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In our work [1], we introduce and apply a detector-independent method to uncover nonclassicality.
In this contribution, we extend those techniques and give more details on the performed analysis.
We derive the general structure of the positive-operator-valued measurement operators that describe
multiplexing layouts with arbitrary detectors. From the resulting quantum version of multinomial
statistics, we infer nonclassicality probes based on a matrix of normally ordered moments. We discuss
these criteria and apply them to our data which are measured with superconducting transition-edge
sensors. Our experiment produces heralded multi-photon states from a parametric down-conversion
light source. We show that the notions of sub-Poisson and sub-binomial light can be deduced from
our general approach and we establish the concept of sub-multinomial light, which is shown to
outperform the former two concepts of nonclassicality for our data.

I. INTRODUCTION

The bare existence of photons highlights the particle
nature of electromagnetic waves in quantum optics [2].
Therefore, the generation and detection of photon states
are crucial for a comprehensive understanding of funda-
mental concepts in quantum physics; see Refs. [3, 4]
for recent reviews on single photons. Beyond this scien-
tific motivation, the study of nonclassical radiation fields
is also of practical importance. For instance, quantum
communication protocols rely on the generation and de-
tection of photons [5, 6]. Yet, unwanted attenuation
effects—which are always present in realistic scenarios—
results in a decrease of the nonclassicality of a produced
light field. Conversely, an inappropriate detector model
can introduce fake-nonclassicality even to a classical ra-
diation field [7-9]. For this reason, we seek for robust
and detector-independent certifiers of nonclassicality.

The basic definition of nonclassicality is that a quan-
tum state of light cannot be described in terms of classi-
cal statistical optics. A convenient way to represent gen-
eral states is given in terms of the Glauber-Sudarshan P
function [10, 11]. Whenever this distribution cannot be
interpreted in terms of classical probability theory, the
thereby represented state is a nonclassical one [12, 13].
A number of nonclassicality tests have been proposed;
see Ref. [14] for an overview. Most of them are formu-
lated in terms of matrices of normally ordered moments
of physical observables; cf., e.g., [15]. For instance, the
concept of nonclassical sub-Poisson light [16] can be writ-
ten and even generalized in terms of matrices of higher-
order photon-number correlations [17]. Other matrix-
based nonclassicality tests employ the Fourier or Laplace
transform of the Glauber-Sudarshan P function [18, 19].
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In order to apply such nonclassicality probes, one has
to measure the light field under study with a photode-
tector [20, 21]. The photon statistics of the measured
state can be inferred if the used detector has been prop-
erly characterized. This can be done by a detector to-
mography [22-26]—i.e., measuring a comparably large
number of well-defined probe states to construct a de-
tection model. Alternatively, one can perform a detector
calibration [27-29]—i.e., the estimation of parameters of
an existing detection model with some reference mea-
surements. Of particular interest are photon-number-
resolving detectors of which superconducting transition-
edge sensors (TESs) are a successful example [30-34]. In-
dependent of the particular realization, photon-number-
resolving devices allow for the implementation of quan-
tum tasks, such as state reconstruction [35, 36], imaging
[37, 38], random number generation [39], and the char-
acterization of sources of nonclassical light [40-43]—even
in the presence of strong imperfections [44]. Moreover,
higher-order [45-47], spatial [48, 49], and conditional [50]
quantum correlations have been studied.

So far, we did not distinguish between the detection
scheme and the actual detectors. That is, one has to dis-
cern the optical manipulation of a signal field and its in-
teraction with a sensor which yields a measurement out-
come. Properly designed detection layouts of such a kind
render it possible to infer or use properties of quantum
light without having a photon-number-resolution capa-
bility [51-53] or they do not require a particular detector
model [54, 55]. For instance, multiplexing layouts with
a number of detectors that can only discern between the
presence (“on”) or absence (“off”) of absorbed photons
can be combined into a photon-number-resolving detec-
tion device [56-60]. Such types of schemes use an optical
network to split an incident light field into a number of
spatial or temporal modes which are subsequently mea-
sured with on/off detectors. The measured statistics is
shown to resemble a binomial distribution [9] rather than



a Poisson statistics, which is obtained for photoelectric
detection models [61]; see also [62, 63] in this context.
For such detectors, the positive operator-valued measure
(POVM), which fully describes the detection layout, has
been formulated [9, 64]. Recently, the combination of a
multiplexing scheme with multiple TESs has been used to
significantly increase the photon-number resolution [65].

Based on the binomial character of the statistics of
multiplexing layouts with on/off detectors, the notion of
sub-binomial light has been introduced [66] and experi-
mentally demonstrated [67]. It replaces the earlier men-
tioned concept of sub-Poisson light [16] that applies to
photoelectric counting models [61]. Note that nonclassi-
cal light can be similarly inferred from devices based on
unbalanced multiplexing (i.e., non-identical splitting ra-
tios) [68]. In addition, the on-chip realization of optical
networks [69] can be used to produce integrated detection
schemes to verify sub-binomial light [70].

In this work, we derive the quantum-optical click-
counting statistics for multiplexing layouts which em-
ploy arbitrary detectors. Consequently, we formulate
detector-independent nonclassicality tests in terms of
normally-ordered moments. This method is applied to
our experiment which produces heralded multi-photon
states. Our results are discussed in relation with other
notions of nonclassical photon correlations.

In our Letter [1], we study the same topic as we do in
this work from a classical perspective. There, the treat-
ment of the detector-independent verification of quan-
tum light is performed solely in terms of classical sta-
tistical optics. Here, however, we use a complementary
quantum-optical perspective on this topic. Beyond that,
we also consider additional features of our measurements,
give details on the statistical analysis (fully presented in
Appendix A) and compare our results with simple theo-
retical models (given in Appendix B).

This work is organized as follows. In Sec. II, the
detector-independent model for our detection layout is
elaborated. Section III includes the derivation and the
discussion of the nonclassicality conditions. We give a
brief overview of the performed experiment in Sec. IV
with special emphasis on the used TESs. An extended
analysis of our data, presented in Sec. V, includes the
comparison of different forms of nonclassicality. We sum-
marize and conclude in Sec. VI.

II. DETECTION MODEL

We begin with the derivation of the detector-
independent formulation of a theoretical model for the
measurement layout under study (Fig. 1). This opti-
cal detection scheme consists of a multiplexing network
which splits a signal into /N modes. Those outputs are
measured with N identical detectors which can produce
K +1 outcomes labeled as 0, ..., K. Let us stress that we
make a clear distinction between the well-characterized
optical multiplexing, the individual and unspecified de-
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tectors, and the resulting full detection scheme. We will
use the standard calculus in quantum optics which is
based on bosonic operator ordering; see [71] for an de-
tailed introduction.
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FIG. 1. (Color online) Outline of the multiplexing scheme

for a coherent state |a). A balanced optical network—
represented by the unitary U (N)—splits the incident coherent

state |a) into |a/v/N)®Y. The individual detectors give an
outcome k, € {0,...,K}. The number of detectors which
deliver the same outcome k defines Ny.

In the multiplexing scheme, an input coherent state |a)
is distributed over IV output modes. Further on, we have
vacuum |vac) = |0) at all other N — 1 input ports. In
general, the N input modes—defined by the bosonic an-
nihilation operators a,—are transformed via the unitary
U(N) = (UT,W)TN,W:1 into the output modes

(1)

The optical network does a balanced splitting, |Uy m|* =
1/N. We can also employ local phase rotations e*#m Em to
get, without a loss of generality, Uy, 1 = |Upn.1| = 1/VN
for 1 < m < N. Hence, we have the following input-
output relation

b = UniG1+ -+ Un,nNan.

o) @ 02D Y o/ VE) @ 2 |a/VN).  (2)
Note that a balanced, but lossy network similarly yields
[70) ® -+ ® |ra) for 7 < 1/V/N.

For describing the detector, we cannot make any speci-
fications as we did for the optical multiplexing. The prob-
ability py for the kth measurement outcome (0 < k < K)
for any type of detector can be written in terms of the
expectation value of the POVM operators :7j:. That
is pr = (7)), where :---: denotes the normal-ordering
prescription. Note that any operator can be written in
such a form. In addition, we may recall that expectation
values of normally-ordered operators and coherent states
can be simply computed by replacing the bosonic annihi-
lation and creation operator with the coherent amplitude
and their complex conjugate, respectively. For the coher-
ent states |a/v/N), we have

pr(@) = (a/VN[:#p:|a/VN) = (af:#:la),  (3)

whereby we also define :7y: in terms of :7: through the
mapping @ — a/v N.



We find for a measurement with our N detectors and
our coherent output state (2) that the probability to mea-
sure the outcome k,, with the nth detector—more rigor-
ously a coincidence (ki, ..., ky)—is given by

(4)

where we used Eq. (3) and the following relation for
normal ordering: (a|:A:|a)(a|:B:la) = (a|:AB:|a) for
any two (or more) operators A and B. The Glauber-
Sudarshan representation [10, 11] allows one to expand
any quantum state as a quasi-mixture of coherent states,
p = [d?a P(a)|a){a|. Thus, we can write for any p

Pk, ((1) © Pkn ((1) = <(1‘:ﬁ-k1 e 7?rl€1\r:|a>7

Dk, hn) = / d*a P(a)pg, () - pry (@)

=(Apy - oy )

()

So far we studied the individual parts, i.e., the optical
multiplexing and the N individual detectors. For the
combination of both to describe the setup in Fig. 1, we
need some combinatorics. Suppose N is the number of
elements of (ki,...,kn) which take the value k. Then,
(No, - .., Nk) describes the coincidence that Ny detectors
yield the outcome 0, N; detectors yield the outcome 1,

etc. One specific measurement outcome is defined by
(ko,15---,ko,n),
0 for 1 <n < Ny,
1 for N0+1§7’L§N0+N1,
kon = (6)

K fOI‘ N0++NK_1+1SHSN,

which results in (No, ..., Ng), where the total number
of detectors is N = Ny +---+ Nk . This specific example
can be used to represent all similar outcomes as we will
show now. The (ky,...,ky) for the same combination
(No, ..., Nk) can be obtained from (ko o1y, - -, ko,0(N))
via a permutation o € Sy of the elements. Here Sy de-
notes the permutation group of N elements which has a
cardinality of N!. Note that all permutations ¢ which
exchange identical outcomes result in the same tuple.
This means for the outcome defined in Eq. (6) that
(ko,0(1)s - - - » ko,o(v)) = (Ko1,-- -, kon) for any permuta-
tion of the form o € Sy, X -+ x Sy,. Therefore, the
POVM element for a given (Ny, ..., Nk ) can be obtained
by summing over all permutations o € Sy of the POVMs
of individual outcomes 7y, , -+ - Tk o ¢ [Eq. (5)] while cor-
recting for the No! - - - Ng! multi-counts. More rigorously,
we can write

1 Z 7 m
= Mo oy " Tho oin -
No!--- Ng! = 0,0(1) 0,0(N)
c€eSN

(... Nx)

(7)

where relations of the form :ABA: = :A2B: have been
used.
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In conclusion, we get for the detection layout in Fig. 1
the click counting statistics of a state p as

C(No,...,.Nk) = U[ﬁﬁ(No,...,NK)}

:<:No = >

I Ng!

which is a normally-ordered version of a multinomial
statistics. Using the Glauber-Sudarshan representation,
we can also write

(8)

‘ N
C(NoswoNic) = / PPl g NG

X po(a)NO .. -pK(a)NK.

In this form, we can directly observe that any classical
statistics, P(«a) > 0, is a classical average over multino-
mial probability distributions; see also [1].

In this section, we derived the click-counting statis-
tics (8) for unspecified POVMs of the individual detec-
tors. This was achieved by using the properties of a well-
defined optical multiplexing scheme. We solely assumed
that the NV detectors are described by the same K + 1
POVMs. Hence, the resulting full detection scheme was
shown to result always in a quantum version of multino-
mial statistics. This also holds for an infinite, countable
(K = |NJ]) or even uncountable (K = |R|) set of out-
comes, for which any measurement run can only deliver
a finite sub-sample. For coherent light |ag), the statistics
actually becomes a true multinomial probability distribu-
tion; see Eq. (9) for P(a) = é(a — ap). In the case of a
binary outcome, K + 1 = 2, we get the binomial distri-
bution which has been derived and generalized in Refs.
[9, 72] and applies, for example, to avalanche photodi-
odes in the Geiger mode. In contrast to our work [1], we
used here a full quantum-optical approach to derive the
general form of the click statistics.

(9)

IIT. NONCLASSICALITY CRITERIA

Our click-counting model (8) describes a multiplex-
ing scheme and employs arbitrary detectors. It is based
on normally ordered expectation values of the form
(g™ - :). Hence, we can formulate nonclassical-
ity criteria in terms of such moments. For this reason,
let us recall that any classical state obeys [73]

cl. A
0< ¢ff). (10)
We expand f = Zmn-‘—~~+7n1<§N/2 fmo ----- myg ﬁ.(")”o e ﬁ—y(LKa

which is chosen such that it solely includes the operators
that are actually measured. Therefrom, we get

TS
mo+---+myg <N/2
m6++’m/K§N/2

. Am0+m[, AmK-Hn}( .
<'7T0 T . fm(’],...,m}(

f*
mMQ,.. s MK

(11)

X

=fTMF,



with a vector fz (frmosoymi ) (mo,...;mic)» USing a multi-
index notation, and the matrix of normally ordered mo-
ments M, which is defined in terms of the elements
<_ﬁ_mg+m6 L 7Az_miqurm’K:>.

0 As the non-negativity of the
above expression holds for classical states and for all co-
efficients f, we can equivalently write: A state is non-
classical if

04 M. (12)

Also note that the total power of (:7%(7)7“'4'7"6 . ~7%}?K+m/K )
is bounded by the number of individual detectors, N >
mo+---+mg+my+---+ml as the measured statistics
(8) only allows for retrieving such powers.

It can be also shown (Appendix A in Ref. [74]) that
the matrix of normally ordered moments can be equiva-
lently expressed in a form that is based on central mo-
ments, (:(Asg)™0F™0 ... (A )™< k). For instance
and while restricting to the second-order submatrix,
we get nonclassicality conditions in terms of normally-
ordered covariances,

0 ZM® = ((AR AR 0.k

{(:(A%g)2%:) . (:(A7) (ATk):) (13)
(AR (DRK) .. ((AFk)2)
Additionally, the relation (:7g:) = 1 — [(:7g:) + -+ +

(:7tge_1:)] implies that the last row of M(?) is linearly de-
pendent on the other ones. This further implies that 0
is an eigenvalue of M), Hence, we get for any classi-
cal state that the minimal eigenvalue of this covariance
matrix is necessarily zero.

In order to relate the considered nonclassicality criteria
to the measurement of the click-counting statistics (8), let
us consider the generating function which is given by

No

_ Nk

9(z0y---,2N) 2

>

No+-+Ng=N

= <1 (zofto + - - + 25 7)Y :> )

The derivatives of the generating function relate the mea-
sured moments with the normally-ordered ones,

O,Z;O T 82:(9(307 L] ZK)|20:...:2K:1
= C(No,...,Nk) — 7 — ]
NottNg=N (NO mo). (NK mK).
:(NO)mn T (NK)mK
= (N)mo+<--+mK <:7?('[T)nD n ﬁ-xK :> (15)

formo+---+mg < Nand (2)y, =z(xz—1)--- (z—m+
1) = x!/(z — m)! being the falling factorial. The facto-
rial moments (No),,,, - (Nk),,, can be directly sampled

mo

13

from the measured c(y,,... n)- With the above relation
(15), they can be also connected to normally-ordered mo-
ments which are needed for our nonclassicality tests.

As an example and due to its importance, let us focus

on the first and second order moments in detail. We
obtain
. N A NN — 611 Nio
) = — and (: = ————"—" 16
(7e:) = <7 and (Txfer) NV = 1) (16)
for k, k' € {0,..., K}. Hence, our covariances are alter-

natively represented by

NANANy — Ni, (Ng oo — Ni)
N2(N —1)

<AﬁkAﬁkr>
(17)

As the corresponding matrix (13) of normally ordered
moments is non-negative for classical states, we get

cl.
0 <N*N - 1)M®

= (NANR ANy = Ni [Nopr = Nirl) oo -

The violation of this very constraint for classical states
has been experimentally demonstrated for the generated
quantum light [1].

Let us consider some special cases of the above cri-
terion. In particular, let us study the projections that
result in a nonclassicality condition

fTM®f <o (19)
[cf. also Egs. (10) and (11)]. Note that M® is
a real-valued and symmetric (K + 1) x (K 4+ 1) ma-
trix. Thus, it is sufficient to consider real-valued vectors
f: (fo,..., fx)T. Further on, let us define the opera-
tor :fi: = fo:7o: + -+ + fx:TKk:. Then, we can also read
condition (19) as

(:(Ap)*) <. (20)
This means that the fluctuations of the observable :ji:
are below those of any classical light field. In the follow-
ing, we consider specific choices for f to retrieve different
nonclassicality criteria.

a. Sub-multinomial light. The minimization of (19)
over all normalized vectors yields the minimal eigenvalue
Qumuiti of M® | That is
FTMOF = frM® f,

Qmulti = ch;ﬂll;l (21)

FfTi=1

where fé is a normalized eigenvector to the minimal
eigenvalue. If we have M®) # 0, then we necessarily get
Qumuiti < 0. For classical states, we get Qi = 0; see the
discussion below Eq. (13). As this criterion exploits the
maximal negativity from covariances of the multinomial
statistics, we refer to a radiation field with Quu < 0 as
sub-multinomial light. This method has been applied in
Ref. [1] (see also Appendix A for the error estimation).



b. Sub-binomial light. We can also consider the vec-
tor f = (0,1,...,1)T. This yields :fu: = 1 — :7:. Hence,
we effectively reduce our system to a detection with a
binary outcome. Using a proper scaling, we get

(N-1)f"M®F N(ABZ-NB+B
(:frotilB;(:frO:)) (N - B)B (22)
:NFEN )—B—) — 1= Quin,
with B = Ny +--- + Ny = N — Ny and using Eq.

(17). The condition Qpi, < 0 defines the notion of sub-
binomial light [66] and is found to be a special case of
our general relation.

c. Sub-Poisson light. Finally, we study the criterion
(19) for a vector f = (0,1,...,K)T. We have :ji:
ZkK:O k:7y: and we also define

K
A=Y kN (23)
k=0
Their mean values are related to each other,
K —  —
N, A
— == 24
ImLINSE -

We point out that Nj /N can be also interpreted as prob-
abilities, with N = Ny +---+ Ng = Ny + --- + Ng.
Further, we can write the normally-ordered variance in
the form

FTMOF = ((aw?) (25)
_(@4p-14
TNV )
(PR - (TEE) - (T k%)

N-1

We can now conclude that

(:(?5;2:> _ QPO;:?%MS’ with Opeye — (A§)2 .
K Ny K Ni 2
and Q.. = (Zk:O k2NW) - (Zk:O kNW) _ 1. (26)
Pois (ZkK:O k%) 5

The parameters mes relate to the notion of sub-Poisson
light [16]. However, we have a difference of two such
Mandel parameters in Eq. (26). The second parame-
ter Qp,;s can be considered as a correction, because the
statistics of A is only in a rough approximation a Poisson
distribution. Let us clarify this.

Let us assume a detector that allows for the resolu-
tion of K = oo measurement outcomes, which are re-
lated to measurement operators of a Poisson form, :7}: =

14

:f‘ke*f:/k! [61], where T' = 7 is an example of a linear
detector response function (7 quantum efficiency). Using
the definition (3), we get :7tg: = :(I'/N)*e~T/N:/k!, where
the denominator N accounts for the splitting into N
modes [72]. This idealized model yields (::) = (:(T'/N):)
and

k=0

(:12:

+uandﬁz

N:
2Me
kN

=2

(T2:) 4 (:I).

Hence, we have Qpois = (:(AT
2

CAW™)
()
Thus, we have shown that for photoelectric detection
models, we retrieve the notation of sub-Poisson light,
Qpois < 0, from the general form (26), which includes
a correction term.

In this section, we formulated nonclassicality tests
which are designed such that they can be directly sam-
pled from the data obtained from the measurement lay-
out in Fig. 1. Especially, we focused on the second-order
nonclassicality probes. In the following, we will apply
them to our data. We will compare the cases of sub-
multinomial [Eq. (21)], sub-binomial [Eq. (22)], and
(corrected) sub-Poisson [Eq. (26)] light. Before doing
this, we describe the experiment and study some non-
trivial features of our individual detectors.

- _QPms

IV. EXPERIMENT

7 sringlcr step
multiplexing

TES 1

i source

heralding
TES

PBS | 50/50 TES 2

PDC

FIG. 2. (Color online) Schematic setup. A parametric down-
conversion (PDC) source emits photon pairs which are sep-
arated with a polarizing beam splitter (PBS). Conditioned
on the measurement outcome of the heralding TES, different
photon-number states are produced. A single multiplexing
step is realized by splitting the photon states on a balanced
50/50 beam splitter and subsequently we detect them with
two TESs.

An outline of our setup is given in Fig. 2. It is di-
vided into a source that produces heralded photon states
and a detection stage which represents one multiplexing
step. In total, we use three superconducting TESs. For
generating correlated photons, we employ a spontaneous
parametric down-conversion (PDC) source. In this sec-
tion, we describe the individual parts in some more detail.



a. The PDC source. Our spontaneous PDC source
is a waveguide-written periodically poled potassium ti-
tanyl phosphate (PP-KTP) crystal which is 8 mm long.
The type-II spontaneous PDC process is pumped with
laser pulses at 775 nm and a full width at half maximum
(FWHM) of 2nm at a repetition rate of 75kHz. The
heralding idler mode has a horizontal polarization and
it is centered at 1554nm. The signal mode is vertically
polarized and centered at 1546 nm. A PBS spatially sep-
arates the output signal and idler pulses. An edge filter
discards the pump beam. In addition, the signal and
idler are filtered by a 3nm bandpass filters. This is done
in order to filter out the broadband background which
is typically generated in dielectric nonlinear waveguides
[75]. In general, such PDC sources have been proven to
be well-understood and reliable sources of quantum light
[76, 77). Hence, we may focus our attention on the em-
ployed detectors.

b. The TES detectors. We use superconducting
TESs [30] as our photon detectors. These TESs are
micro-calorimeters consisting of 25 um x 25 ym x 20 nm
slabs of tungsten located inside an optical cavity with a
gold backing mirror designed to maximize absorption at
the desired wavelengths. They are secured within a ce-
ramic ferule as part of a self-aligning mounting system,
so that the fiber core is well aligned to the center of the
detector [78]. The TESs are first cooled below their tran-
sition temperature within a dilution refrigerator and then
heated back up to their transition temperature by Joule
heating caused by a voltage bias, which is self-stabilized
via an electro-thermal feedback effect [79]. Within this
transition region, the steep resistance curve ensures that
the small amount of heat deposited by photon absorption
causes a measurable decrease in current flowing through
the device. After photon absorption, the heat is then
dissipated to the environment via a weak thermal link to
the TES substrate.

To read out the signal from this photon absorption pro-
cess, the current change—produced by photon absorption
in the TES—is inductively coupled to a superconducting
quantum interference device (SQUID) module where it
is amplified, and this signal is subsequently amplified at
room temperature. This results in complex time-varying
signals of about 5 us duration. These signals are sent to
a digitizer to perform fast analogue-to-digital conversion,
where the overlap with a reference signal is computed and
then binned. This method allows us to process incoming
signals at a speed of up to 100 kHz.

Our TESs are installed in a dilution refrigerator oper-
ating at a base temperature of about 70 mK and a cooling
power of 400 pW at 100 mK. One of the detectors has a
measured detection efficiency of 0.9870 92 [80]. The other
two TESs have identical efficiencies within the error of
our estimation.

c. Detector response analysis. Even though we will
not use specific detector characteristics for our analysis of
nonclassicality, it is nevertheless scientifically interesting
to study their response. This will also outline the com-
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plex behavior of superconducting detectors. For the time
being, we ignore the detection events of the TESs 1 and
2 in Fig. 2 and solely focus on the measurement of the
heralding TES. In Fig. 3, the measurement outcome of
those marginal counts is shown. We can see that we can
resolve the bins k € {0,...,11} (cf. also [1]). The distri-
bution around the peaked structures can be considered
as fluctuations of the energy levels (indicated by vertical
dark green, solid lines). We observe that the difference
between two discrete energies F,, is not constant as one
would expect from E,, 1 —FE,, = hw, which will be treated
in the next paragraph. In addition, the marginal photon
statistics should be given by a geometric distribution for
the two-mode squeezed-vacuum state produced by our
PDC source; see Appendix B. In the logarithmic scaling
in Fig. 3, this would result in a linear function. However,
we observe a deviation from such a model; compare light
green, dashed and dot-dashed lines in Fig. 3.

108 : : :
K=11
105_
104_
E
1=t L
5 1000
I}
]
100
10 o — [} ™ <+ o © I~ 0 D
I O | N R T R |
700000 800000 900000 1.0x10% 1.1x10%  1.2x108
energy (arb. units)

FIG. 3. (Color online) The counts of the heralding TES (solid,
gray curve). Maxima for all K = 11 bins are shown as bullets.
The dark vertical lines give the energy levels of the maxima.
A nonlinear regression (log,,y = az?® + bz + ¢; dot-dashed
line) and its tangent at the first maximum (dashed line) are
additionally shown.

This deviation from the expected, linear behavior
could have two origins: The source is not producing a
two-mode squeezed-vacuum state (affecting the height
of the peaks). Or the detector, including the SQUID
response, is not operating in a linear detection regime
(influence on the horizontal axis). To counter the lat-
ter point, the measured energies F and the position of
the peaks—considered to be the photon numbers n—
have been fitted by a quadratic response function n =
aE? + bE + ¢; see the inset in Fig. 4. As a result of
such a calibration, the peaked structure is well-described
by a linear function in n for the heralding TES as shown
in Fig. 4 (top), which is now consistent with the theo-
retical expectation. The same nonlinear transformation
also yields a linear n-dependence for the TESs 1 and 2
(cf. Fig. 4, bottom). Note that those two detectors only
allow for a resolution of K 4+ 1 = 8 bins and that these
two detectors have indeed a very similar response—the



depicted linear function is identical for both. In conclu-
sion, it is more likely that the measured nonlinear behav-
ior in Fig. 4 can be assigned to the detectors; and the
PDC source is operating according to our expectations.

heralding TES
3 \/\/

0

T

900000
800000
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log;(counts)
N

A N : IIJ“
7 8 9 10 11 12 13 14
number

TES 2

012
photon number

34567

FIG. 4. (Color online) A possible assignment between the
measured counts and the photon number estimate is shown
for all TESs. As an example, the curve in the dashed box
serves as the conversion from the measured energies of the
heralding TES (points depict the maxima from Fig. 3). This
conversion yields an almost exponential (log,qy = ax + b,
light green lines) decay of the counts as it is expected for the
geometric statistics.

As we discussed initially, we encountered an unex-
pected, nonlinear behavior of our data. To correct for
this, we use the fact that the marginal photon-number
distribution of our source is an exponential one to make
some predictions about the detector response in a par-
ticular interval. However, a lack of such extra knowledge
prevents one from characterizing the detector or from
eventually concluding nonclassicality. Here, we have for-
mulated detector-independent nonclassicality tests to cir-
cumvent this deficiency. They are accessible without any
prior detector analysis and thereby we also avoid a time-
consuming detector tomography.

d. Measured coincidences. In addition, an example
of a measured coincidence statistics for outcomes (k1, k2)
is shown in Fig. 5. There, we consider a state which is
produced by the simplest conditioning to the Oth bin of
the heralding TES (cf. Fig. 2). Based on this plot, let us
briefly explain how these coincidences for (k1, k2) result
in the statistics c(n,,...,ny) for (No, ..., Nk) and K =T.
The counts on the diagonal, ky = ko = k, of the plot
yield ¢(n,,...,ny) for Ny = 2 and Ny = 0 for k' # k. For
example, the highest counts are recorded for (kq,k2) =
(0,0) in Fig. 5 which gives c(2,0,...,0) when normalized to
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all counts. Off-diagonal combinations, k1 # ks, result in
¢(No,...,Nx) for Ng, = Ni, = 1 and N = 0 otherwise. For
example, the normalized sum of the counts for (ki, ks) €
{(0,1),(1,0)} yields c(1,1,0,...,0)- As we have N = 2 TESs
in our multiplexing scheme and No+---+Ng = N, these
two cases already define the full distribution c(n,,... ny)-
The asymmetry in the counting statistics between the
two detectors results in a small systematic error < 1%;
cf. also Appendix A. One should keep in mind that the
counts are plotted in a logarithmic scale. For all other
measurements of heralded multi-photon states, this error
is in the same order.

coincidence counts
e N=2 K=T
L]

heralding bin 0

e 1.75 x 108 data points

0.7% systematic error

~ e
— wn
2
g
43
=
(=]
2 &
=
< S )

FIG. 5. (Color online) One example of measured coincidence
counts is shown. k, (n = 1,2) is the number of the bin for
which the count was recorded. Some additional information
on the statistics are given in the inset. The depicted state is
produced by heralding on the Oth bin of the heralding TES
in Fig. 2.

V. RESULTS OF THE DATA ANALYSIS
A. Heralded multi-photon states

Now, we perform an analysis on the first measured
states to identify photon-number-based nonclassicality.
Note that in Fig. 3 of Ref. [1], we analyzed the nonclas-
sicality of this state in terms of condition (18). Here, let
us focus on the idea to relating our measurement to the
notion of sub-Poisson light, which has a convenient inter-
pretation in terms of the photon-number statistics—as
we will show. Moreover, in the next subsection, we will
also compare the different criteria for sub-multinomial,
-binomial, and -Poisson light.

We have already shown, in Sec. III (paragraph a.),
the connection of the operator :u: to the photon num-
ber statistics for the idealized scenario of photoelectric
detection POVMs, :i: = :I':/N = (n/N)n. Assuming
this simple detector response, we can relate—in this ideal



case—the quantities

n 2

N

n

(:i:) and (:(AR)2:) = 57

(:fz) = G(AR)%).  (29)

Recalling :7: = 7, we see that (:fi:) is proportional to
the mean photon-number in the approximation we ap-
ply here. Similarly, we can connect (:(Af)2:) to the
normally-ordered photon-number fluctuations. They are
non-negative for classical states and negative for sub-
Poisson light. In Appendix B, we show for such idealized
POVMs that we get for the heralding to the Ith outcome
from a two-mode squeezed-vacuum state,

l2) = V1-14P)_q"In) ® In), (30)
n=0
the following mean value and the variances:
iy = AT
(i) = -
2 (3 2 (31)
AR _n (A+10) f~l(l +1)
N2 (1—X)2 ’

with a transformed squeezing parameter A = (1 — 7j)|q|?
and 7] being the efficiency of the heralding TES. Note
that for A — 0, we get the /th Fock state |I) (also given
in Appendix B).

The results of our measurement are shown in the top
panel of Fig. 6. We directly sampled the quantities in Eq.
(16) from the measured statistics (see Appendix A for de-
tails on the error analysis), which yield the plotted quan-
tities (see also paragraph around Eq. (20) and paragraph
a. in Sec. III). The idealized theoretical modeling is ad-
ditionally shown in the bottom part of Fig. 6. On the
one hand, we do not observe nonclassicality when herald-
ing to the Oth bin, which is expected as we condition on
vacuum. On the other hand, we can observe nonclassi-
cality for the conditioning to higher bins of the heralding
TES. We have a linear relation between the normally or-
dered mean and variance of :fi:, which is consistent with
the theoretical prediction of the idealized model; see Eq.
(31). The higher the number of the heralding bin [, the
larger the value of (:fi:) as the mean-photon number of
Fock states increases with the number of photons, ap-
proximated by ! and (l|7|l) = I. The normally-ordered
variance of the photon-number for Fock states exhibits
also a linear decrease to larger negativities with [ (ideal
case (l|:(An):|l)) = —1). It is also obvious that the errors
for the verification of nonclassicality with this particular
test for sub-Poisson light, (:(Au)?:) < 0, are quite large
compared to Fig. 3 in Ref. [1]. We will discuss this
discrepancy in more detail in the next subsection.

Here, let us already emphasize that the nonclassicality
is verified with a single multiplexing step only. More-
over, we compared our data with a simple theoretical
model and characterized the operation of the individual
TESs in the previous section. We stress that our data
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FIG. 6. (Color online) The top panel shows the experimental
results of the analysis for the Ith heralded state (increasing [
from left to right and [ = 0,...,5). The bottom plot shows
the theoretical model for photon-number correlations [cf. Eq.
(29)]. The solid quadratic curves show the dependence for
varying A and fixed 0 < I < 5 (lighter for increasing ). The
dashed linear curves show the dependence for varying [ and
fixed 0 < A < 0.5 (lighter for increasing ).

processing neither needs nor uses any of this informa-
tion. Our verification of nonclassicality is independent of
the theoretical or reconstructed model of the TESs and
the modeling of the PDC source.

B. Varying pump power

So far, we have studied measurements for a fixed pump
power of the PDC process. However, it is known that the
quality of the heralded states depends on the squeezing
parameter, which is a function of the pump power. For
instance, in the limiting case of a vanishing squeezing,
we have the optimal approximation of the heralded state
to a Fock state. However, the rate of the probabilistic
generation of that state converges to zero in the same
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FIG. 7. (Color online) The results of our analysis are shown for different pump powers (increasing from top to bottom rows) as
functions of the heralding bin I. The first column shows the success rate [Eq. (32)] for generating the Ith multi-photon state.
The second, third, and fourth columns depict the sub-Poisson, sub-binomial, and sub-multinomial nonclassicality criteria in
Egs. (34), (35), and (36), respectively. For a better overview, dashed lines connect the individual data points.

limit (Appendix B). Hence, we have additionally gener-
ated multi-photon states for different squeezing levels and
analyzed their nonclassicality. The results are visualized
in Fig. 7 and will be discussed in the following.

Suppose we measure the counts C; for the [th bin of
the heralding TES. The efficiency of generating this /th
heralded state is simply given by

@)

Zz G

In our ideal model of a photon-number-resolving detec-
tor, we get from Appendix B that
- 1
1—|qf? ilql? )

1—1gl(1 =) (1 —lgl*(1 =)

That is, the efficiency decays exponentially with [ and the
decay is stronger for smaller squeezing or pump power,
also described by a decreasing |g|?. In the left column
of Fig. 7, we can observe this behavior. Note that the
heralding to I > 5 is not studied as the number of such
heralding events is too small for a proper statistical eval-
uation. It can be seen in all other parts of Fig. 7 that

Ngen = (32)

Tlgen = (33)
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Ngen influences the significance of our results. That is, a
smaller 7gen, value naturally implies a larger error. This
holds for increasing the heralding bin [ as well as for de-
creasing the pump power.

In the second column in Fig. 7, labeled as “sub-
Poisson”, we study the nonclassicality in terms of the
criterion

0> N3N -1DfTM?ffor f=(0,1,...,K)T (34)

as well as N = 2 and K = 7. As we discussed in Sec.
II1, this relates to the notation of sub-Poisson light, in-
cluding a correction term. Note that we use a different
normalization for convenience; compare to Eq. (18). The
third column in Fig. 7 shows the corresponding concept
of “sub-binomial” light. This is verified through
0>N2(N-1)f"TMPffor f=(0,1,...,1)T. (35)

The last column is labeled as “sub-multinomial”. It de-
picts the certified nonclassicality via the criterion
0>N3(N —1)f," M f, (36)

where f(; is a normalized eigenvector to the minimal
eigenvalue of M®.



For all notations of nonclassicality under study, the
heralding to the Oth bin is consistent with our expec-
tation of a classical state, which also confirms that no
fake-nonclassicality is detected. For instance, applying
the Mandel parameter to the data of this Oth heralded
stated without the corrections derived here [Eq. (26)], we
would observe a negative value; see also a similar discus-
sion in Refs. [9, 47]. The case of a Poisson or binomial
statistics tend to be above zero, whereas the multinomial
case is consistent with the value of zero. This expectation
has been justified below Eq. (13).

A lot of information on the quantum-optical properties
of the generated multi-photon (I > 0) light fields can be
concluded from Fig. 7. Let us mention some of them
by focusing on a comparison. We have the trend that
the notion of sub-Poisson light has the least significant
nonclassicality. This is due to the fact that the vector f
in Eq. (34) assigns a higher contribution to the larger
bin numbers. However, those contributions have lower
count numbers, cf. Fig. 5, which consequently decreases
the statistical significance. This effect is not present for
sub-binomial light, which is described by a more or less
balanced weighting of the different counts; see vector f
in Eq. (35). However, this vector is still a fixed one.
The optimal vector is naturally computed by the sub-
multinomial criterion in Eq. (36). The quality of the ver-
ified nonclassicality is much better than for the other two
scenarios of sub-Poisson and -binomial light in most of
the cases. Let us mention that the normalized eigenvec-
tor to the minimal eigenvalue of the sampled matrix M (?)
typically, but not necessarily yields the minimal propa-
gated error. The comparative analysis of sub-Poisson,
-binomial, and -multinomial light from a measurement
with a single detection device would not be possible with-
out the technique that has been elaborated in this work.
As mentioned earlier, a lower pump power allows for the
heralding of a state which is closer to an ideal Fock state,
which results in higher mean negativities for decreasing
pump powers. However, the heralding efficiency is re-
duced, which results in a larger error.

V1. SUMMARY

In summary, we constructed a detector-independent
theory for a multiplexing scheme that employs arbitrary
detectors for verifying nonclassicality of multi-photon
states. We formulated the quantum-optical theory of
such a detection layout. Further, we set up an experi-
mental realization and applied our technique to the data.

In a first step, the theory was formulated. We proved
that the measured click-counting statistics of such a
scheme is always described by a quantum version of the
multinomial statistics. Indeed, for classical light, we
demonstrated that this probability distribution can be
considered as a mixture of multinomial statistics. This
bounds the minimal amount of fluctuations which can
be observed for classical radiation fields. More precisely,
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the matrix of normally ordered moments, which can be
directly sampled from data, is lower bounded by zero in
such a scenario. As a particular example, the violation
of this classical constraint was discussed for the second-
order covariance matrix and it led to establishing the
concept of sub-multinomial light. It was also determined
that previous notions of nonclassicality, i.e, sub-Poisson
and sub-binomial light, can be considered to be special
cases of our general nonclassicality criteria.

In our second part, the experiment was analyzed. Our
source produces correlated photon pairs by a parametric-
down-conversion process. A heralding to the outcome of
a detection of the idler photons with a transition-edge
sensor produced multi-photon states in the signal beam.
A single multiplexing step was implemented with a sub-
sequent detection by two transition-edge sensors to probe
the signal field. The complex function of these detectors
was discussed by demonstrating their nonlinear response
to the number of incident photons. Consequently, with-
out worrying about this unfavorable feature, we applied
our detector-independent nonclassicality criteria to our
data. We verified the nonclassical character of the pro-
duced quantum light. The criterion of sub-multinomial
light was shown to outperform its Poisson and binomial
counterparts to the greatest possible extend.

In conclusion, we presented a supplementary study of
our approach in Ref. [1] by performing an investiga-
tion of the considered detection schemes in the frame
of quantized light fields. We generalized the method to
include higher-order correlations which become more and
more accessible with an increasing number of multiplex-
ing steps. In addition, details of our data analysis and a
simple theoretical model are presented in two appendices.
We believe that our developed approach to verify quan-
tum correlations with unspecified detectors without in-
troducing fake-nonclassicality will pave the way towards
the optical implementation of robust detection schemes
for future quantum technologies.
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Appendix A: Data analysis and error propagation

For the application of our approach, we study in this
appendix some data-analysis methods. Suppose we mea-
sure coincidence counts Cp, with k= (k1,...,kN) €
{0,..., K}V labeling the event that the nth detector
yields the measurement outcome k,. The total number
of counts is given by C' =) zll- Note that the
data analysis is performed in terms of such arrays Cf.
Therefore, we use this multi-index notation to formulate
this appendix to ensure reproducibility.

The numbers Np—mnumber of detectors that give the
outcome k—can be also arranged in the (K + 1)-

dimensional multi-index N = (N, ..., Ng). The rela-
tion to k is given by the following function:
V=u(k) =Y 4, (A1)
n
Wl’_{CI‘O €5, is the kth standard basis vector. Note that

= >, Ny = N. Then, the measured click-counting
statistics (8) is formally written as

e

EIV(E):N

C(No,...,Ng) = (’(]\7 =~ (AQ)

A particular example was considered in Fig. 5 together
with the discussion in paragraph d. of Sec. IV.

For a balanced splitting or multiplexing, all permuta-
tions P, k give the same count rates, C', » = Cj, where
P; is the operator which redistributes the componentb of
k according to the permutation 7 € Sy. Hence, the devi-
ation from this symmetry can be considered as a relative
systematic error,

Esys = §

TESN

I1C: = Cp zll
AL A
- (A3)

In combination with a relative statistical error ega; for
the estimate f of a quantity f, we have f = f(1+[estat +
Esys]) = [ £ AS.

In order the sample a quantity f, which is a function
of the number of coincidences N , we obtain

7= Zf CZf v(k))C

(A4)

(F2-7)/(C—

2 which gives the relative statistical error Estat =

):

The standard error of the mean is o(f) =
Y
a(f)/|f|. For example, we get for the moments f(N

N =T, N

(A5)

=11 (Zm >Wk

using Ny = & - v(k) [cf. Eq. (A1)] and the Kronecker
symbol §.
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Further note that a linear error propagation is favor-
able as the systematic error might exceed the statistical
error. For instance, a matrix M = M + AM and a given
vector f yields via a linearly propagated error

FiMf=fFiuf+|flfam|f, (A6)

-
where | - | acts component-wise on the vector f. See also

[47] for more details—especially for the case that f is an
eigenvector of M.

Appendix B: Theoretical Model

Let us analytically compute the quantities which are
used as our simple theoretical model for the physical
system under study. The PDC source produces a two-
mode squeezed-vacuum state (30) (]g|?> < 1), where the
first mode is the signal and the second mode is the
idler/herald. In our model, the heralding detector is sup-
posed to be a photon-number-resolving detector with a
quantum efficiency 7. A multiplexing and a subsequent
measurement with N photon-number-resolving detectors
(K = oo) are employed for the click counting. Each of
the photon-number-resolving-detector’s POVM elements
is described by

o /N
T il

In addition, we will make use of the relations :e¥”:

— 771ﬁ/N_

(B1)

(14 y)™ (cf., e.g., Ref. [81]) and
oF el vy —:(yn)F:,
yh k o (BQ)
78k z— 1”""z=0 :(Jk') e yn

For this model, we can conclude that the overall gener-
ating function for the two-mode squeezed-vacuum state
reads

(2, &) = (:el 177 @ (lIFI=11na/N

7)

1— |q|? (B3)

1= g1 =+ 72)(1 = n+llZ]/N)

where z € [0, 1] relates the heralding mode and the com-
ponents of # € [0,1]V (recall: |Z]| =3, zn) to the out-
comes of the N detectors in the multiplexing scheme.
From this generating function, we directly deduce the
different properties that are used in this work for com-
paring the measurement with our model. The needed
derivatives are

0kl (2, 7)

= 00" (2, %)
(n/N)al2=']" [ilq)2")’

[ — |2

(k+1—7)! {
JUEk + ) = 9)!

_ .
—(1 — [ql?)1tk! -

min{k,l}

>

Jj=0

1—[q|*a’2

IRZ

.



where k = ||K||, 2/ = 1—n+n||Z||/N, and 2’ = 1 —ij+7jz.
It is also worth mentioning that the case N = 1 yields
the result for photon-number-resolving detection without
multiplexing.

The marginal statistics of the heralding detector reads

_ 1 -
1= 50.0(2, )| :=0.01 = =an =1

=
~ l
__ 1-]g? ( ilal® ) ()
1= g1 =m) \1—|ql?(1—17)
The marginal statistics of the nth detector is
1 o
kn'afzr(l7 1’) Tp=0,2=l=x1="=2p_1=Tp1="=TN
kn
. 1-]g ( nla®/N ) . (B6)
1—|ql*(1 =n/N) \1—|q]*(1 = n/N)

In addition, the case of no multiplexing (N = 1 and
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x = ¥) yields for the Ith heralded state the following first
and second normally ordered photon numbers:

1 I+ A

(:(nh):) —ﬁl“a@agr(z, Dleoam1 =15, (BY)
~\2 1 2 9l
<(77”) :> :ﬁll!ama,]zr(zvx”zzo,z:l
_ 2 U 1+ ). (B8)

(1=x)2

with A = (1—1)|q|2. The corresponding photon distribu-
tion (i.e., for n = 1) of the {th multi-photon state reads

1
Py k!
7{0 for k<,

M@ =Nt for k>1.
For A — 0, we have py|; = dx,; which is the photon statis-
tics of the lth Fock state.

8Izca/lzr(z7 ‘T) |z::1;:0

Drjl =
(B9)
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