
Overview of an Ontology-based Approach for Kit-building Applications

Zeid Kootbally
Department of Aerospace and Mechanical Engineering

University of Southern California
Los Angeles, CA, USA
zeid.kootbally@nist.gov

Thomas R. Kramer
Department of Mechanical Engineering

Catholic University of America
Washington, DC, USA

thomas.kramer@nist.gov

Craig Schlenoff
Intelligent Systems Division

National Institute of Standards and Technology (NIST)
Gaithersburg, MD, USA
craig.schlenoff@nist.gov

Satyandra K. Gupta
Department of Aerospace and Mechanical Engineering

University of Southern California
Los Angeles, CA, USA

skgupta@usc.edu

Abstract—The Agility Performance of Robotic Systems
(APRS) project at the National Institute of Standards and
Technology (NIST) is using Web Ontology Language (OWL)
ontologies for modeling in a robotic kitting workstation. The
new technical idea for the APRS project is to develop the mea-
surement science in the form of an integrated agility framework
enabling manufacturers to assess and assure the agility perfor-
mance of their robot systems. This framework includes robot
agility performance metrics, information models, test methods,
and protocols. This paper focuses on the information models
and describes how they are used to introduce robot agility
for the kitting domain. OWL class model files are generated
automatically from XML schema model files. Files of OWL
instances conforming to an OWL class model are generated
automatically from XML instance files by automatically built
translators.

Keywords-Web Ontology Language; kit building; robotics;
agility; knowledge representation; information model;

I. INTRODUCTION

Robots will be a pervasive part of our lives in the coming
decades. Whether it is behind the scenes in assembling
products that you use in your everyday life, or helping you
parallel park your car, robots are already playing a role in
what we use and how we get around.

However robots are not good at everything. For the most
part, robots perform best in highly structured environments,
where objects are in well-known, predictable locations.
Robots are also not known for “thinking on the fly” very
well. They are best when they can be trained to perform a
very specific activity, which requires a very specific set of
motions, and that activity can be performed in the exact same
way many hundreds or thousands times. Not surprisingly,
robots have been adopted much more in high volume,
repeatable operations such as car manufacturing than they
have been in smaller job shop type operations where only a
handful of similar products are being made at a given time.

Another way to describe this is that robots are not
considered agile. But, in order for them to be useful to
small manufacturers and to also allow larger manufacturers
to offer more automated customization of high volume parts
(think cars and cell phones), they need to be. The Agility
Performance of Robotic Systems (APRS) project at the
National Institute of Standards and Technology (NIST)1 is
addressing this challenge. The goal of this project is to
enable agility in manufacturing robot systems and to develop
the measurement science which will allow manufacturers
to assess and assure the agility performance of their robot
systems. Key areas of robot agility include: 1) the ability
of a robot to be rapidly re-tasked without the need to shut
down the robot for an extended period of time when a new
operation needs to be performed, 2) the ability of a robot
to recover from errors, so that when a part is dropped, for
example, the robot can assess the situation and determine
the best way to proceed to accomplish the goal, and 3)
the ability to quickly swap in and out robots from different
manufacturers so that a company is not tied to a single robot
brand.

NIST is developing software, standards, and performance
metrics to allow aspects of agility to happen. NIST is devel-
oping the Canonical Robot Command Language (CRCL) [1]
which is a low-level messaging language for sending com-
mands to, and receiving status from, a robot. CRCL is in-
tended primarily to provide commands that are independent
of the kinematics of the robot that executes the commands.
This allows robots to be more easily swapped in and out
since the robot commands are represented in a robot-agnostic
format. NIST is also in the process of developing a set
of performance metrics to measure robot agility, and is
validating them at an upcoming Agile Robotics for Industrial

1https://www.nist.gov/programs-projects/agilityperformance-robotic-
systems



Automation Competition (ARIAC)2 to be held in 2017 in
conjunction with the Institute of Electrical and Electronics
Engineers (IEEE).

One of the key aspects needed to enable robot agility
is the ability for the robot to represent knowledge about
the environment (and its own capabilities) in such a way
that it can reason over it and take action based on what
it has learned. NIST has chaired an IEEE Working Group
which developed the IEEE 1872 Standard (Core Ontology
for Robotics and Automation (CORA)) [2]. This standard
defines a core ontology that allows for the representation
of, reasoning about, and communication of knowledge in
the robotics and automation (R&A) domain. This ontology
includes generic concepts as well as their definitions, at-
tributes, constraints, and relationships. These terms can be
specialized to capture the detailed semantics for concepts in
robotics sub-domains. The standard has chosen to use the
Standard Upper Ontology Knowledge Interchange Format
(SUO-KIF) [3] to represent concepts and their associated
axioms.

In this paper, the authors describe how the concepts of
three ontologies in Web Ontology Language (OWL) [4]
format, consistent with CORA, were specialized to enable
agility in industrial robotics and the infrastructure that was
built to convert the concepts into various representations
that could directly be applied to the robot control system.
The effort described in this paper deals with kitting or
kit building. In kitting, parts are delivered to the assembly
station in kits that contain the exact parts necessary for the
completion of one assembly object.

This paper is structured as follows: Section II describes
the information models used within this project. The au-
thors also briefly describe the tool used to translate XML
(eXtensible Markup Language) Schema Definition Language
(XSDL) and XML files to OWL files in Section III. Sec-
tion IV details the design methodology that relies on OWL
files to perform kitting in the APRS project. Section V gives
conclusions and future work.

II. INFORMATION MODELS

The APRS project makes use of three ontologies that
can be applied to the kitting domain. The authors used a
set of closely related C++ software tools for manipulating
XSDL [5], [6], [7] files and XML instance files and translat-
ing them into OWL class files and OWL instance files [8].
The authors use the translators to translate XML instance
files to OWL instance files. The OWL class files are used
as input to a tool that generates a database schema automat-
ically. The APRS work in OWL generation was reported
in [8]. Modest improvements have been implemented since
then.

2https://www.nist.gov/el/intelligent-systems-division-73500/agile-
robotics-industrial-automation

A. KittingWorkstation Model

The KittingWorkstation model describes the objects in the
current kitting scenario. This file contains all of the basic
information that was determined to be needed during the
evaluation of the use cases and scenarios. The knowledge
is represented in as compact of a form as possible with
knowledge classes inheriting common attributes from par-
ent classes. In Figure 1 and similar figures (which were
generated by XMLSpy3), a dotted line around a box means
the attribute is optional (may occur zero times), while a
..∞ underneath a box means it may occur more than once,
with no upper limit on the number of occurrences. The main
types (i.e., classes or datatypes) of the attributes of a kitting
workstation are shown in Figure 1. More information on this
model can be found in [9], [10].

B. Action Model

Planning for kitting relies on the Planning Domain Def-
inition Language (PDDL) [11] domain file. PDDL is a
community standard for the representation and exchange of
planning domain models. In order to operate, the PDDL
planners require a PDDL file-set that consists of two files
that specify the domain and the problem. From these files,
the planning system creates an additional static plan file.
The authors explored the idea of automating the generation
of PDDL domain and problem files by representing the
components of a PDDL domain file [12] in an Action model.
The Action model imports the KittingWorkstation model
to include all the parameters defined in PDDL predicates
and functions. Figure 2 depicts the information model for
a PDDL domain file. A user only needs to create an XML
file which consists of actions that a robot needs to perform
to build a kit.

C. Robot Capability Model

The application of robotics in manufacturing assembly
is hindered by their lack of agility, their large changeover
times for new tasks and new products, and their limited
reusability. One of the main causes for these hindrances is
the lack of understanding of robot capabilities as they pertain
to assembly tasks. In this context, a robot capability refers
to the ability of a robot to perform a specific action on a
specific object or set of objects. Measuring robot capabilities
for a specific domain provide multiple advantages such as
creating a process plan that assigns the best robot to each
operation needed to accomplish the given task.

The Robot Capability model depicted in Figure 3 was
produced based on the set of components identified from
a thorough literature review [13]. The capability model

3Certain commercial/open source software and tools are identified in this
paper in order to explain our research. Such identification does not imply
recommendation or endorsement by the authors or NIST, nor does it imply
that the software tools identified are necessarily the best available for the
purpose.



Figure 1. Information model for kitting.

consists of pointers to elements defined in the Kitting-
Workstation model as well as new elements. Mandatory
elements include a pointer to the robot element for which the
capability is defined (e.g., robot-motoman), the definition for
the assembly action performed by the robot (e.g., pick-up-
part), one or multiple references to the stock keeping unit
for the object involved in the assembly action (e.g., small-
gear), and the overall result for the current capability (e.g.,
can pick up this part 85 % of the time).

III. TRANSLATION DETAILS

To enable using OWL the authors have developed a set of
automatic software tools for generating OWL class files from
XML schemas and for generating XML to OWL instance
file translators automatically. The authors use the translators
to translate XML instance files to OWL instance files. A
number of systems for converting XML files to OWL files
have been developed. A survey of nine of these systems was
made by Hacherouf et al. [14]. That survey does not include

Figure 2. Information model for PDDL.

Figure 3. Information model for robot capability.

the system developed by the authors, in this paper called the
ISD OWL Generation System [8]. The ISD system is built in
C++ , using YACC and Lex [15] for parsing. C++ is generated
from YACC by bison [16] [12] and generated from Lex by
flex [17].

A. Obviating OWL Problems

A number of features of OWL [18], [19] and Protégé [20],
a tool available for building OWL ontologies, make it
impractical to build OWL models and instance files directly.



The primary reason for this is that user errors in spelling the
names of NamedIndividuals, properties, and classes are not
recognized as errors.

OWL’s open world assumption allows that anything might
be true that is not explicitly ruled out (1) by OWL statements
directly, or (2) by reasoning from statements that have
been made. The open world assumption is appropriate in
some contexts, however the kitting domain may be readily
handled under a closed world assumption. Using an open
world assumption introduces difficulty without providing
any advantages.

Also, if the name of a class, property, or individual is
used without being explicitly declared as such in the file (as
happens when a name is misspelled), that class, property, or
individual is implicitly declared. Protégé does provide some
help with spelling by having an auto complete window to
use when expressions are being constructed. A misspelled
term will appear as one of the choices while the user types,
if the first few letters are correct.

Another problem is that, while constructing an OWL file,
it is easy to omit OWL statements one intends to make.
Omitting any one statement or any set of statements after
the header in OWL class and instance files will not be an
OWL error and will not cause Protégé to flag any error or
give any warning. The same would be true of many other
OWL files.

Finally, Protégé does not check completely whether an
OWL file conforms to the OWL specification. For example,
if an OWL instance file imports an OWL class file and the
prefix declared for both files is the empty prefix, no error
will be signaled, even though the OWL specification says
explicitly that this is not allowed.

Some of these issues can be detected, and research
aimed at developing better OWL consistency checkers is
ongoing [21]. One utility, Pellet, offers some support for
advanced reasoning and debugging [22]. In our tests, the
Pellet command line linter was able to detect spelling errors
within OWL, but Pellet was unable to detect a missing
statement. Further, Pellet seems to support OWL XML
syntax, but was unable to parse functional style syntax.
Limitations still remain.

The use of an undefined type in an XML schema file
is an error, and readily available XML tools will detect
and flag it. Similarly, a missing element in an instance file
will be detected and flagged. If a definition of references to
unique identifiers (IDREF) is made to a definition of unique
identifiers (ID) that has not been used, that will be detected
and flagged. If a portion of an XML schema file is omitted,
in many cases, that will be detected when the file is read,
and in most cases an error will be signaled if an instance
file is read that conforms to the complete intended schema
file. Thus, almost all spelling errors that will pass in OWL
will fail in XML, and most errors of omission that will pass
in OWL will fail in XML.

The translation tools do not make spelling errors or errors
of omission. Hence, by using them on tested XML schemas
and instance files, correct OWL files may be produced. In
addition, it is easier to work with XML files since (1) they
are structured while OWL files are not, and (2) XML files
are about half as long as the equivalent OWL files.

IV. DESIGN METHODOLOGY

The authors have implemented the design methodology
shown in Figure 4 to perform kitting with an industrial robot.

A manufacturing activity begins when the operator re-
ceives a request to fulfill an order. The request is submitted
to a Task Scheduler that starts the kitting process. Informa-
tion from the three ontologies described earlier is converted
into a graph database with the Database Generator, a
Java tool. The use of a graph database ensures real-time
access to information on the environment, planning domain,
and robot capabilities. The Database Generator “sees”
an ontology as a graph. It has a top node (owl:Thing)
and classes extending it. There are individuals that belong
to classes and object properties connecting the individuals.
Individuals can have data properties and annotations that can
be represented as node properties and relationship properties
or as relationship types.

Using the Action and Robot Capability ontologies, the
Problem Generator [12] dynamically creates a PDDL
problem file for the current domain. The Problem Generator
parses the PDDL domain file to retrieve all the predicates
and numeric-valued fluents (including robot capability val-
ues) and then uses a mapping file to retrieve their values in
the graph database.

The current state of the world is updated by the Sen-
sor Processing since objects in the environment could
have been inadvertently moved since the previous time
the database was updated. Once the problem file is auto-
generated, both the problem and the domain files are used
with a temporal planner to generate a plan file.

Next, an Executor application translates each PDDL
action from the plan file into a series of Canonical Robot
Command Language (CRCL) commands, and sends each to
each Robot Controller. CRCL provides message content and
syntax for a low-level robot command-status protocol. The
Executor application continually tracks the execution status
of each CRCL command, ensuring that the conditions and
effects of the PDDL commands are met as the statements
are processed. If failures are detected, e.g., dropped part, the
Executor aborts the PDDL plan and calls for replanning.
The current state of the world is maintained in a world
model (WM) graph database which is updated by a sensor
processing system, which continually estimates the state of
the environment, synthesizes higher-level information about
the state of the world by fusing lower-level sensor informa-
tion, and updates the WM, which could be implemented in
a distributed fashion.



Figure 4. Design methodology for kitting.

The design methodology described above has been used
at NIST to perform kitting with two different robots (Fig-
ures 5 and 6). Kitting was performed with both robots to
pick and place components of a gear box (Figure 7). The
KittingWorkstation model consisted of elements describing
the workstation (robot, gears, etc) while the Action model
described the different pick-up and place actions that the
robots can use to reach a goal state. The design methodology
was not altered in the two scenarios, only the information
in the OWL files was modified to match the goal state (e.g.,
building a kit with two parts vs. a kit with four parts).

Figure 5. Kuka Lightweight Robot.

Figure 6. Fanuc LR Mate 200iD.

Figure 7. Parts for a gearbox kit.

V. CONCLUSIONS AND FUTURE WORK

The Agility Performance of Robotic Systems (APRS)
project aims at making industrial robots more agile to



tackle the challenges that small and medium manufacturers
are facing. Implementing agility within the APRS project
is performed with the kitting domain and starts with the
definition of three information models which derive from
the CORA model. This paper describes a KittingWorkstation
model, an Action model, and a Robot Capability model. The
KittingWorkstation model describes a kitting workstation
including solid objects (e.g., parts) and data (e.g., poses).
The Action model describes the structure components of a
Planning Domain Definition Language (PDDL) domain file
and is used to automate the generation of PDDL domain
and problem files. The Robot Capability model expresses the
capability of a robot at performing specific planning actions
on a specific object or set of objects. Although significant
efforts have been made to improve agility in manufacturing
assembly, there is still a need to deal with action failures.
It is the intention of the authors to develop a new model
for failures. This model will encompass information on the
different failures that a robot can encounter during kitting
as well as the severity of the failures and a remediation plan
for each type of failure.

ACKNOWLEDGMENT

Dr. Kramer acknowledges support for this work under
grant 70NANB15H053 from the National Institute of Stan-
dards and Technology to the Catholic University of America.

Dr. Kootbally acknowledges support for this work un-
der grant 70NANB15H249 from the National Institute of
Standards and Technology to the University of Southern
California.

REFERENCES

[1] F. Proctor, S. Balakirsky, Z. Kootbally, T. Kramer,
C. Schlenoff, and W. Shackleford, “The Canonical Robot
Command Language (CRCL),” Industrial Robot: An Inter-
national Journal, vol. 43, no. 5, pp. 495–502, 2016.

[2] S. R. Fiorini, J. L. Carbonera, P. Gonçalves, V. A. Jorge, V. F.
Rey, T. Haidegger, M. Abel, S. A. Redfield, S. Balakirsky,
V. Ragavan, H. Li, C. Schlenoff, and E. Prestes, “Extensions
to the Core Ontology for Robotics and Automation,” Robotics
and Computer-Integrated Manufacturing, vol. 33, pp. 3–11,
Jun 2015, special Issue on Knowledge Driven Robotics and
Manufacturing.

[3] A. Pease, “Standard Upper Ontology Knowledge
Interchange Format,” 2009. [Online]. Available:
http://suo.ieee.org/suokif.html

[4] World Wide Web Consortium, “OWL 2 Web Ontology Lan-
guage Structural Specification and Functional Syntax,” 2009.

[5] W3C, “XML Schema Part 0: Primer Second Edition,” in
http://www.w3.org/TR/xmlschema-0/, 2004.

[6] ——, “XML Schema Part 1: Structures Second Edition,” in
http://www.w3.org/TR/xmlschema-1/, 2004.

[7] World Wide Web Consortium, “XML Schema Part 2:
Datatypes, Second Edition,” 2004. [Online]. Available:
www.w3.org/TR/xmlschema-2

[8] T. R. Kramer, B. H. Marks, C. I. Schlenoff, S. B. Balakirsky,
Z. Kootbally, and A. Pietromartire, “Software Tools for XML
to OWL Translation,” National Institute of Standards and
Technology, Gaithersburg, MD, USA, NIST IR 8068, Jul
2015.

[9] S. Balakirsky, Z. Kootbally, C. Schlenoff, T. Kramer, and
S. Gupta, “An Industrial Robotic Knowledge Representation
for Kit Building Applications,” in Proceedings of the 2012
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). Vilamoura, Portugal: IEEE, October 2012,
pp. 1365–1370.

[10] S. Balakirsky, Z. Kootbally, T. Kramer, R. Madhavan,
C. Schlenoff, and M. Shneier, “Functional Requirements of a
Model for Kitting Plans,” in Proceedings of the Workshop on
Performance Metrics for Intelligent Systems. ACM, 2012,
pp. 29–36.

[11] M. Fox and D. Long, “PDDL2.1: An Extension to PDDL for
Expressing Temporal Planning Domains,” Journal of Artificial
Intelligence Research, vol. 20, pp. 431–433, 2003.

[12] Z. Kootbally, C. Schlenoff, C. Lawler, T. Kramer, and
S. Gupta, “Towards Robust Assembly with Knowledge Rep-
resentation for the Planning Domain Definition Language
(PDDL),” Robotics and Computer-Integrated Manufacturing,
vol. 33, pp. 42–55, 2015, special Issue on Knowledge Driven
Robotics and Manufacturing.

[13] Z. Kootbally, “Industrial Robot Capability Models for Agile
Manufacturing,” Industrial Robot: An International Journal,
vol. 43, no. 5, pp. 481–494, 2016.

[14] M. Hacherouf, S. Bahloul, and C. Cruz, “Transforming XML
Documents to OWL ontologies: A survey,” Journal of Infor-
mation Science, vol. 41, no. 2, pp. 242–259, 2015.

[15] D. Brown, J. Levine, and T. Mason, Lex & Yacc. OReilly
Media, October 1992.

[16] C. Donnelly and R. Stallman, “Bison, The YACC-
compatible Parser Generator,” 2006. [Online]. Available:
http://dinosaur.compilertools.net/bison

[17] V. Paxson, W. Estes, and J. Millaway, “Flex, Version 2.5.31
A Fast Scanner Generator,” 2003. [Online]. Available:
http://www.gnu.org/software/flex

[18] World Wide Web Consortium, “OWL 2 Web
Ontology Language Primer (Second Edition) W3C
Recommendation 11 December 2012,” 2004. [Online].
Available: http://www.w3.org/TR/owl2-primer/

[19] ——, “OWL 2 Web Ontology Language Structural
Specification and Functional Style Syntax (Second Edition)
W3C Recommendation 11 December 2012,” 2012. [Online].
Available: http://www.w3.org/TR/owl2-syntax

[20] M. Horridge, “A Practical Guide To Building OWL On-
tologies Using Protégé 4 and CO-ODE Tools, 1st ed,” The
University Of Manchester, Tech. Rep., March 2011.



[21] B. Motik, I. Horrocks, and U. Sattler, “Adding Integrity
Constraints to OWL,” Proceedings of the OWLED 2007
Workshop on OWL: Experiences and Directions, vol. 258,
June 2007.

[22] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz,
“Pellet: A Practical OWL-DL Reasoner,” Web Semantics:
science, services and agents on the World Wide Web, vol. 5,
no. 2, pp. 51–53, 2007.


