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Abstract. In this study, an alloy phase-field model is used to simulate solidification

microstructures at different locations within a solidified molten pool. The temperature

gradient G and the solidification velocity V are obtained from a macroscopic heat transfer

finite element simulation and provided as input to the phase-field model. The effects of laser

beam speed and the location within the melt pool on the primary arm spacing and on the

extent of Nb partitioning at the cell tips are investigated. Simulated steady-state primary

spacings are compared with power law and geometrical models. Cell tip compositions are

compared to a dendrite growth model. The extent of non-equilibrium interface partitioning

of the phase-field model is investigated. Although the phase-field model has an anti-trapping

solute flux term meant to maintain local interface equilibrium, we have found that during

simulations it was insufficient at maintaining equilibrium. This is due to the fact that the

additive manufacturing solidification conditions fall well outside the allowed limits of this

flux term.

1. Introduction

Demand for improved strength and resistance to creep at elevated temperatures makes Ni

alloys suitable for aerospace and other industrial applications [1]. Recently, the laser powder

bed fusion (L-PBF) additive manufacturing process has been introduced in which near-

net metallic objects are produced from powder, in a layer by layer fashion with repeated

solidification and solid-state phase transformations, in a shorter manufacturing time and

with almost no finishing [2]. Solidification in this process controls the size and shape of the

grains, the growth morphology, the extent of microsegregation, and ultimately the properties

of the product. Therefore, understanding of the melt pool solidification behavior is essential.

‡ Corresponding author. Email address: supriyo.ghosh@nist.gov.



As the laser rasters across the powder bed, local regions begin to melt resulting in a

molten pool of certain dimensions (width and depth). The molten pool then undergoes a

solidification process driven by the resultant complex thermal history due to repeated passes

of the laser. Solidification begins along the back side of the moving melt pool boundary

at a location defined by the liquidus temperature of the given alloy. The microstructures

will vary, controlled by the local temperature gradient G, and solidification rate V and in

turn the cooling rate (Ṫ or GV ). A low V and high G exist at the bottom of the melt

pool whereas a higher V and lower G exist close to the melt pool surface. Moreover, in the

solidification environment generated by the laser melting process, V is found to be far more

important than G [3]. With this motivation, two primary components of cellular/dendritic

growth are illustrated: primary arm spacing and microsegregation.

For additive manufacturing, materials strength is related to the cell/dendrite spacing

and microsegregation. There have been several studies performing experiments [2, 4–8] and

simulations [9–14] regarding microstructural features in additive Ni-Nb alloys. However, the

primary arm spacing and the microsegregation across the cells/dendrites have not received

much attention. In addition, the solidification conditions, G, V and Ṫ , considered in

prior work are relatively small-valued, whereas the present work treats larger values of the

above solidification conditions to be applicable to additive manufacturing. Therefore, the

characteristics of the parameter-microstructure map are expected to be different than those

reported in the existing literature. Many theoretical approaches have been developed over

the past decades on the basis of a predefined shape of an isolated cell/dendrite to estimate

the primary arm spacing λ1 with the solidification parameters [15,16]: λ1 = AGmV n, where

A is an alloy constant and m and n are the model-dependent exponents. However, in additive

manufacturing applications, these approximations are less valid due to the complex nature

of the diffusion fields around the cells/dendrites at high solidification rates. Despite these

limitations, the present work is compared with these theoretical estimates for reference.

During solidification, solute gets partitioned between solid and liquid phases to reach

the equilibrium compositions corresponding to the phase diagram. Interestingly, while at low

velocities the above partitioning is in equilibrium, at intermediate to high velocities solute

redistribution is not complete and thus solute compositions across interface do not follow

the phase diagram [17–19]. Microstructures presented in this work are for intermediate to

rapid cooling rates with the solidification velocities more than 1 cm s−1 [3]. Therefore,

to reflect this in the processing-microstructure map, solidification parameters are modified

from equilibrium to velocity-dependent values [3, 10]. Microstructure evolution with non-

equilibrium interface partitioning has received little attention, but it is important to consider

for the laser powder deposition process [3, 10].

Due to the high temperature and small volume of the molten pool, in situ measurements

of the solidification conditions are difficult. Numerical simulations of the laser deposition

process is a viable alternative to obtain local solidification conditions. For this purpose, a
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3-D heat transfer Finite Element Analysis (FEA) code is used to obtain melt pool shapes as

well as temperatures. For the microstructure simulations, a phase-field method is employed.

This method has become a popular choice over the past few decades to study solidification

problems [20–25]. In this method, a scalar-valued order parameter field φ is introduced to

distinguish the constituent phases in a microstructure: if liquid is defined by φ = -1 and

solid by φ =1, then the (diffuse) interface is described by −1 < φ < 1, and the position of

the interface can be taken as the φ = 0 contour. Therefore, explicit tracking of the interface

is no longer needed, and we can simulate complex liquid-solid interfaces in an efficient way.

Despite the advantages of the phase-field method, it still requires considerable computation

time.

The objective of this study is twofold. First, to perform FEA simulations to determine

actual solidification conditions in the melt pool and, second, to perform phase-field

simulations using the above conditions to calculate the sizes and the concentrations of the

dendrite cells for Ni-Nb, a binary approximation of a Ni-based superalloy. In section 2,

we describe the FEA and phase-field simulation methods, parameters, and procedures. In

section 3, FEA results are analyzed to obtain the local solidification conditions and used

for phase-field solidification microstructure predictions. In the phase-field results, primary

arm spacing, concentration profile around the tip, and the extent of microsegregation are

determined. Finally, a summary is outlined along with a possible outlook in section 4.

2. Simulation Methods

A macroscopic heat transfer code is used to simulate melt pool thermal history profiles.

Subsequently, a phase-field method is used to simulate solidification microstructures under

the obtained thermal profiles.

2.1. Macroscopic heat transfer model

Using the commercial FEA code ABAQUS [26], § a non-linear, transient, thermal model is

designed and implemented to obtain the global temperature history generated during laser

irradiation of one layer of powder deposited on a solid substrate. Inconel 718 alloy (IN718)

is used for the powder as well as the substrate properties in the simulation. A single-

track laser scan across a layer of loose metal powder with thickness 36 µm is modeled. To

reduce computational time, the elements that interact with the laser beam are finely meshed

within the diameter of the laser beam, and a coarse mesh is used for the surrounding loose

powder and the substrate (refer to figure 1). The temperature distribution T throughout

§ Certain commercial equipment, instruments, or materials are identified in this paper in order to specify

the experimental procedure adequately. Such identification is not intended to imply recommendation or

endorsement by NIST, nor is it intended to imply that the materials or equipment identified are necessarily

the best available for the purpose.
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the substrate and the powder, as a function of time t, is determined by solving a transport

equation for thermal energy as follows [27]:

∇ · (κ∇T ) +Q =
∂(ρcpT )

∂t
, (1)

where κ is the thermal conductivity, Q is the heat source (heat of melting/solidification), cp
is the specific heat capacity and ρ is the density. The initial condition assumes a uniform

temperature of 352 K in the powder and the substrate at time t = 0. For the boundary

conditions, heat input from the laser qs, heat loss via external convection and radiation are

considered at the top surface via

κ(−∇T · N̂) = qs + h(T − Ta) + εRσR(T 4 − T 4
a ). (2)

Here Ta is the ambient temperature, N̂ the vector normal to the surface, h the convective

heat transfer coefficient, εR the thermal radiation coefficient and σR the Stefan-Boltzmann

constant.

The transient thermal profile is computed by ABAQUS based on the material properties

input and the boundary and initial conditions applied. In this case, heat input on the top

surface is simulated using a surface heat source moving along the x direction obeying a

Gaussian distribution [28],

qs =
2ηP

πr2b
exp

(
−2r2

r2b

)
, (3)

where P is the total laser power, η is the power absorption coefficient, rb is the laser beam

radius and r is the radial distance to the beam centerline. The values of these parameters

are listed in table 1. Other types of heat source models have also been used to describe

the laser melting process, such as moving point, line or plane heat sources proposed by

Rosenthal [29, 30], or a double ellipsoidal volumetric heat source proposed by Goldak et

al. [31]. It should be noted that those heat source equations can also be solved analytically

using the same laser processing parameters to predict the temperature distribution in a

molten pool [30–33]. Moreover, since the shape of the simulated melt pool is not as complex

as in keyhole mode melting and the layer thickness of powders is very small (36 µm),

a Gaussian distribution can be used to describe the melt pool shape approximately, as

suggested in [34,35].

Table 1: Laser processing parameters used in the FEA simulations.

Laser Power, P 195 W

Laser scan speed, V 0.8 m s−1

Laser beam radius, rb 50 µm

Absorption coefficient, η 0.5
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The overall powder quality depends on the packing density and particle characteristics,

such as size distributions, size ratios and surface morphologies, which in turn determine

the morphology and properties of the final additively manufactured parts [36]. The initial

powder packing density, given by the ratio of local density of the powder to the density

of the bulk solid, is estimated as 50% for the present simulations. Powder density linearly

increases from powder to bulk values as the T rises from the solidus temperature Ts to

the liquidus temperature Tl given by the IN718 phase diagram predicted by CALPHAD-

based thermodynamic calculations [37, 38]. Above Tl, the initial powder-state elements are

irreversibly changed to bulk-state elements. Thermal conductivity κ of the powder bed

depends not only T , but also on the packing fraction, particle size distribution, particle

morphology, and thermal conductivity of the bulk material and surrounding gas [39, 40].

As a first approximation, the present work treats κ as a function of T only. All the above

changes are performed by the ABAQUS user subroutine. For details, please refer to [41,42].

The CALPHAD approach can be used to accurately predict thermodynamic properties,

particularly for additive manufacturing applications, by studying the solidification behavior

of multicomponent alloys. The T -dependent bulk material density, latent heat and specific

heat are calculated under local equilibrium conditions by feeding the nominal IN718 powder

composition as an input to the built-in module of the Thermo-Calc software [38] which uses

the TCNI version 8 thermodynamic database [37]. This database is generally considered

accurate for Ni-based superalloys research. A recent review on coupling of CALPHAD

approach to 3-D FEA can be found in [43].

L-PBF is a complex process where a wide range of transient non-equilibrium physical

phenomena take place within the molten pool. Some of these factors are viscous forces,

buoyancy forces, melt convection, Marangoni convection, evaporation cooling and recoil

pressure [44, 45]. The present model ignores the above physics for simplicity. We do not

consider the formation of topographic depressions in the melt pool as in keyhole mode

melting, which appears due to the spatter ejection during deep penetration of the incident

very high power laser beam [46]. We ignore any formation of oxide layers in the powder

particles. For a system with low to moderate power density of the laser beam and very small

thickness of powder layers, the underlying assumptions may be appropriate, as suggested

in [34,35]. However, for accurate modeling of the melt pool, the above multiphysics need to

be included, although it may be computationally expensive.

2.2. Mesoscopic phase-field model

For the phase-field simulations, we use a quantitative alloy phase-field model presented by

Echeberria et al. [47]. This model is formulated in the thin-interface limit to remove the

interface thickness dependencies resulting in a faithful description of the (non-conserved)

phase-field φ and the (conserved) composition field c during solidification of a dilute binary
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alloy. An anti-trapping current was introduced [47,48] in this model to avoid spurious solute-

trapping effects arising from thick diffuse interfaces at low solidification velocities. However,

as shown below, the model does not prevent solute-trapping at high velocities. The effects of

convection are not considered in this model and thus the solute is transported in the liquid

by diffusion only. Referring to the fields φ and c, the equations of the model in 2-D are given

by

τ0a(θ)2
∂φ

∂t
= W 2

0∇ ·
[
a(θ)2∇φ

]
− ∂

∂x

[
a(θ)a

′
(θ)

∂φ

∂y

]
+

∂

∂y

[
a(θ)a

′
(θ)

∂φ

∂x

]
+φ− φ3 − λ

1− ke
(1− φ2)2

[
eu − 1 +

T − T0
mlc0/ke

]
, (4)

and

∂c

∂t
= ∇ ·

([
1− φ

2
Dl +

1 + φ

2
Ds

]
{1 + ke − (1− ke)φ}

c0
ke
∇eu +

W0

2
√

2
(1− ke)

c0
ke
eu
∂φ

∂t
n̂

)
. (5)

Equation 4 couples bulk thermodynamics with interface effects. a(θ) = 1 + ε cos(4θ)

represents the two-dimensional fourfold anisotropy at the solid-liquid interfaces with strength

ε, θ = arctan (∂yφ/∂xφ) is the angle between the interface normal and the x direction in the

lab frame of reference. a
′
(θ) denotes the derivative of a(θ) with respect to θ. c0, ml and

ke are thermophysical properties of the material and, for a dilute alloy, they are nominal

composition, liquidus slope and equilibrium partition coefficient, respectively. ke = cs/cl,

where cs and cl are the equilibrium compositions on the solid and liquid side of the interface,

respectively. u is a dimensionless chemical potential given by: ln
(

2cke/c0
1+ke−(1−ke)φ

)
. A frozen-

temperature approximation is applied in which an imposed temperature gradient G is

translated along the y (growth) axis with a constant speed V following T = T0 +G(y− V t),
where T0(y = 0, t = 0) is a reference temperature.

In equation 5, the first term inside parentheses represents a Fickian diffusion flux and

the second term is the anti-trapping current. Ds and Dl are the diffusivity of solute in solid

and liquid, respectively. n̂ = ∇φ/|∇φ| is the unit vector normal to the interface.

There are three characteristic parameters in this model, W0: the interface thickness, τ0:

the phase-field relaxation time, and λ: a dimensionless coupling constant. These parameters

are linked to the physical quantities by two relations: one via chemical capillary length

d0 = a1W0/λ and the other via setting the interface kinetics to zero to maintain the local

equilibrium at the interface yielding τ0 = a2λW
2
0 /Dl. The constants a1 and a2 are given by

a1 = 0.8839 and a2 = 0.6267 [48]. This way, W0 becomes the only free parameter which is

chosen depending on the scale of the simulated microstructures. Although we are assuming

negligible interface kinetics, we note that in the intermediate to rapid solidification regime,

we cannot expect such an assumption to be completely valid. At present, the authors are not

aware of any atomistic level simulations that can offer realistic values of the interface kinetic
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coefficients for Ni-Nb or any Ni-based superalloys. As a first approximation to understand

and examine the consequences of that assumption on the microstructure evolution in these

alloys, we assume zero interface kinetics.

2.3. Simulation procedures

For the phase-field simulations, phase-field (equation 4) and concentration (equation 5)

equations of motion are solved on a uniform mesh, using a finite volume method and an

explicit time marching scheme. Zero-flux boundary conditions are applied on both φ and c

fields in all directions. The size of the simulation box in the (y) growth direction is taken

as 40 µm, which is at least 150 times the diffusion length Dl/V , and varying domain sizes

are used in the x-direction ranging from 5 µm to 10 µm depending on the fineness of the

simulated cellular structures. For each simulation, a grid spacing of ∆x = ∆y = 0.008 µm is

used. A maximum time-step of ∆t = 0.003 µs is found to be numerically stable for the present

calculations. The maximum phase-field interface thickness W0 used is 0.01 µm, yielding λ =

1.377. Note that this value of W0 is roughly 10 times smaller than the dendrite tip radius

calculated by a sharp-interface model for the same parameters.

Each simulation is initialized with a thin layer of solid of height 0.05 µm from the bottom

of the simulation box with an initial Nb composition of kec0 in the solid and c0 in the liquid.

Random, small amplitude perturbations are applied at the initial solid-liquid interface.

Stable perturbations have been found to grow with time and break into steady-state cellular

structures. At this stage, cell tips grow at a constant temperature and at a constant velocity

equal to the solidification velocity. It should be noted that we have approximated the alloy

IN718 to be a binary Ni-5 % Nb ‖ in this study and the corresponding quasi-binary phase

diagram has nearly constant liquidus slope ml as well as partition coefficient ke [49]. The

possible formation of Ni3Nb in the intercellular regions is not treated in this paper. The

thermophysical parameters of the dilute Ni-Nb alloy are taken from Nie et al. [11] and listed

in table 2. The processing parameters, G and V in equation 4, are extracted from the melt

pool solid-liquid boundary given by the FEA simulations. This is further detailed in the

following section.

3. Results and Discussion

First, we present the macroscopic heat transfer simulation results to illustrate the

temperature distributions and to estimate the local solidification conditions (G and V ) at

different positions along the melt pool boundary. Following this, the local cellular patterns

at these locations are presented using phase-field simulations.

‖ Concentration is represented in mass fraction in the present paper.
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Table 2: Material properties used in the simulations, after [11].

Initial alloy mass fraction, c0 5 %

Equilibrium Partition Coefficient, ke 0.48

Liquidus Slope, ml -10.5 K %−1

Equilibrium Freezing Range, ∆T0 = Tl − Ts 57 K

Liquid Diffusion Coefficient, Dl 3× 10−9 m2 s−1

Solid Diffusion Coefficient, Ds 10−12 m2 s−1

Anisotropy Strength, ε 3 %

Capillary Length, d0 8.0× 10−9 m

Gibbs-Thomson coefficient, Γ 3.65× 10−7 K m

3.1. FEA simulations: Estimation of G and V

In FEA simulations, the laser surface treatment processing parameters (refer to table 1)

determine the solidification processing parameters G and V for a given alloy. While G

depends on the temperature profiles generated by the laser beam, V depends on the melt pool

geometry and the laser beam speed. The trailing edge of the melt pool is the solidification

interface. Its location is approximated by the location of the liquidus isotherm (refer to

figures 1 and 2). In experimental microstructures, these isotherms are represented by the

cell/dendrite tips, which grow perpendicular to the solid-liquid interface at a rate V . This

provides the microscopic link between the laser beam speed Vb with the local solidification

speed V . Moreover, it is evident in figure 2 that the shape of the melt pool is rarely

symmetric but tear-shaped. Due to the above geometrical requirements, V does not equal

Vb and varies along the solidification boundary. V increases rapidly from zero at the bottom

of the melt pool to a larger value at the rear of the melt pool interface following the equation:

V = Vb cosα, where α is the solidification angle measured between the normal of the solid-

liquid interface and the direction of laser travel.

G also varies along the solidification boundary from the bottom to the top of the pool.

For a particular position along this boundary, G is estimated by the magnitude of the gradient

along the Cartesian directions, G = |∇T | =
√

(∂xT )2 + (∂yT )2 + (∂zT )2, using the available

temperature values from the neighboring elements. Therefore, the solidification boundary

represents different G and V . Thus the microstructure within the solidified puddle also

varies with depth. We choose multiple microscopic volume elements along this boundary

with estimated G and V values, to be used for the following phase-field simulations. We

note that V varies between 0.01 m s−1 (α = 89◦) to 0.3 m s−1 (α = 68◦) along the melt pool

boundary. Similarly, G varies between 2.4× 107 K m−1 at the bottom to 0.14× 107 K m−1

at the top of the melt pool boundary. It should be noted that the magnitudes of V used

in this work are in the range of rapid solidification processing and, in this parameter space,
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G plays a minor role in the microstructure selection process [3, 5]. Therefore, we employ a

fixed value of G = 107 K m−1 for the phase-field simulations.

µ m

Direction

Laser

200

Figure 1: FEA simulated 3-D melt pool shape for the parameters in table 1. Here, different

colors represent different temperature zones, which are measured in Kelvin. Red represents

the liquid melt pool. In the FEA simulations, a specimen geometry of 5 mm× 2 mm× 2 mm

is used. A mesh of 10 µm × 10 µm × 6 µm is used to discretize the elements which interact

with the laser, with coarser discretization in the far field.

3.2. Phase-field simulations

3.2.1. General features It is well documented that for a given alloy composition or c0, G and

V control the interface morphology as well as the scale of the solidification microstructures.

There exist several criteria to examine if the evolving solidification interface will be planar

or dendritic. For a given alloy composition, the lower limit of this transition can roughly be

estimated by satisfying the constitutional supercooling criterion: Vcs = ∆T0/(GDl) . The

upper limit is given by the absolute stability criterion [50]: Vab = ∆T0Dl/(keΓ). The physical

meaning is that as long as V is below Vcs, the interface will grow as a planar front which

further breaks into cells/dendrites with increasing V , and for V > Vab, cells/dendrites will

be lost with re-establishment of the planar front. Thus, the essential interfacial features in

the microstructures are governed by the solidification velocities. Note that the solidification

velocities estimated from the FEA simulations are between Vcs = 0.0005 m s−1 < V < Vab
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Figure 2: A 2-D section cut along the centerline of the 3-D melt pool from figure 1. To

correspond with the Ni-5 % Nb phase diagram [49], red represents the liquid phase (L),

yellow represents solid and liquid coexistence (mushy zone) and cyan represents the solid

(fcc) γ phase. The solidification temperature isotherm is given by the boundary between red

and yellow. The local solidification conditions are estimated along this isotherm. It should

be noted that color scales are different in figure 1 and figure 2. While Tl = 1678 K exactly

corresponds to the red-yellow boundary of figure 1, Ts = 1621 K is interpolated from the

yellow band in figure 1.

= 1 m s−1.

The essence of cellular solidification from the phase-field simulations is as follows.

After an initial transient, Mullins-Sekerka instability [50] develops rapidly in the solid-liquid

interfaces resulting in the onset of cellular structures. There exist dynamic events like cell

merging/splitting at the intermediate stages of growth; however, after a certain stage, the

number of cells appearing in the simulation box remains the same and their large-scale

geometries (tip and trunk) do not evolve any more. At this stage, the cell tips grow at

a constant velocity equal to the solidification velocity and the temperature also remains

constant at the tips. This is called steady state. In figure 3, we present the simulated

cellular patterns at this stage. Three essential features can be seen in these structures.

First, the average distance between the tips of neighboring γ-cells remains constant, which is

documented as the primary dendrite arm spacing (PDAS). This is described in section 3.2.2.

Second, there is a significant Nb composition variation in the liquid ahead of the tips, between

the cells, and across the solid cells. Niobium is rejected into the liquid by the growing cells

and thus the intercellular regions become enriched. This is further described in section 3.2.3.

Third, circular droplets form in the cell grooves. In steady state, the average distance between

the cell tips and the grooves remains constant for a given alloy and processing conditions. To

maintain this solidification distance, Nb-rich droplets periodically pinch off from the bottom

of the cell grooves resulting in an array of circular pockets. These circular droplets, over

time, become highly enriched with solute and, given time, could transform to a secondary

phase. However, the dynamics and mechanisms of this are not considered, nor captured in

the present theory, since the binary model does not represent any phases beyond L and γ.

Similar features have been reported in experiments as well as in simulations [17,51–53].

10



y

µm1

x
(%

 N
b
)

C

A

B

(a) (b)

Figure 3: Steady-state cellular growth fronts for two different solidification conditions, are

presented using Nb composition map. Only growth fronts are shown here which have been cut

off the simulation domain. Color-bar represents the mass fraction of Nb. Growth direction

(y) is vertical. Three features are seen in these patterns: constant spacing beween the cells,

composition variation across the cells, and Nb-enriched droplet formations at the bottom of

cell grooves. Details of these features are explained in the text. In (a) Ṫ = 3 × 105 K s−1,

PDAS = 0.71 µm and in (b) Ṫ = 106 K s−1, PDAS = 0.23 µm. Cells are coarser in (a) than

(b) due to higher cooling rate. Note that Nb concentration variations along lines A, B and

C from (a) are used to study microsegregation in sec. 3.2.3.

3.2.2. Dendrite arm spacing The average PDAS from the simulated cellular patterns

is estimated by counting the number of cells appearing along the width of the systems

(perpendicular to growth direction or x direction) and then dividing by the system width.

For the solidification conditions simulated, PDAS obtained are in the range 0.14 µm to 1.6 µm.

Interestingly, Amato et al. [8] have also experimentally observed the cellular/dendritic

microstructures with PDAS between 0.5 µm to 1.0 µm in an IN718 alloy, when the same

laser processing parameters, as given in table 1, were used.

The simulated results are compared with several theoretical estimates. As mentioned

earlier, cell/dendrite spacing in binary alloys under steady-state growth are often

characterized by AGmV n, where A, m and n are constants (refer figures 4a and 4b). The

simplest form representing this correlation would be a power law with m = n, and is given
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by

PDAS = A(GV )n = A(Ṫ )n, (6)

where A and n are fitting parameters. In figure 4a, PDAS vs. Ṫ data are collected from

experiments for different Ni-based superalloys. The approximate A values obtained from

these data range between 140 µm to 150 µm and n between -0.4 to -0.5. Note that the

maximum cooling rate used in figure 4a is 100 K s−1. However, the operating cooling rates

in the present phase-field simulations are between 5×104 K s−1 to 3×106 K s−1. We plot the

simulated PDAS values against the cooling rates in figure 5. It is evident that the dendrite

arm spacing decreases as the cooling rate increases. The fitting values obtained from this

plot are A = 800 µm and n = -0.57.

(a) (b)

Figure 4: Collection of PDAS data from experiments are presented against cooling rates for

different commercial alloys. In (a) PDAS is plotted and fit against (GV )n in a log scale

(reproduced from [54], with permission from Elsevier). In (b), PDAS is plotted against

G−0.5V −0.25 (reproduced from [7], with permission from Springer).

It should be noted that equation 6 describes the variation of PDAS with the processing

conditions, G and V , only. However, in addition to G and V , a quantitative description

of cells/dendrites needs the integration of the thermophysical parameters as well as the

geometry of the evolving structures. Although it is extremely difficult to estimate PDAS for

any solidification conditions, there exist a few geometrical models along this line. The present

work considers the models of Hunt [55] and Kurz and Fisher [56], who applied mass balance

and a minimum undercooling criterion at the steady-state cell/dendrite tip to estimate the

PDAS. Hunt [55] considered only the geometry of the cell/dendrite tip to obtain

PDAS = 2.83(keΓ∆T0Dl)
0.25G−0.5V −0.25, (7)
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Figure 5: Simulated PDAS values are plotted against cooling rates with a fit to equation 6

in log scale to obtain A = 800 µm, n = -0.57.

while Kurz and Fisher [56] took the overall geometry (tip and trunk) into account to obtain

PDAS = 4.3(Γ∆T0Dl/ke)
0.25G−0.5V −0.25. (8)

Note that these models rely on the proportionality constants 2.83(keΓ∆T0Dl)
0.25 or

4.3(Γ∆T0Dl/ke)
0.25 depending on the geometry of the cellular/dendritic arrays assumed.

Both models approximate the cell/dendrite tip using a hemispherical cap while Kurz and

Fisher include the additional consideration of the geometry of the trunk, rendering the overall

cell/dendrite shape to be an ellipsoid.

There is experimental evidence to support the PDAS being proportional to

G−0.5V −0.25 [7, 57–59] (refer to figure 4b). Following equations 7 and 8, if the

theoretical PDAS estimates are plotted against G−0.5V −0.25, we obtain the straight lines

in figure 6, the slopes of which are given by the variable coefficient 2.83(keΓ∆T0Dl)
0.25 and

4.3(Γ∆T0Dl/ke)
0.25. The physical meaning is that these lines represent different cell/dendrite

geometries. In this context, the simulated PDAS values are compared with the analytical

models in figure 6. It is evident that the simulated PDAS do not produce an exact match

to the above theories, yet the trend of the results seems to be appropriate. The results are

weakly linear with G−0.5V −0.25. Interestingly, the slope of the line of best fit through the

simulated PDAS values is found to be close to the Kurz and Fisher model. However, there is

a nearly constant offset between the values given by the fit and the Kurz and Fisher model.

This discrepancy and other variations between the simulation and theory can be attributed

to several factors. First of all, the theories are based on a 3-D cell/dendrite geometry, while

the simulation results are in 2-D. Moreover, the above theories strictly rely on a particular

geometry irrespective of the solidification conditions, but, in reality, solidification geometries

change with small modifications in the solidification conditions [51, 60, 61]. Therefore, the
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same approximation cannot be applied over the entire regime of G and V .
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Figure 6: Comparison of simulated PDAS results with the geometrical models of Hunt [55]

(equation 7) and Kurz and Fisher [56] (equation 8). While simulated PDAS values are close

to the estimates using equation 7 (Hunt), the slope of the line of best fit using the simulated

values is close to 4.3(Γ∆T0Dl/ke)
0.25 (Kurz and Fisher). The slope of the solid lines are given

by 9.56 × 10−4 (Hunt) and 2.6 × 10−3 (Kurz and Fisher). The line of best fit through the

simulated values has a slope of 2.1× 10−3. The slopes are in units of m0.75s−0.25K0.5.

3.2.3. Microsegregation Niobium concentration variations are investigated in the

intercellular regions, the center of the cell tips and deep into the cells. These are represented

by lines A, B, and C of figure 3a. Here, we present results for G = 107 K m−1 and V = 0.03

m s−1. It should be noted that the results correspond only to a particular position along the

melt pool boundary and thus at a particular depth in the solidified puddle. The trends of

the composition variations are found to be similar at other positions.

In figure 7a, Nb concentration profiles are taken along the intercellular liquid between

the primary cells (line A in figure 3a). Niobium concentration decreases linearly with distance

in the growth direction y, while a steeper decrease is observed near the cell tips following the

liquidus temperature. Beyond this, the far-field liquid concentration c0 = 5 % Nb is attained.

The slope of the linear part in the composition profile between the cells is calculated to be

0.93 % µm−1. This concentration gradient in liquid between directionally solidified cells is

compared to an analytical solution. If curvature effects are ignored, the liquid composition cl
at any position y behind the cell tips can be obtained by letting G = dT

dy
and ml = dT

dcl
, where

T is the corresponding isotherm temperature at y. To calculate the composition gradient in

the y direction, G and ml are combined to obtain dcl
dy

= G
ml

. This yields 0.95 % µm−1, which

agrees well with the simulated value.

In figure 8, Nb concentration is presented through the center of the cells into the liquid

in the growth direction (line B in figure 3a). Composition remains almost constant from

the cell core to the tip region as the diffusivity of solute in the solid is extremely small. We

will refer to this as the cell tip solid concentration c∗s in the remaining text. A spike is seen
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Figure 7: (a) Nb concentration variations through the intercellular liquid, line A from

figure 3a. c0 = 5 % Nb is the far-field liquid concentration. Note that highest Nb compostion

inside the liquid droplets, represented by the spikes in the left, is 15.8 %. The Oscillation

in concentration in the solid occurs due to pinching off of the liquid from the root of cell

grooves at regular time intervals. (b) The oscillation from figure 7a is enlarged in figure 7b

and the representative droplets, from figure 3a line A, are shown in the inset.
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Figure 8: Nb concentration variations through a cell tip, line B from figure 3a. c∗s = 3.65 %

is the Nb concentration inside the cell. cmax = 6.87 % is the maximum Nb content at the

interface. c0 = 5 % Nb is the far-field liquid concentration.

in the Nb composition at the liquid side of the interface due to the rejection of Nb by the

growing cells. Beyond this, composition decays rapidly and eventually reaches c0 far into

the liquid. Note that for a planar interface in local equilibrium, the maximum Nb content

in the liquid and solid side of the interface is given by c0/ke = 10 % Nb and c0 = 5 % Nb,

respectively (refer to the red curve in figure 13). However, for a cell, the details of the

diffusion at the tips is different compared to the plane front solidification. This results in

different compositions at the cell interface, cmax = 6.87 % Nb in the liquid and c∗s = 3.65 %

Nb in the solid. This lower amount of Nb in the solid represents solute depletion in the core

of the cell. We further note that the ratio of c∗s/cmax = 0.53, whereas ke = 0.48. Interface
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partitioning effect is further analyzed in section 3.2.4.

In figure 9, Nb profiles are taken along an isotherm that is normal to the growth direction

and deep into the mushy zone (line C in figure 3a). The average composition across line C

is equal to c0 as it should be for steady state solidification. Here, the compositions at the

bottom and the top of the U-shaped profiles correspond to solid and liquid compositions at

the symmetrical centers of the cell core and the intercellular region, respectively. Note that

c∗s in figure 8 is reflected in the lowest values of figure 9. Following Kurz and Fisher [16],

c∗s can be estimated by a mathematical analysis of the diffusion fields around an isolated

paraboloid cell/dendrite tip leading to the following growth equations:

Gc = − V

Dl

kec
∗
s(1− ke), (9a)

R = 2π

[
Γ

mlGc −G

] 1
2

, (9b)

c∗s =
kec0

1− (1− ke)Iv(P )
, (9c)

Iv(P ) ≡ P exp(P )E1(P ), (9d)

P =
RV

2Dl

. (9e)

Gc is the composition gradient in the liquid, R is the cell/dendrite tip radius and E1(P ) is the

first exponential integral of the cell/dendrite Péclet number P . Referring to equations 9a-9e,

c∗s values are solved for the same thermophysical and processing parameters used in the phase-

field simulations. The estimated c∗s values are then compared with the simulated c∗s values in

figure 10. The simulated c∗s values are reasonably close to the estimations. However, certain

differences are seen between the simulated and estimated values. The theory is based on an

isolated cell/dendrite tip and hence does not consider the interactions between neighboring

cells/dendrites, nor is the surface tension anisotropy considered. In order to illustrate the

interactions between multiple cells, results are compared with simulations for a single steady
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state cell in figure 10. However, the differences between the data for many cells vs. single

cell are negligible in the present scenario. Therefore the differences between data and theory

can be expected due to a reduced geometry (2-D rather than 3-D) and the capillary effects

which are significantly different in 3-D [12, 13, 62]. The anti-trapping current also has an

effect on the above discrepancies which is explained in section 3.2.4. Note that c∗s increases

with increasing V . This behavior is expected when the growth velocity approaches Vab.
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Figure 10: Simulated c∗s values are compared with the theory (equation 9c) for equilibrium

ke. Data from many cell simulations are represented with circles and single cell with squares.

The comparison with kv is needed for future reference and is explained later in the text.

Equations 9a-9e can also be used to determine the cell/dendrite tip temperature or the

tip undercooling ∆T below the liquidus temperature in the following way [16]:

∆T = ∆Tsolutal + ∆Tcurvature

= 2mlc0P (1− ke) + 2Γ/R. (10)

The total undercooling at the tip is due to its composition and curvature, given by ∆Tsolutal
and ∆Tcurvature in equation 10, with the former being dominant. For comparison, the average

∆T values are obtained from the simulated steady-state cell tips and are plotted against V

in figure 11. Following equations 9e and 10, ∆T increases with increasing V and certain

differences are seen between the theoretical and simulated values. The reasons for the

differences are the same as described for figure 10. Similar behavior has been reported

in [13,17,19,63].

3.2.4. Interface partitioning As discussed in the above section, Nb composition in the solid

and liquid at the interface do not obey local equilibrium. To quantify this departure from

local equilibrium, the degree of Nb partitioning at the tips is considered. The ratio of Nb

composition in the cell (just behind the tips) to the maximum Nb composition in the liquid

is taken as a measure of the velocity-dependent partition coefficient kv, which is expressed

as [17,64,65]

kv =
c∗s
cmax

. (11)

17



 20

 40

 60

 80

 100

 120

 140

 160

 0.01  0.025  0.05  0.1  0.3

∆
T

 (
K

)

V (m/s)

Many cells
Single cell
Theory(ke)
Theory(kv)
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We calculate the kv values from the Nb compositions of the steady-state cell tips for

different V . This is shown in figure 12. Clearly, kv increases with increasing V . This

occurs even though the phase-field simulations are conducted with the equilibrium value

of ke and the anti-trapping current [47] has been added to correct deviations from local

interface equilibrium. However, the anti-trapping current used is only accurate to second

order in the small parameter W0/d0 in the thin-interface asymptotic analysis. The model

requires improvement if local interface equilibrium is required at these high solidification

velocities. On the other hand, some level of solute trapping should be present. The physical

meaning is that with increasing interface velocity V , solute has less time to redistribute

within the interface. The simulated trapping behavior can be characterized by the Aziz

trapping function, which relates V with kv [66]

kv(V ) =
ke + V/VD
1 + V/VD

. (12)

VD is the interface diffusion speed, which is given by Dl/a0 with a0 the characteristic interface

width on the order of interatomic distances. In figure 12, the simulated kv values are fit with

the Aziz trapping function (equation 12) for a value of VD = 0.31 m s−1. It should be noted

that VD is a characteristic velocity for a given alloy related to the magnitude of its solute-

trapping behavior. To our knowledge, no experimental data is available for correct value of

VD for Ni-Nb.

It is interesting to note that kv = 1 in figure 12 signifies zero partitioning of the solute, or

complete solute-trapping, which can be attained for V greater than 10 m s−1. However, this

is far beyond the V used in the present work. For our intermediate V , partial partitioning

results in ke < kv < 1. For a velocity of 0.001 m s−1 or below, equilibrium partitioning is

recovered with the constant kv = ke.

In order to document the solute-trapping in the present model in the most simple
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way, 1-D simulations are performed under the same conditions as in 2-D, to render the Nb

partitioning in a planar front growth mode. This is different from the 2-D simulations in that

far-field liquid and solid compositions are the same (refer to figure 13). The maximum Nb

composition cmax at the interface decreases with the growth speed V . Fitting of equation 12

to the 1-D simulation results, with kv = c0/cmax, yields VD = 0.23 m s−1. The difference

in VD between 1-D and 2-D may be due to curvature effects at the cell tips, which in turn

depend on the solidification velocity V . Thus R becomes a function of V , i.e., R(V ). The

curvature-corrected partition coefficient can be represented as [48,67]

kv(R(V )) =
c0

cmax(V )

(
1− (1− ke)

d0
R(V )

)
. (13)
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One phenomenological approach to obtaining a predetermined level of solute-trapping

in the phase-field model is as follows. The equilibrium solidification parameters are

replaced with the velocity-dependent parameters to reflect the non-equilibrium changes at the

interface. The effect of the velocity-dependent partition coefficient kv is given by equation 12.

Similarly, the liquidus slope ml becomes a function of V and takes the form [16]

mv(V ) = ml
1− kv [1− ln(kv/ke)]

1− ke
. (14)

For evaluating the solute concentrations at the cell tips, velocity-dependence is also

introduced into equation 9c, resulting in [16]

c∗s(V ) =
kvc0

1− (1− kv)Iv(P )
. (15)

Referring to equations 9a-9e, c∗s(V ) values are solved in the same way but now with the

modified kv and mv. The comparison with the simulation is given in figure 10. At a lower V ,

this theory provides somewhat better estimates. However, for high V , the convergence

is not satisfactory, as the theory overestimates. Moreover, in terms of undercooling

(refer to figure 11), the velocity-dependence estimates are closer to the simulation results.

Nevertheless, the comparison is not satisfactory. To explain this behavior quantitatively,

we draw our attention to the phase-field model components, particularly the anti-trapping

current in equation 5. The purpose of this is to eliminate artificial solute-trapping due to the

thick diffuse interfaces used for the phase-field simulations. Moreover, this additional solute

flux is meant to correct for behavior in the low solidification velocity regime. The effects

of this current toward the physical solute-trapping in the rapid solidification regime is not

clear at the moment and work is under way to understand this well.

Moreover, the present study does not consider the effects of convection on the primary

arm spacing and Nb segregation. Effects of convection on the primary arm spacing

is not as pronounced as compared to the secondary and tertiary arms, which are not

observed in our simulations, where the solute field interacts in a complex manner with the

microstructure [12, 13]. However, it is seen that this results in faster growth of the cells as

the solute transport is enhanced, leading to solute gradient dips at the tips [12,13].

The primary arm spacings simulated in the present work are smaller than 1.6 µm. Such

dense cellular structures provide significant resistance to the flow following an exponential

increase of the damping effect in the mushy region and hence the reduced effects of

convection [68,69]. In addition, consideration of a dilute alloy reduces the convection effects

on the compositions [12]. Therefore, simulations have been performed with a reasonable

approximation for the average behavior of a primary cell/dendrite towards the selection of

spacing and the microsegregation patterns.
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4. Summary and Outlook

We use a macroscopic heat transfer model to obtain melt pool solidification conditions

relevant to additive manufacturing. A mesoscopic phase-field model is then used to

simulate the cellular patterns formed during solidification under these conditions. Cellular

solidification is discussed in regard to primary arm spacing and microsegregation. Primary

arm spacing decreases from 1.6 µm to 0.14 µm as the cooling rate increases from 5×104 K s−1

to 3× 106 K s−1. Simulated spacings are compared against the geometrical models of Hunt

and Kurz and Fisher with reasonable agreements. At steady-state, solute concentrations

at the cell tips are found to be smaller than planar front and compare reasonably with

an isolated cell/dendrite growth model. Growth velocity-dependence is considered for the

alloy parameters to measure the extent of solute-trapping behavior during non-equilibrium

solidification. The results indicate that the anti-trapping current within a phase-field model

is not adequate to eliminate solute-trapping at these high solidification rates.

The simulated microstructures and the concentration fields can be used as inputs for the

simulation of subsequent heat treatment; notably secondary phase formations in between the

γ-cells may arise because the Nb-rich droplets are expected to transform into Laves phases

during the subsequent stages of solidification in IN718 [11, 63]. Particularly for the circular

droplets that emerge as a function of pinching off from the cellular structures, a quantitative

analysis of these structures can offer insight into the size and distribution of secondary phases.

We do not include the effects of fluid flow, Marangoni surface flow and other hydrodynamic

effects in the melt pool, each of which may bring significant differences [9,44,45]. Simulations

in 3-D can be performed to explore another degree of freedom in the solute segregation and

droplet formations. Finally, we note that the solute-trapping behavior exhibited in the

present model needs to be explored. The role of the anti-trapping current, which is designed

to capture local interfacial equilibrium properties in the low velocity regime for large diffuse

interfaces, needs to be better understood in this intermediate to high velocity regime. A

quantitative understanding of this mechanism at rapid solidification regime may lead to a

more accurate, physical description of solute-trapping.
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[6] M. Gäumann, C. Bezençon, P. Canalis, and W. Kurz. Single-crystal laser deposition of superalloys:

processing–microstructure maps. Acta Materialia, 49(6):1051 – 1062, 2001.

[7] H. S. Whitewell, L. Li, and R. A. Overfelt. Influence of solidification variables on the dendrite arm

spacings of Ni-based superalloys. Metallurgical and Materials Transactions B, 31B:546 – 551, 2000.

[8] K. N. Amato, S. M. Gaytan, L. E. Murr, E. Martinez, P. W. Shindo, J. Hernandez, S. Collins, and

F. Medina. Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser

melting. Acta Materialia, 60(5):2229 – 2239, 2012.

[9] Y. Lee, M. Nordin, S. S. Babu, and D. F. Farson. Effect of fluid convection on dendrite arm spacing in

laser deposition. Metallurgical and Materials Transactions B, 45(4):1520–1529, 2014.

[10] Y. J. Liang, X. Cheng, and H. M. Wang. A new microsegregation model for rapid solidification

multicomponent alloys and its application to single-crystal nickel-base superalloys of laser rapid

directional solidification. Acta Materialia, 118:17 – 27, 2016.

[11] P. Nie, O. A. Ojo, and Z. Li. Numerical modeling of microstructure evolution during laser additive

manufacturing of a nickel-based superalloy. Acta Materialia, 77:85–95, 2014.

[12] W. Wang, P. D. Lee, and M. McLean. A model of solidification microstructures in nickel-based

superalloys: predicting primary dendrite spacing selection. Acta Materialia, 51(10):2971 – 2987,

2003.

[13] L. Yuan and P. D. Lee. Dendritic solidification under natural and forced convection in binary alloys: 2D

versus 3D simulation. Modelling and Simulation in Materials Science and Engineering, 18(5):055008,

2010.

[14] T. Keller, G. Lindwall, S. Ghosh, L. Ma, B.M. Lane, F. Zhang, U. R. Kattner, E. A. Lass, J. C. Heigel,

Y. Idell, M. E. Williams, A. J. Allen, J. E. Guyer, and L. E. Levine. Application of Finite Element,

Phase-field, and CALPHAD-based Methods to Additive Manufacturing of Ni-based Superalloys. Acta

Materialia, pages –, 2017.

[15] J. D. Hunt. Solidification and casting of metals. The Metal Society, London, 3, 1979.

[16] W. Kurz and D. J. Fisher. Fundamentals of solidification. Number v. 1. Trans Tech Publications,

1986.

[17] W. J. Boettinger and J. A. Warren. Simulation of the cell to plane front transition during directional

solidification at high velocity. Journal of Crystal Growth, 200(34):583 – 591, 1999.

[18] W. Kurz, B. Giovanola, and R. Trivedi. Theory of microstructural development during rapid

solidification. Acta Metallurgica, 34(5):823 – 830, 1986.

[19] A. Farzadi, M. Do-Quang, S. Serajzadeh, A. H. Kokabi, and G. Amberg. Phase-field simulation of weld

solidification microstructure in an Al-Cu alloy. Modelling and Simulation in Materials Science and

Engineering, 16(6):065005, 2008.

[20] L. Q. Chen. Phase field models for microstructure evolution. Annu. Rev. Mater. Res., 32:113–140,

22



2002.

[21] W. J. Boettinger, J. A. Warren, C. Beckermann, and A. Karma. Phase field simulation of solidification.

Annu. Rev. Mater. Res., 32:163–194, 2002.

[22] I. Steinbach. Phase field models in materials science. Modelling and Simulation in Materials Science

and Engineering, 17:073001, 2009.

[23] N. Moelans, B. Blanpain, and P. Wollants. An introduction to phase-field modeling of microstructure

evolution. Calphad, 32(2):268 – 294, 2008.

[24] S. Ghosh, A. Choudhury, M. Plapp, S. Bottin-Rousseau, G. Faivre, and S. Akamatsu. Interphase

anisotropy effects on lamellar eutectics: A numerical study. Physical Review E, 91:022407, 2015.

[25] S. Ghosh. Effects of solid-solid boundary anisotropy on directional solidification microstructures. PhD

thesis, Ecole Polytechnqiue, 2015.

[26] ABAQUS, version 6.14, Dassault Systmes Simulia Corp., Providence, RI., USA, 2013.

[27] R. B. Bird, W. E. Stewart, and E. N. Lightfoot. Transport phenomena. Wiley International Edition.

Wiley, New York, 1960.

[28] I. A. Roberts, C. J. Wang, R. Esterlein, M. Stanford, and D. J. Mynors. A three-dimensional finite

element analysis of the temperature field during laser melting of metal powders in additive layer

manufacturing. International Journal of Machine Tools and Manufacture, 49(1213):916 – 923, 2009.

[29] D. Rosenthal. Mathematical theory of heat distribution during welding and cutting. Welding Journal,

20:220–s, 1941.

[30] D. Rosenthal. The theory of moving sources of heat and its application to metal treatments. Trans.

ASME, 68:849–866, 1946.

[31] J. Goldak, A. Chakravarti, and M. Bibby. A new finite element model for welding heat sources.

Metallurgical Transactions B, 15(2):299–305, 1984.

[32] T. W. Eagar and N.-S. Tsai. Temperature fields produced by traveling distributed heat sources. Welding

journal, 62(12):346–355, 1983.

[33] N. T. Nguyen, A. Ohta, K. Matsuoka, N. Suzuki, and Y. Maeda. Analytical solutions for transient

temperature of semi-infinite body subjected to 3-D moving heat sources. WELDING JOURNAL-

NEW YORK-, 78:265–s, 1999.

[34] W. Guo and A. Kar. Determination of weld pool shape and temperature distribution by solving three-

dimensional phase change heat conduction problem. Science and Technology of Welding and Joining,

5(5):317–323, 2000.

[35] W. J. Sames, F. A. List, S. Pannala, R. R. Dehoff, and S. S. Babu. The metallurgy and processing

science of metal additive manufacturing. International Materials Reviews, 61(5):315–360, 2016.

[36] A. Santomaso, P. Lazzaro, and P. Canu. Powder flowability and density ratios: the impact of granules

packing. Chemical Engineering Science, 58(13):2857 – 2874, 2003.

[37] TC Ni-based Superalloys Database, version 8; Thermo-calc Software, Stockholm, Sweden, 2013.

[38] J.-O. Andersson, T. Helander, L. Hglund, P. Shi, and B. Sundman. Thermo-Calc & DICTRA,

computational tools for materials science. Calphad, 26(2):273 – 312, 2002.

[39] T. Childs, C. Hauser, and M Badrossamay. Selective laser sintering (melting) of stainless and tool

steel powders: experiments and modelling. Proc. Inst. Mech. Eng., Part B: Journal Engineering

Manufacturing, 219(4):339–357, 2005.

[40] R. Tanaka, A. Hosokawa, T. Ueda, T. Furumoto, M. S. Abdul Aziz, and M. R. Alkahari. Thermal

conductivity of metal powder and consolidated material fabricated via selective laser melting. In

Emerging Technology in Precision Engineering XIV, volume 523 of Key Engineering Materials, pages

244–249. Trans Tech Publications, 11 2012.

[41] B. Lane, S. Moylan, E. Whitenton, and L. Ma. Thermographic Measurements of the Commercial Laser

Powder Bed Fusion Process at NIST. Rapid Prototyping Journal, 22(5):778–787, 2016.

[42] L. Ma, J. Fong, B. Lane, S. Moylan, J. Fillibenm, A. Hecker, and L. Levine. Using design of experiments

23



in finite element modeling to identify critical variables for laser powder bed fusion. In Proceedings

of the 26th Annual International Solid Freeform Fabrication Symposium: An Additive Manufacturing

Conference, pages 219–228, 2015.

[43] J. Smith, W. Xiong, W. Yan, S. Lin, P. Cheng, O. L. Kafka, G. J. Wagner, J. Cao, and W. K.

Liu. Linking process, structure, property, and performance for metal-based additive manufacturing:

computational approaches with experimental support. Computational Mechanics, 57(4):583–610,

2016.

[44] S. A. Khairallah, A. T. Anderson, A. Rubenchik, and W. E. King. Laser powder-bed fusion additive

manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and

denudation zones. Acta Materialia, 108:36 – 45, 2016.

[45] W. E. King, A. T. Anderson, R. M. Ferencz, N. E. Hodge, C Kamath, S. A. Khairallah, and A. M.

Rubenchik. Laser powder bed fusion additive manufacturing of metals; physics, computational, and

materials challenges. Applied Physics Reviews, 2(4):041304, 2015.

[46] W. E. King, H. D. Barth, V. M. Castillo, G. F. Gallegos, J. W. Gibbs, D. E. Hahn, C. Kamath, and

A. M. Rubenchik. Observation of keyhole-mode laser melting in laser powder-bed fusion additive

manufacturing. Journal of Materials Processing Technology, 214(12):2915 – 2925, 2014.

[47] B. Echebarria, R. Folch, A. Karma, and M. Plapp. Quantitative phase-field model of alloy solidification.

Physical Review E, 70(6):061604, 2004.

[48] A. Karma. Phase-field formulation for quantitative modeling of alloy solidification. Physical Review

Letters, 87:115701, 2001.

[49] G. A. Knorovsky, M. J. Cieslak, T. J. Headley, A. D. Romig, and W. F. Hammetter. INCONEL 718:

A solidification diagram. Metallurgical Transactions A, 20(10):2149–2158, 1989.

[50] W. W. Mullins and R. F. Sekerka. Stability of a planar interface during solidification of a dilute binary

alloy. Journal of Applied Physics, 35(2):444–451, 1964.

[51] L. H. Ungar and R. A. Brown. Cellular interface morphologies in directional solidification. IV. The

formation of deep cells. Phys. Rev. B, 31:5931–5940, 1985.

[52] W. J. Boettinger, L. A. Bendersky, R. J. Schaefer, and F. S. Biancaniello. On the formation of

dispersoids during rapid solidification of an Al-Fe-Ni alloy. Metallurgical Transactions A, 19(4):1101–

1107, 1988.

[53] L. Wang, N. Wang, and N. Provatas. Liquid channel segregation and morphology and their relation

with hot cracking susceptibility during columnar growth in binary alloys. Acta Materialia, 126:302 –

312, 2017.

[54] G. K. Bouse and J. R. Mihalisin. Metallurgy of investment cast superalloy components. In J.K. Tien

and T. Caulfield, editors, Superalloys Supercomposites Superceramics, pages 99 – 148. Academic Press,

1989.

[55] J. D. Hunt. Cellular and primary dendrite spacings. In Proc. Int. Conf. on Solidification and Casting

of Metal (London:The Metal Society), pages 3–9, 1979.

[56] W. Kurz and D. J. Fisher. Dendrite growth at the limit of stability: tip radius and spacing. Acta

Metallurgica, 29(1):11–20, 1981.

[57] D. Ma and P. R. Sham. Primary spacing in directional solidification. Metallurgical and Materials

Transactions A, 29(13):1113–1119, 1998.

[58] P. N. Quested and M. McLean. Solidification morphologies in directionally solidified superalloys.

Materials Science and Engineering, 65(1):171 – 180, 1984.

[59] D. Bouchard and J. S. Kirkaldy. Prediction of dendrite arm spacings in unsteady-and steady-state

heat flow of unidirectionally solidified binary alloys. Metallurgical and Materials Transactions B,

28(4):651–663, 1997.

[60] L. X. Liu and J. S. Kirkaldy. Thin film forced velocity cells and cellular dendrites – I. Experiments.

Acta Metallurgica et Materialia, 43(8):2891 – 2904, 1995.

24



[61] J. S. Kirkaldy, L. X. Liu, and A. Kroupa. Thin film forced velocity cells and cellular dendrites – II.

Analysis of data. Acta Metallurgica et Materialia, 43(8):2905 – 2915, 1995.

[62] M. Rappaz and J. A. Dantzig. Solidification. Engineering sciences. EFPL Press, 2009.

[63] J. Kundin, L. Mushongera, and H. Emmerich. Phase-field modeling of microstructure formation during

rapid solidification in Inconel 718 superalloy. Acta Materialia, 95:343 – 356, 2015.

[64] D. Danilov and B. Nestler. Phase-field modelling of solute trapping during rapid solidification of a

Si-As alloy. Acta Materialia, 54(18):4659 – 4664, 2006.

[65] A. A. Wheeler, W. J. Boettinger, and G. B. McFadden. Phase-field model of solute trapping during

solidification. Phys. Rev. E, 47:1893–1909, 1993.

[66] M. J. Aziz. Model for solute redistribution during rapid solidification. Journal of Applied Physics,

53(2):1158–1168, 1982.

[67] A. M. Mullins, J. Rosam, and P. K. Jimack. Solute trapping and the effects of anti-trapping currents on

phase-field models of coupled thermo-solutal solidification. Journal of Crystal Growth, 312(11):1891

– 1897, 2010.

[68] W. Yang, K. Chang, W. Chen, S. Mannan, and J. DeBarbadillo. Freckle criteria for the upward

directional solidification of alloys. Metallurgical and Materials Transactions A, 32(2):397–406, 2001.

[69] W. Tan, N. S. Bailey, and Y. C. Shin. A novel integrated model combining cellular automata and phase

field methods for microstructure evolution during solidification of multi-component and multi-phase

alloys. Computational Materials Science, 50(9):2573 – 2585, 2011.

25


