.002043)
LZ 0.000888 0.000888 0.133725 × 10-4 0.002730 0.446791 × 10-4 0.002870 0.460217 × 10-4

(2.95%) (0.000863, 0.000917) (3.21%) (0.002646, 0.002817) (3.14%) (0.002781, 0.002956)
PB 0.001118 0.001119 0.182849 × 10-4 0.004150 0.677488 × 10-4 0.004288 0.675055 × 10-4

(3.20%) (0.001084, 0.001155) (3.20%) (0.004012, 0.004286) (3.09%) (0.004149, 0.004420)
CH 0.002294 0.002294 0.367097 × 10-4 0.004646 0.759175 × 10-4 0.005172 0.819121 × 10-4

(3.14%) (0.002224, 0.002367) (3.20%) (0.004509, 0.004790) (3.10%) (0.005020, 0.005345)

TABLE III
THE DCFS, THE UPPER BOUND OF THE ANALYTICAL SÊS, AND THE ESTIMATED MEANS (RELATIVE ERRORS) AND 95% CÎS OF THE DISTRIBUTIONS OF THE SES OF

THE DCFS COMPUTED USING THE I.I.D. BOOTSTRAP, THE ONE-LAYER BOOTSTRAP, AND THE TWO-LAYER BOOTSTRAP FOR EIGHT SYSTEMS

System DCF Upper bound of the analytical SÊ Mean (relative error) and 95% CÎ of the distribution of the SEs of the DCF

i.i.d. Bootstrap One-Layer Bootstrap Two-Layer Bootstrap

UJ 0.028996 0.000502 0.000502 (3.39%) 0.001977 (13.36%) 0.002031 (13.73%)
(0.000486, 0.000517) (0.001919, 0.002033) (0.001961, 0.002093)

BK 0.031588 0.000520 0.000521 (3.32%) 0.001814 (11.26%) 0.001876 (11.64%)
(0.000503, 0.000536) (0.001759, 0.001874) (0.001818, 0.001934)

DL 0.040880 0.000571 0.000571 (2.74%) 0.001735 (8.32%) 0.001819 (8.72%)
(0.000555, 0.000588) (0.001682, 0.001793) (0.001756, 0.001878)

AF 0.073500 0.000502 0.000502 (1.34%) 0.001667 (4.45%) 0.001735 (4.63%)
(0.000487, 0.000517) (0.001621, 0.001718) (0.001683, 0.001788)

FI 0.096988 0.000346 0.000346 (0.70%) 0.000757 (1.53%) 0.000829 (1.68%)
(0.000336, 0.000357) (0.000733, 0.000783) (0.000805, 0.000856)

PM 0.161254 0.001886 0.001884 (2.29%)
(0.001824, 0.001948)

0.004871 (5.92%)
(0.004729, 0.005013)

0.005221 (6.35%)
(0.005055, 0.005381)

CO 0.223263 0.002194 0.002195 (1.93%)
(0.002125, 0.002264)

0.006476 (5.69%)
(0.006255, 0.006689)

0.006822 (5.99%)
(0.006623, 0.007026)

DG 0.455384 0.002777 0.002780 (1.20%) 0.009267 (3.99%) 0.009645 (4.15%)
(0.002694, 0.002870) (0.008990, 0.009520) (0.009339, 0.009926)

Fig. 3. The histograms of the SEs of the DCFs generated using the i.i.d. bootstrap (left - blue), the one-layer bootstrap (middle - red), and the two-layer bootstrap
(right - green) for four systems EL, LZ, PB, and CH. The black circle stands for the estimated mean of the distribution.
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As stated in Section III, the covariance is negative and is hard
to be estimated. Hence, only the upper bounds of the analyti-
cally computed SEs of the DCF are listed in Table II. To take
account of the stochastic nature of the bootstrap method, these
upper bounds are compared with the 95% CI of the bootstrap
estimated SEs of the DCF. Table II shows that the upper bounds
of the analytical SEs without negative covariance are around
the midpoints of the 95% CIs of the SEs estimated using the
i.i.d. bootstrap. It is noted that the analytically computed SEs
are smaller than their upper bounds because of the negative co-
variance. And it is also noted that the i.i.d. bootstrap does not
take data dependency into account.

It is worth mentioning that in Table I, all estimated SÊs of the
DCF calculated using different bootstrap methods were obtained
by a random execution of a stochastic process. However, they all
fall within the estimated 95% CÎ of the bootstrap estimated SÊs
of the DCF that were shown in Table II. For example, for System
EL using the two-layer resampling, the estimated SÊ 0.001952
in Table I falls within the 95% CÎ of the SE (0.001916, 0.002043)
in Table II.

The distributions of SEs have three important features. The
first feature regards the positions of the distributions of the SEs.
As shown in Table II and depicted in Fig. 3, the estimated means
imply that the two distributions of SEs created using the one-
layer bootstrap and the two-layer bootstrap on the datasets with
dependency are well separated, towards larger SEs, from the
distribution of SEs generated using the i.i.d. bootstrap for each
of the four systems. This indicates that the data dependency
increases the SEs of the DCF.

The second feature concerns the variances of the distributions
of SEs. Different runs of the bootstrap method might produce
different results of SEs due to the stochastic nature of the boot-
strap method. As evidenced by the estimated SÊs and 95% CÎs
in Table II as well as by the widths of the histograms depicted in
Fig. 3, the one-layer and the two-layer bootstrap methods cre-
ate larger variation of the SEs than the i.i.d. bootstrap method
does for each system. This indicates that the data dependency
increases the variation of SEs.

The third feature is about what is the statistically significant
relationship between the two distributions of the SEs of the DCF
generated using the one-layer bootstrap and the two-layer boot-
strap, respectively. To explore this, here are some preliminary
observations from Table II. For each system, the estimated 95%
CÎs of these two distributions overlap to some extent, but the
estimated mean of one distribution generally does not fall in-
side the estimated 95% CÎ of the other distribution. Further, the
ratios of the variances generated using the one-layer bootstrap
to those created using the two-layer bootstrap are between 0.79
and 1.01 for all four systems.

Then, hypothesis testing may be conducted on both the es-
timated means and variances of the distributions. In order to
do so, the types of the distributions need to be examined. The
estimated 95% CÎs shown in Table II were all calculated us-
ing the quantile method as discussed in Section VII. They do
match, up to the fourth or fifth decimal place, the 95% CÎs
computed by assuming that the distribution of the SEs of the

DCF is normal, i.e., by multiplying 1.96 by the estimated SÊ
of such a distribution. For example, for System EL using the
two-layer resampling, the 95% CÎ derived from the quantile
method is (0.001916, 0.002043) as shown in Table II, while it
is (0.001911, 0.002040) by assuming normality.

Moreover, the Shapiro-Wilk normality test [28] was con-
ducted on the distributions of the SEs generated by the three
bootstrap methods for the four systems. It was observed that
nine p-values were between 14% and 88% which were much
greater than 5%, and three p-values were 1.7%, 0.5%, and 0.5%.
This suggests that the estimated SÊs of the DCF calculated using
the three different resampling methods be regarded as approxi-
mately normally distributed.

Hence, the Z-test for comparing the means and the F-test for
comparing the variances can be carried out [5], [23], [29]. It is
observed in Table II and Fig. 3 that the mean of the distribution of
the one-layer bootstrap is less than the mean of the distribution of
the two-layer bootstrap. Hence, the one-tailed Z-test is applied.
All p-values for the four systems are close to one, which strongly
suggests that the above observation regarding the means hold
true significantly.

Further, the p-values of the two-tailed F-test are greater than
5% except for System EL, where it is 0.73%. It indicates that
the null hypothesis, i.e., the ratio of the variances of these two
distributions is equal to one, cannot be rejected [24]. Although
the SEs computed using the two-layer bootstrap are generally
larger than those calculated using the one-layer bootstrap as
shown in Table II, the difference is not significant.

Combining the results from these two hypothesis tests plus the
preliminary observations, it can be concluded that the distribu-
tion of SEs of the DCF computed using the two-layer bootstrap
for the datasets with data dependency is significantly to the
right side of the distribution of SEs calculated using the one-
layer bootstrap. This indicates that the two-layer bootstrap can
better deal with the issue of data dependency and thus is more
conservative than the one-layer bootstrap.

C. The Results of the Eight Systems

For the eight speaker recognition systems labeled as UJ, BK,
DL, AF, FI, PM, CO, and DG, the estimated DCFs, means (rel-
ative errors) and 95% CÎs of distributions of SEs of the DCFs
computed using the i.i.d. bootstrap, the one-layer bootstrap, and
the two-layer bootstrap are shown in Table III. The estimated
DCFs show that examples include systems with different per-
formance levels. The relative error, defined by 1.96 x mean /
DCF, shows the significance of the mean of the distribution of
SEs of the DCF with respect to the DCF.

As done in Section VIII-B, only the upper bounds of the
analytically computed SEs of the DCF are listed in Table III.
The same conclusion can be drawn here regarding the upper
bounds of the analytical SEs without negative covariance and
the 95% CIs of SEs estimated using the i.i.d. bootstrap without
considering data dependency.

For each system, the means of the three distributions increase
in the order given, the widths of the estimated 95% CÎs of the
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one-layer and two-layer bootstrap methods are fairly equal but
larger than the one for the i.i.d. bootstrap, and the 95% CÎs also
move toward larger SEs although for some systems the two CÎs
computed using the one-layer and two-layer bootstrap methods
overlap.

Thus, the features regarding the distribution of SEs of the
DCF shown in Table III are exactly the same as those presented
in Table II. As a result, the conclusions drawn from these eight
systems are the same as those reached from the statistical anal-
ysis of the results of the previous four systems.

The three bootstrap methods have different impacts on
the estimated SÊs of the DCF. The results for the 12 systems are
conclusive. Indeed, they are backed theoretically by the rationale
investigated in Appendix II.

IX. CONCLUSIONS AND DISCUSSION

As stated in Section I, using the analytical method to com-
pute the SE of DCF in ROC analysis with data dependency is
inappropriate. As shown in Sections VIII-B and VIII-C, the up-
per bounds of the analytical SEs are around the midpoints of
the 95% CIs of the SEs estimated using the i.i.d. bootstrap that
does not take account of data dependency. And the latter are all
on the left side of the 95% CIs of the SEs estimated using the
one-layer and the two-layer bootstrap methods. All these indi-
cate that the analytically computed SEs of the DCF are smaller
than those computed using one-layer and two-layer bootstrap
methods. The larger one should be taken as the estimate of the
SE of the DCF [30].

Because of the resampling process and its way of estimat-
ing the SE of the DCF, the nonparametric two-sample bootstrap
algorithm can take account of the score distributions and the
covariance intrinsically. Due to the two-layer data structure, the
one-layer and two-layer bootstrap methods can take data depen-
dency into consideration. As a result, the bootstrap method can
estimate the SE of the DCF more effectively than the analytical
approach.

Hence, the SE of the DCF was computed using the non-
parametric two-sample bootstrap method. A void in the SREs
was filled. To further address this problem, many issues will be
involved.

As is known, the bootstrap method assumes that the random
samples are i.i.d. In reality, data dependency may be inevitable
in order to increase the size of datasets due to limited resources.
In this article, the data dependency due to multiple use of the
same subjects, i.e., the same training speaker id numbers, was
taken into consideration, and its impact on the SEs of the DCF
was studied.

To preserve such data dependency while the bootstrap resam-
pling takes place, those target scores and non-target scores, gen-
erated using the same training speaker id number, are grouped
into a target set and a non-target set, respectively. As a result, a
two-layer data structure is constructed.

Thereafter, besides the conventional nonparametric two-
sample bootstrap method with the i.i.d. assumption, the two-
sample one-layer bootstrap method resampling only on sets,
and the two-sample two-layer bootstrap method resampling on
sets and subsequently on scores in the sets are carried out.

To make scores have equal probabilities of being selected
in the random resampling when the nonparametric two-sample
two-layer bootstrap algorithm is employed, it is suggested that
the numbers of target scores in target sets be the same and
likewise for the numbers of non-target scores in non-target sets.
Moreover, the same numbers of target (non-target) scores can be
obtained at different iterations while the bootstrap resampling
takes place. All these can reduce the variance of the computation.

Our research shows that data dependency does have an impact
on the estimates of the SEs of measures. So, when designing a
test and constructing a dataset, if data dependency is involved,
the structure of the datasets should be chosen in accordance
with the above suggestion. Otherwise, resources may be wasted
and the SEs of the measures may not be able to be computed
appropriately.

Equal-number-of-score sets can be easily chosen from not-
equal-number-of-score sets by randomly selecting without re-
placement scores from those sets, in which the numbers of scores
are larger than a specified number. The specified numbers for
target sets and for non-target sets are determined, respectively,
by the trial-and-error optimization so that the total numbers of
target scores and of non-target scores are as large as possible.

Due to the stochastic nature of the bootstrap methods, the
distributions of the estimated SEs of the DCF created by us-
ing the three different bootstrap methods were investigated
and compared. In our studies, all bootstrap estimated SEs
of the DCF obtained by random executions of the bootstrap
fell in the 95% CI of the bootstrap estimated SEs of the
DCF.

After performing the hypothesis testing and investigating the
rationale theoretically for why the three bootstrap methods can
have different impacts on the estimated SEs of the DCF, it is
revealed that the data dependency can increase the SE of the
DCF as well as the variation of SEs. The i.i.d. bootstrap does
not take data dependency into account and thus underestimates
the SEs of the DCF. And the two-layer bootstrap can better deal
with the issue of data dependency and thus more conservatively
estimates the SEs of the DCF (i.e., larger SEs) than the one-layer
bootstrap method does. Indeed, these are all supported by the
rationale investigated in Appendix II.

Indeed, it is a common practice to be more conservative when
estimating the SE of a measure, i.e., obtaining a larger SE among
all reasonable approaches [30]. In conclusion, the nonparametric
two-sample two-layer bootstrap method is recommended when
data dependency is involved.

In our studies, tens of thousands of scores were involved, as
shown in Section V-D. It seems that the large size of datasets
cannot reduce the impact of data dependency on the SEs of
measures in ROC analysis.

The conclusions reached in this article are drawn from testing
12 speaker recognition systems in SREs. Recently, we used the
bootstrap method developed in this article to compute SEs of
measures using a completely different paradigm in which three
score distributions and two thresholds were involved, and thus
a different formulation of the DCF was employed with data
dependency tested on 40 speaker recognition systems; and we
observed the same characteristics [31]. Thus, not taking account
of data dependency and using the bootstrap method with i.i.d.
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assumption can underestimate the SEs of the DCF even with a
doubled data size.

Different measures, such as equal error rate (EER), etc. have
been used in SREs [8]–[11]. The methods proposed in this ar-
ticle, along with the methods presented in Ref. [5], can be em-
ployed to estimate the SEs of those measures.

The error bars of the DCF displaying the SE and 95% CI
can be used to evaluate the performance level of a speaker
recognition system against a hypothesized value. This is related
to one-algorithm hypothesis testing, which can simply be judged
by observing whether the 95% CI of the DCF contains, or lies
below, or lies above the hypothesized value [5]. Further, the error
bars can also be used to classify speaker recognition systems into
different classes in terms of performance accuracies.

When the error bars overlap, two-algorithm hypothesis testing
can be employed to compare two speaker recognition systems
and determine the statistical significance of their performance
difference. To do so, the Z-test can be carried out, because the
DCF may be regarded as approximately normally distributed
as discussed in Section VIII-A. Certainly, the correlation coef-
ficient between the two DCFs of two systems involved in the
Z-test should be taken into account. An algorithm for computing
such correlation coefficients can be found in Refs. [5], [29].

APPENDIX I

Proof of Eq. (10): The proof here holds good for both target
sets and non-target sets. Suppose that N scores are grouped
into m score sets and the i-th set contains μi scores, i = 1,
. . . , m, where

∑m
i = 1 μi = N . Suppose that n selections take

place and the i-th set is selected ni times, i = 1, . . . , m, where∑m
i = 1 ni = n. Thus, the relative frequency f of occurrence of

a score in the i-th set with respect to the total number of all
scores that have been chosen is

f =
ni∑m

j = 1 nj × μj
=

ni

n∑m
j = 1

nj

n × μj
. (A.1)

In the meantime, because the sets are equally likely to be
selected for the one-layer resampling,

lim
n → ∞

ni

n
=

1
m

, i = 1, . . . , m. (A.2)

Therefore, by the Law of Large Numbers, as the number of
selections n goes to infinity, the relative frequency f in Eq. (A.1)
approaches the probability p for a score being selected with
respect to the total number of all scores that have been chosen,
that is

p =
1
m∑m

j = 1
1
m × μj

=
1∑m

j = 1 μj
=

1
N

. (A.3)

APPENDIX II

The rationale for why the SEs computed using the three boot-
strap methods are different is explored by investigating bootstrap
samples of the original scores, bootstrap replications of the DCF,
and the estimated SÊs and their distributions.

A. The Three Multinomial Probabilities (MP) of Selecting
Bootstrap Samples

As stated in Section VI, the resampling takes place randomly
WR on all scores for the bootstrap with i.i.d. assumption, only
on sets for the one-layer bootstrap, and not only on sets but
subsequently also on all scores in the selected sets for the two-
layer bootstrap.

The probability of selecting a bootstrap sample is the MP
[15]. The three bootstrap methods select bootstrap samples with
three different MPs. Though the same bootstrap sample may be
selected by different bootstrap methods, the corresponding MPs
are different.

Using the notations in Sections IV and V, let Ni , mi and
μi , i � {T, N} be the total numbers of scores, the numbers
of sets, and the numbers of scores in sets for target and non-
target, respectively. The discussion here holds good for both the
two-sample bootstrap and the one-sample bootstrap.

For the bootstrap with i.i.d. assumption, suppose that a boot-
strap sample of size Ni , i � {T, N} is randomly drawn WR
from the original target sample T in Eq. (7) or non-target sam-
ple N in Eq. (8), and it contains kiα copies of the α-th target
or non-target score, subject to 0 ≤ kiα ≤ Ni , α = 1, . . . , Ni ,
and

∑N i

α = 1 ki α = Ni . That is, the number of repetitions of
the α-th score in this bootstrap sample is kiα . The summa-
tion of MPs for obtaining all possible bootstrap samples with
different combinations of the numbers of repetitions of scores
(ki 1 , ki 2 , . . . , ki N i

) is
∑

0 ≤ ki α ≤ Ni∑N i

α=1 ki α = Ni

Ni !
ki 1 !ki 2 ! . . . ki N i

!
× 1

Ni
N i

, i ∈ {T, N}.

(A.4)
For the one-layer bootstrap, the summation of MPs for obtain-

ing all possible bootstrap samples with different combinations
of the numbers of repetitions of sets (ki 1 , ki 2 , . . . , ki m i

) is
∑

0 ≤ ki α ≤ mi∑m i
α = 1 kiα = mi

mi !
ki 1 !ki 2 ! . . . ki m i

!
× 1

mi
m i

, i ∈ {T, N}.

(A.5)
For the two-layer bootstrap, the summation of MPs for select-

ing all possible bootstrap samples with different combinations
of the numbers of repetitions of sets (ki 1 , ki 2 , . . . , ki m i

),
and different combinations of the numbers of repetitions of
scores (ji β 1 , ji β 2 , . . . , ji β μi

), β = 1, 2, . . . , mi , within
each of the mi selected sets with respect to a selected partition
(ki 1 , ki 2 , . . . , ki m i

) is
∑

0≤ k i α ≤m i∑m i

α = 1
k i α = m i

mi !
ki 1 !ki 2 ! . . . ki m i

!
× 1

mi
m i

×

mi∏

β = 1
(k i 1 , k i 2 , . . . , k i m i

)

∑

0≤ j i β γ ≤μ i∑μ i

γ = 1
j i β γ = μ i

μi !
ji β1 !ji β2 ! . . . ji βμi

!
× 1

μi
μi

,

i ∈ {T, N}. (A.6)
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Fig. 4. The three distributions of 2,000 bootstrap replications of the DCF for
System LZ, generated using the nonparametric two-sample bootstrap with i.i.d.
assumption (blue), the one-layer bootstrap (red), and the two-layer bootstrap
(green), respectively.

All total probabilities shown in Eqs. (A.4), (A.5) and (A.6)
are normalized to 1. It is known that for all positive integers n

e
√

n
(n

e

)n
≥ n! >

√
2πn

(n
e

)n
. (A.7)

For large n, the right two items are approximately equal, which
is Stirling’s formula.

Here are three features. (1) The MP of selecting the origi-
nal sample is the largest one. For instance, in Eq. (A.4) it is
Ni ! / NN i

i , when all ki α are equal to 1. (2) Because n!/nn de-
creases exponentially as n increases due to Eq. (A.7), the MP
decreases very fast as the size of the original sample increases.
(3) Because k! in the denominators increases very fast as k
grows, the MPs of selecting bootstrap samples other than the
original sample decrease very fast as the numbers of repetitions
of scores or sets in the bootstrap samples increase.

The impact of these features is as follows. The numbers of
scores Ni , i � {T, N} are in the tens of thousands as shown
in Section V-D. So, for the bootstrap with i.i.d. assumption,
the MP of selecting the original sample is very small, and thus
the MPs of selecting bootstrap samples with large numbers of
repetitions of scores are even much smaller.

On the contrary, the numbers of sets, mi , i � {T, N}, are in
the hundreds, considerably smaller than the total numbers of
scores. Hence, for the one-layer bootstrap, the MPs of selecting
bootstrap samples with large numbers of repetitions of sets can
increase tremendously.

The numbers of scores in sets, μi , i � {T, N}, are also in
the hundreds. Thus, for the two-layer bootstrap, the MPs of
selecting bootstrap samples with large numbers of repetitions
of scores in sets can also increase compared to the bootstrap
with i.i.d. assumption. If a bootstrap sample can be selected by
both one-layer and two-layer bootstrap, the MP of the former is
larger than the one of the latter due to Eqs. (A.5) and (A.6).

It is clear that all possible bootstrap samples with differ-
ent combinations of the numbers of score repetitions selected
using the one-layer bootstrap form a proper subset of those cho-
sen using the two-layer bootstrap, which in turn constitute a
proper subset of those selected using the bootstrap with i.i.d.
assumption.

B. The Three Distributions of Bootstrap Replications

It may very well be that different bootstrap samples of the
original data produce the same bootstrap replication of a mea-
sure. In other words, their relationship is many to one. This
is true for the DCF, because it is determined only by the cu-
mulative probabilities of target and non-target scores. Thus, it
follows that the set of the bootstrap replications created using
the one-layer bootstrap is a proper subset of those generated
using the two-layer bootstrap; and the latter is a proper subset
of those created using the bootstrap with i.i.d. assumption.

Further, besides the original estimator of the DCF created by
the original sample, generally speaking, there are three cate-
gories of bootstrap replications of the DCF: (1) those created
by the bootstrap samples with small numbers of repetitions and
thus close to the original estimator of the DCF; (2) those gener-
ated by the bootstrap samples with large numbers of repetitions
but nevertheless still close to the original estimator due to the
reason stated above; (3) those created by the bootstrap samples
with large numbers of repetitions and not close to the original
estimator.

For all three bootstrap methods, the MPs of obtaining boot-
strap replications become smaller as the numbers of repetitions
of scores or sets in the bootstrap samples become larger. This oc-
curs much more rapidly for the i.i.d. bootstrap than the one-layer
bootstrap and the two-layer bootstrap.

Regarding the third category of bootstrap replications, if the
i.i.d. bootstrap is employed, the MPs are extremely small relative
to the probability of obtaining the original estimator, which
is already very small. If they can be obtained using the two-
layer bootstrap, the probabilities become considerably larger.
And if they can be obtained using the one-layer bootstrap, the
probabilities can be even much larger.

However, some of such bootstrap replications of the DCF
cannot be generated using the one-layer bootstrap; but they
can be created using the two-layer bootstrap. This is because
resampling scores can take place on scores within sets only for
the two-layer bootstrap. In other words, the two-layer bootstrap
can generate more such bootstrap replications than the one-layer
bootstrap does.

C. Three Bootstrap Estimated SEs and Their Distributions

In practice, for each of the three bootstrap methods, only a
finite number of bootstrap samples are chosen to compute the
bootstrap replications of the DCF. It is 2,000 based on our boot-
strap variability studies [5]–[7]. So, for each bootstrap method,
only those bootstrap samples and thus those bootstrap replica-
tions selected with relatively large MPs can be created.

Hence, for the bootstrap with i.i.d. assumption, only those
bootstrap replications of the DCF with small numbers of repeti-
tions of scores, and thus located close to the original estimator,
can be generated. For the one-layer bootstrap, not only can some
bootstrap replications located near the original estimator be cre-
ated, but also some with large numbers of repetitions of sets and
not located close to the original estimator can be generated. For
the two-layer bootstrap, even more such bootstrap replications
can get created.
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Thus, the dispersion of the distribution of bootstrap repli-
cations of the DCF gets larger, when the bootstrap with i.i.d.
assumption, the one-layer bootstrap, and the two-layer boot-
strap are employed in turn. For the bootstrap method, the SE
of a measure is estimated from the distribution of the boot-
strap replications of the measure [15]. Hence, the SE of the
DCF computed using the bootstrap with i.i.d. assumption is far
smaller than the one calculated using the one-layer bootstrap,
which is smaller than the one computed using the two-layer
bootstrap.

As a result, the distributions of SEs of the DCF generated
using the one-layer and the two-layer bootstrap are well sepa-
rated towards larger SEs from the one created using the i.i.d.
bootstrap; and the distribution of SEs of the DCF using the two-
layer bootstrap lies above the one using the one-layer bootstrap.
The bootstrap with i.i.d. assumption cannot pick up those boot-
strap replications in Category 3, but the one-layer and two-layer
bootstrap can. This narrows the variation of the SE of the DCF
computed using the bootstrap with i.i.d. assumption relative to
the other two bootstrap methods.

Fig. 4 shows the three distributions of the 2,000 bootstrap
replications of the DCF for System LZ, which are generated
using the nonparametric two-sample bootstrap with the i.i.d. as-
sumption (blue), the one-layer bootstrap (red), and the two-layer
bootstrap (green), respectively. They have the same relationship
as described here.
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