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Abstract: In cold atom experiments, each image of light refracted and absorbed by an atomic
ensemble carries a remarkable amount of information. Numerous imaging techniques including
absorption, fluorescence, and phase-contrast are commonly used. Other techniques such as
off-resonance defocused imaging (ORDI, [1-4]), where an in-focus image is deconvolved from a
defocused image, have been demonstrated but find only niche applications. The ORDI inversion
process introduces systematic artifacts because it relies on regularization to account for missing
information at some spatial frequencies. In the present work, we extend ORDI to use multiple
cameras simultaneously at degrees of defocus, eliminating the need for regularization and its
attendant artifacts. We demonstrate this technique by imaging Bose-Einstein condensates, and
show that the statistical uncertainties in the measured column density using the multiple-camera
off-resonance defocused (McORD) imaging method are competitive with absorption imaging
near resonance and phase contrast imaging far from resonance. Experimentally, the McORD
method may be incorporated into existing set-ups with minimal additional equipment.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Ultracold atoms exist in isolation, enshrouded in ultrahigh vacuum, so that nearly every
measurement on them relies on their interaction with electromagnetic fields. The most common
measurements use a probe laser beam that is attenuated and phase shifted by the atoms to recover
two-dimensional images of the integrated density—the column density—of the atoms. Whether the
technique be absorption imaging (AI), or phase-contrast imaging (PCI), the spatially resolved
column density of the atomic cloud is recovered; from this, physical information regarding the
atomic ensemble can be extracted.

In this paper, we describe and demonstrate an extension to off-resonance defocused imaging
(ORDI) pioneered in Refs. [1-4]. ORDI uses information from both the absorbed and phase-
shifted probe laser light; by contrast, absorption or phase-contrast imaging rely only on the
absorption or phase shift signal, respectively. Both the absorption and phase-shift are proportional
to the quantity of interest, the column density. When the laser detuning from atomic resonance
¢ is large, the fractional absorption o 1/ 62, while the phase-shift oc 1/§: thus for sufficiently
large detunings the phase-shift is more significant than absorption. Typically Al [5] is used
for clouds of low to medium column density using a resonant probe beam (no phase-shift),
and PCI [6] is used to image clouds of high column density using a far-detuned probe beam
(negligible absorption). In Al and PCI, intensity images are recorded by a detector at the focus of
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the imaging system. In ORDI, a image is taken by a detector positioned away from the focus:
remarkably, Ref. [2] showed that given full knowledge of the atoms’ complex susceptibility it
is possible to digitally refocus intensity images of atoms by inverting contrast transfer function
[CTF, shown in Fig. 1(a)] without knowing the phase of the underlying optical field. Still,
ORDI was beset with unavoidable imaging artifacts resulting from lost information at some
spatial frequencies in defocused images where the inverse CTF diverges [Fig. 1(b)]. Here we
demonstrate a technique to refocus images of ultracold atoms with greatly reduced artifacts. In
this technique, multiple-camera off-resonance defocused (McORD) imaging, we simultaneously
use cameras placed at different defocused distances and show that suitably placed cameras allow
for essentially artifact-free reconstruction of the atomic column density. Image reconstruction
using several defocused images has been employed in electron microscopy [7], and has been
used to assist with phase recovery in optics [8].

(a) (b)

Inverse CTF, h~1(k_)
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Wave number k; (um™1) Wave number k| (um™1)

Fig. 1. Contrast transfer function (a) and its inverse (b), as discussed in Sect. 2.3, using
eqns. (18) and (22). These are computed as a function of transverse wave number & , for
a probe laser beam with wavelength A = 780 nm, detuning § = 1, and defocus distance
z = 60 um. The black curves denote (k) and R (k) where appearance of repeating zeros
in the CTF and the associated divergences in its inverse indicate spatial frequencies where
all information about the initial density profile is lost. The red curve shows the regularized
inverse izﬁ] (k1) with regularization parameter = 0.2, which tracks Rl (k1) until it exceeds
a threshold value and then returns to zero.

This paper is organized as follows; in Sec. 1 we discuss the solution to the vector wave
equation under the paraxial approximation after interacting with a thin, dilute atomic cloud.
In Sec. 2., we describe absorption and phase-contrast imaging; derive expressions for ORDI
and McORD imaging; and conclude with a theoretical comparison of McORD to absorption
and phase-contrast imaging. In Sec. 3., we describe the experimental implementation of the
MCcORD method with three detectors, and the procedure we used to prepare 8’Rb Bose-Einstein
condensates (BECs) of variable column density. In Sec. 4., we present our experimental McORD
results.

1.1. Propagation of an electromagnetic wave

First we introduce the theoretical problem, starting with the propagation of an electromagnetic
wave defined at all positions r = xe, + ye, + ze,. For our neutral atomic systems interrogated by
a monochromatic probe laser beam with wavelength A and wave number kg = 27/ 4, the evolution
of the laser beam’s electric field in the presence of atoms with complex susceptibility y is
described by a pair of scalar wave equations

V2Ei(r) + k3[1 + x(r)]&:(r) = 0, (1)
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i.e., Helmholtz equations, one for each polarization component &;. These equations are valid
provided that the susceptibility y changes slowly with respect to A [allowing the term V(V - &)
in the vector wave equation to be neglected]. For each polarization component, the Helmholtz
equation then has the formal solution

E(ry,z+ A7) =exp {iiAz [VI + k5 + x(rokg] 1/2} &(ry,2), )

provided y(r) has no dependence on z. Here r, = xe, + ye, and V2 =0%/0%x + %/ 0%y are the
transverse position and Laplacian, respectively. &(ry,z) is the field before propagation, and
&E(ry, 7 + Az) is the field that has propagated an infinitesimal distance Az through the medium.
This solution becomes straightforward to evaluate numerically even for arbitrary displacements
provided that y has no spatial dependence — such as the case for propagation in a homogenous
isotropic medium — by working in the Fourier domain.

In our simulations, we only used Eq. (2) to evolve the electric field in free space where y = 0.
For the problem at hand, we need to understand light traveling through a medium with y(r_,z)
dependent on both r, and z, a situation where Eq. (1) is inconvenient to manipulate analytically.
For these cases, we make the paraxial approximation that renders both numerical and analytical
treatments straightforward. We write the field &(r, , z) = exp(izko)E(r ., z) making explicit the
nominal propagation axis e,. In addition, we assume that the transverse spatial structure is slowly
varying compared to the optical wavelength, i.e., |0E/d(kyz)| > |62E / 82(koz)|. Together these
approximations lead to the paraxial wave equation

2
i%E(rl,z) = [_2% + W E(r,.7). 3)

In this manuscript, the paraxial wave equation offers two primary benefits. Firstly the free
space propagator

V2
hy(r., Az) = exp (iAzi) , that gives E(ry,z+ Az) = hp(r, AZ)E(r ., 2),
0

is Gaussian and is therefore straightforward to manipulate analytically. Secondly, we parametrize
propagation through a medium localized at z = 0 in terms of an absorption coefficient e(r, ) and
a phase shift ¢(r, ). We relate the electric field E_(r_, z = 0) just prior to the medium to the field
E,(r.,z = 0) just after the medium with

k
E.(r;,z=0)=exp [130 /X(rL9AZ)dZ] E_(r;,z=0)

= exp [—a(ry) +ig(r )] E_(r.,z =0).

“

This expression is valid provided the medium is thin compared to the depth of field 2k / krznax,
where kpx is the largest wave-vector of any significance present in E(r), or more pragmatically
kmax might be the largest wave-vector resolvable by the experimental detector. In effect, Eq. (4)
neglects diffraction as light propagates through the atomic layer, and is equivalent to dropping
the Laplacian in Eq. (3).

For two-level atoms, we characterize the absorption and phase shift via the complex suscepti-
bility

i—26
1+ I(r) + 462

for an ensemble of atoms with density p(r) illuminated by a probe laser of wavelength A.
Equation (5) is valid for dilute clouds p(r) < kg such that collective effects can be neglected.

p(r), (%)

_ 90
x(r) = %o
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Here 0y = 34%/2nx is the resonant cross-section, I(r) = I(r)/I is the optical intensity I(r) =
ce |E(r)| /2 in units of the saturation intensity Js,, and 6 = §/T is the detuning ¢ from atomic
resonance in units of the natural line-width I'. Here, c is the speed of light and ¢, once known as
the permittivity of free space, is the now ill-named electric constant.

The two-level model for the susceptibility gives coefficients

a(ry) = 0D(r.)/2, and ¢(r.) = -6 OD(r.). (6)
Where the optical depth
OD(r;)=-In [M} =2a, @)
I(ry)

expresses exponential attenuation of light by the atoms and is defined in terms of the intensity
just before I_(r, ) and just after I, (r, ) interacting with the atoms. The column density

pZD(rL):/p(rL’Z)dZ

can be derived from the optical depth given both the detuning and the intensity using [9]
Gopap(ry) = (1 +45)0D(r,) +1(r,) [ 1 - 7P| (®)

This leads us to two essential messages for this section: (I) according to Eq. (6) the complete
impact of the atomic ensemble on the electric field can be parametrized in terms of OD(r, )
alone; and (IT) once OD(r, ) is obtained, the column density can be reconstructed using Eq. (8),
independent of what measurement technique was employed to obtain the optical depth.

As a result, any imaging technique will first find the optical depth and then obtain the column
density using Eq. (8). Therefore in the following discussion we will compare imaging techniques
in terms of their ability to reconstruct the optical depth.

2. Imaging techniques

In our experiments, the detectors — CCD cameras — are sensitive to the field’s intensity, not its
amplitude. The imaging techniques discussed here use image pairs, each consisting of a 2D
array of pixels giving the optical intensity with atoms present i(j)(r 1) resulting from the field
E.(r.,z"), and the intensity with the atoms absent I)(r_ ) resulting from the field E_(r, z\?).
The superscript (i) indicates that for McORD several cameras simultaneously record the intensity
at different positions z'). We characterize the impact of the atoms in terms of the fractional drop
in intensity
)
I (—i)(ll)

Where it is clear, we will omit the camera index i and pixel coordinate r, . Evidently this
detection process has no direct sensitivity to the fields’ phase, nor the phase shift imprinted by
the atoms.

Each acquired image has a noise contribution §/¥)(r ) that we model as a classical random
process from shot noise on the CCD detector with

g(r,) =1 9)

@1c)y=0, and  (SIr)SIV())) = 6;06r, x To(IV(r L)), (10)

where Iy = hw/nAAt is the intensity required to generate a single photo-electron. Here iw = chky
is the single-photon energy, 7, is the detector quantum efficiency (shot noise is really the shot
noise of the photo-electrons not of the photons), A is the area of a single pixel, and At is the
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measurement time. This noise model neglects other physical sources of noise such as CCD
readout noise, or excess noise from dark current.

Since the fractional absorption contains the full information about the atomic ensemble, we
transfer the noise in the images to the noise in the fractional intensity which has (6g®(r,)) = 0
and the correlation function

. " I .

(68058 () = Siabe, e, 5 |1~ 60w an

L4
IE(ry)

In what follows, we describe the Al and PCI techniques, and then derive the ORDI and McORD

methods. For each technique, we compute the expected uncertainty in optical depth resulting

from photon shot noise, and conclude with a comparison of these uncertainties across all cases.

2.1.  Absorption imaging

Al proceeds directly from the intensities recorded by a single camera placed in-focus (effectively
recording the intensity as it was in the object plane at z = 0), to give the optical depth
OD(r,) = —In[l — g(r,)] without further approximation. Al is most straightforward for
resonant (6 = 0) low intensity (/- < 1) imaging, giving an optical depth OD(r ) = 0p2p(r.)
proportional to the column density. In this limit, the repeated scattering of resonant photons
strongly perturbs the atomic ensemble after a single instance of imaging. As a result, Al is not
generally used to perform weakly destructive measurements [10].
Using the formalism in eqn. (11) along with eqn. (7), we find the noise for Al to be

2
(60D(r,)) =0, and (60OD(r,)60D(r")) = 6¢, _(08w)) (12)

= (g )P
This shows that the noise is still 6-correlated in space and diverges at large optical depth. This
is expected because at large OD the vast majority of the probe is absorbed, leading to an increased
fractional contribution of photon shot noise.

2.2. Phase contrast imaging

PCI is often used for weakly destructive measurements, and readily allows the same cloud to be
imaged repeatedly. Like Al, PCI is performed with a single in-focus camera, but unlike Al, the
recorded intensity of a phase-contrast image contains phase information from which the column
density is extracted. After traversing the layer of atoms, the electric field E; = E_ + AE may
be expressed as a sum [5] of its unscattered and scattered parts E_ and AE. PCI is typically
implemented by adding a 6 = 7r/2 phase shift to the unscattered field [11] so that E_ — E_ exp(if).
PClI is typically applied in the far detuned limit where absorption can be neglected, i.e., @ < ¢,
giving the PCI intensity pattern

g(ry) =2[cos ¢(ry) —sing(ry) — 1] ~ -2¢(r,) = 260D(r,) (13)

resulting from the interference of the phase-shifted light with the light refracted by the atoms.
The final approximation in Eq. (13) is valid for small phase shifts (requiring a combination of
large detuning), and in this limit the PCI signal is linear in ¢, therefore proportional to the optical
depth [6].

Next, we find the uncertainty in the recovered optical depth for PCI using eqn. (13) to be

1
L35
This shows that for large detuning (where the approximations leading to PCI are valid) and

low optical depth (g < 1), the variance in phase contrast imaging is reduced by a factor of §°
compared to that of AL

(60D(r,)) =0, and  (SOD(r.)OD(r,)) = &, v, —= (5g(r,)?). (14)
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2.3. Off resonant defocus imaging

The Al technique introduced in Sec. 2.1 is best implemented on resonance, where there are
no phase shifts. On the other hand, PCI works best off-resonance when absorption is minimal.
The ORDI technique [1-4] is a method that works best in the intermediate regime where both
absorption and phase shift are important. ORDI and McORD build from an invertible relation
between the observed intensity and the optical depth that recovers all but a small range of spatial
frequencies, and our derivation parallels that of Ref. [2].

ORDI relies on several simplifying assumptions, the first of which is the paraxial approximation
to the electric field that has propagated through an atomic cloud in Sec. 1.1. We assume that the
electric field did not diffract as it traveled through the cloud (i.e., that it was thin compared to the
depth of field). Both AI and PCI require these same approximations.

Going forward we introduce the Fourier transform (FT) of a two-dimensional function f(r, )
as f(ky) = /_ D:O f(r.)exp(—ik, - r;)d’r,. Using the paraxial propagator and the convolution
theorem, we readily obtain the Fresnel diffraction integral

B = / Er.,z = 0)exp

ik
o |rL—r1|2] dr’. (15)
2z

Using eqn. (15) and the electric field just after it traversed the cloud in eqn. (4), the normalized
intensity at a detector placed an arbitrary distance from the atomic ensemble is

gky,2) = / {1 — exp[—a(r +zk, [2ko) — a(r —zk  [2ko)
-~ (16)
+ip(r —zK. [2ko) — i¢(ri+zkl/2k0)]} X exp(—iri-ki)der_.

To derive the ORDI technique we further required that the phase is slowly-varying: |¢(r, +
7k, [2kg) — p(ry — zk, /2ko)| < 1, and that absorption is small: @(r ) < 1. To the lowest order
in ¢ and a, the resulting normalized intensity

gky,2) = [oo[a’(rrFZkL/Zko) + a(r.—zk, /2ko)

— i(r, —7k, [2ko) + igp(r, +7K, [2Kko)] X exp(~ir, -k, )d°r, ,

a7

is a Fourier integral of ¢ and @. Defining the FTs of ¢ and « as ¢ and &, respectively, we find
8(ky,2) = 2a(k ) cos(ck] /2ko) — 2¢(k ) sin(zk? /2ko)., (18)
where k1 = ki + k7. Using Eq. (6) we arrive at the explicit expression
(k.. z) = [cos(zk? /2ko) + 26 sin(zk? /2ko)|OD(K ) = h(k ., z)OD(k,), (19)

that uses a CTF h(k_, ) to provide a linear relation between the Fourier transformed optical
depth OD(k ) and the fractional change in intensity g(k_, z) defined in Eq. (9).

We plot a representative CTF and its inverse in Fig. 1 showing singularities at some spatial
frequencies k, the locations of which depend upon the camera position z and the detuning §.
When h(k,,z)"! is applied, measurement noise is amplified near the divergences, so that no
useful information can be extracted from these spatial frequencies. The ratio a/¢ = —1/25
along with the sign of z determines the quality of information at low spatial frequencies. When
sign(z)a/¢<0, the inverse CTF has a divergence at a low spatial frequency, and information may
be lost for the spatial structure of interest. There are two mathematically equivalent cases to
achieve the “good” condition: §<0 (red detuning) with z<0 (negative defocus), and 6>0 (blue
detuning) with z>0 (positive defocus).
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2.3.1. ORDI statistical uncertainties and regularization

Here we compute the anticipated diverging uncertainty at the zeros of the CTF quantitatively
and introduce a regularization parameter to resolve these divergences. In general the spatial
structure in Eq. (11) would lead to correlated noise in (6g(k,)6g(k’,)), however, for simplicity
we assume that the spatial dependence is weak (as would be the case for an extended system). We
are reminded that random variables that are uniform and J-correlated spatially are also uniform
and §-correlated in the Fourier basis, giving (63(k.)5g(k)) = 0k, x, (68(k.)?).

The anticipated variance of the reconstructed optical depth is therefore

(60D(k)60D(K,)) = 6y, x, Ak, 2)>(63(kL)),

divergent at the zeros of A(k_, z).

Here we describe the process of regularization used to mitigate the amplification of noise near
divergences in the inverse CTF. The basic idea is to include a “default” (i.e., a Bayesian prior)
optical depth ODy(k,) with uncertainty quantified by a known §-correlated random variable
00Dy (k, ), and we use the weighted average of the reconstructed and prior images

a(k (k. ,2)"'8(k,,z) + b(k, )ODo(k )
ak,)+b(ky)

OD(k,) = (20)

as our reconstructed optical depth. We determine the coefficients a(k, ) and b(k ) by minimizing
the variance

a(k,)?h(ky,2)72((68.1)%) + b(k.)*(50Dg(k,)*)
[a(k,) + b(kj_)]z ’

(60D(k)6OD(K ) = d, k,

for each wavevector. This gives standard expression for Wiener deconvolution [12]

h(k,,2)g(k.,z) + 7*(k,)ODy(k )
B(kb Z)z + U(kl)z

OD(k,) = @21

with regularization constant n(k)? = (63(k,)?)/(60ODg(k)?). In practice we typically select
the prior ODg(k_ ) = 0, essentially assuming no prior information, and take 7 to be k-independent.
This results in the Tikhonov regularized inverse CTF

. _ h(k,,z)
Rk, ,7) ' = ——— 22
R( 1 Z) h(kl,Z)Q +772 (22)

that blocks the divergence of statistical noise, but introduces artifacts.
Since the ORDI technique is implemented in the Fourier basis, we find the noise-correlation
function in coordinate space

7 2/5% 2
(50D(r,)50D(r",)) = JLVZ h(k.,z)"(6g(k.) >eikg(rl—rl) (23)

where we explicitly expressed the discrete FT in terms of a sum over a total of N pixels. Unlike
Al or PCI, ORDI reconstruction of the optical depth has correlated noise.

2.4. Multi-camera off resonant defocus imaging

We showed in Sec. 2.3 that with the ORDI method, spatial frequencies exist for which we retrieve
no information (where &7 — 0). These spatial frequencies depend on z, the position in the object
plane where the intensities are recorded (Fig. 2(a)). This suggests that by adding cameras to the
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system at different z, we might recover information at all spatial frequencies. In the multiple
camera method, the images are combined and processed in a way that minimizes the uncertainty
in the recovered optical depth. The red curve in Fig. 2 plots the square root of the denominator of
Eq. (24) divided by three; this quantity is a measure of the mean loss of information as a function
of wave vector as compared to a focused system.

(a) (b)

3
=

3 T

- =

lTuy) E’

e O
o
o

1 1 -3 1
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5
Wave number k; (um™1) Wave number k; (um™—1!)

Fig. 2. Forward (a) and inverse (b) CTFs computed as a function of transverse wave number
k. , for detuning & = 1 for three defocus distances 60 um (black), —100 um (blue), and
87 um (orange). This shows that for a generic selection of defocus distances the CTFs do not
have coincident zeros. The red curve plots the square root denominator of Eq. (24) divided
by the number of cameras (three in this case) with n = 0, giving a measure of the loss if
information in this measurement.

As shown in Sec. 2.3, each CTF taken independently provides a linear relation between a
measurement and the estimated optical depth [eqn. (19)]. Our task is to find the best estimate
of the optical depth for McORD using the measurements taken in the laboratory [eqn. (9)] and
their corresponding CTFs. We model shot-noise, the only source of noise we consider, as noise
that is spatially uncorrelated and uniform over all spatial frequencies (i.e., additive white noise).
Following the argument in Sec. 2.3.1, we minimize the noise in the reconstructed optical depth
and find -

7))~
ODy = —Z"Zh,—"g". (24)
20) |h§:)|2 +1?

For n = 0 and non-overlapping divergences, the above equation is an exact solution to the
intensity predicted by the scalar wave equation, subject to the approximations discussed above.
As with the ORDI case, this transfer function also transforms uncorrelated measurement noise
into correlated noise in reconstructed images.

2.5. Comparison of statistical and systematic uncertainties

We compare the signal to noise ratio (SNR) of three-camera McORD to those of Al and PCI in
Fig. 3(a). The solid symbols are the result of a numerical simulation of our full imaging process,
while the curves for PCI and Al plot the expected SNR given the expressions in Eqns. (12) and
(14), thereby confirming the performance of our numerical model. Except for the resonant case,
the McORD imaging technique gives a larger SNR than Al at the same detuning. Further, for
positive detuning [right panel to Fig. 3(a)] McORD method shows the same 6! scaling in the
SNR as PCI, but with about 2x lower SNR. The performance at negative detuning is slightly
reduced owing to two of the cameras having a near-zero k node in their CTF as compared to just
one for positive detuning.
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SNR

oD

10! 10° 10-! 107! 10° 10!
Negative detuning —¢ Detuning &

Fig. 3. Simulations. (a) Computed signal to noise ratio for AT (black markers), PCI (blue
markers), and McORD (red markers) for both red and blue detunings plotted on separate
log scales. The numerical simulations and analytical solutions (see Sects. 2.1 and 2.2) are
shown as symbols and solid curves, respectively. These simulations combined three defocus
distances 60 um, —100 pum, and 87 um and set the regularization parameter n = 0. (b)
Optical depth obtained for Al, PCI, and McORD compared to the true value (black curve).

Next Fig. 3(b) quantifies systematic uncertainties in the McORD calculated optical depth. Here
the black curve plots the true optical depth, and the symbols plot the outcome of our numerical
simulation. At very low optical depth both Al and McORD begin to diverge from the true
signal. These systematic shifts result from the non-linearity in the logarithm used to convert
from fractional absorption to OD, where detector noise is rectified, leading to excess signal.

3. Experimental techniques

Our optical geometry, schematically depicted in Fig. 4, consisted of a standard two-lens Keplerian
microscope. The first lens (focal length f;) was positioned a distance f] from the object (a BEC
in our experiments); and the second lens (focal length f>) was placed a distance f; + f> from the
first lens. Typically the detector would be placed at the focus of the second lens, and would
have a magnification M = f,/f;. This system forms the conceptual basis of the imaging system
described in this manuscript.

We implemented the McORD technique using a two-lens imaging system with magnification
M =~ 3.3 (as shown in Fig. 4), and placed three detectors at different distances from the focal
plane. The system consisted of a pair of 25.4 mm diameter lenses with focal lengths f; = 75 mm
and f, = 250 mm separated by 325(10) mm. In such an imaging system, a point (xo, yo, Zp) in
the object space is imaged to the point (—Mxo, —Myo, M*zp) in the image space. We placed a
18(1) mm aperture close to the imaging system’s Fourier plane to minimize spherical aberrations.
This gave a numerical aperture NA = 0.12. After the final lens, roughly equal fractions of the
light was directed to each of our three detectors (Fig. 5) using non-polarizing beam splitters
(NPBSs) with reflection to transmission (R:T) ratios 70:30 and 50:50. We detected this light on
charge-coupled device (CCD) cameras with 648x488 square pixels with width 5.6 ym. Each
camera was on a translation stage, so that the set-up could be used for both the defocused and
standard absorption imaging methods.
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aperature focal plane detector planes

|/

BEC

AR

L(1) 5(2) 4(9) Fourieiplane M2 M2;@) p2,0)

Fig. 4. A simplified schematic of a two-lens Keplerian imaging system with magnification
M =~ 3.3 using lenses fi = 75 mm and f, = 250 mm. The two acromatic lenses are oriented
as indicated. In McORD, the three detector planes 2 are located away from the focus. This
is equivalent to having three detectors next to BEC, as shown. The imaging resolution is set
by the diameter of the apertures placed in the imaging system. A representative aperture,
placed near the Fourier plane, is shown above.

70:30 NPBS ' camera 1
<—To BEC ; El
focal plane EH'
\ M2 = 1.5 mm
i camera 3
50:50 NPBS + [] H
" M22® = 7.6 mm
\
[, ‘____
M2z =33 mm _l
Vo .
camera 2

Fig. 5. Schematic of our McORD setup. The two-lens imaging system described by Fig. 4
is followed by two non-polarizing beam splitters that nominally split the probe laser beam
into three equal intensities. Each image is then recorded by its designated camera. Each
camera takes a defocused image at position M2z from focus, where the red circles denote
the image planes.

3.1.  Experimental procedure

Here we describe the experimental procedure used to acquire the images for the McORD
technique. We collected about 2 x 10® 8’Rb atoms in a vapor-fed six-beam magneto-optical
trap, performed sub-Doppler cooling, and then trapped the atoms in the |f = 2, mp = 2) state in a
spherical quadrupole trap. We used magnetic transport [13] to move the resulting cloud about
42 cm vertically in 2.2 s, giving an ensemble at ~ 120 uK with about 1 x 10® atoms. We then
evaporated to degeneracy in the combined magnetic/optical technique described in Ref. [14].
During evaporation, we performed a microwave transfer between the ground hyperfine states
If =2,mp =2)to|f = 1,mp = —1), giving 100 x 103 atom BECs in a cross-optical dipole trap
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every 15 s. The resulting trap frequencies were ~ 110 Hz, 75 Hz, and 50 Hz along e,.e,, and e,
respectively. To achieve the desired optical depth to test our imaging technique, we performed a
partial ~ 10 % transfer to the |f = 2, mp = 1) state with a short (<« 7/2) microwave pulse [15].
We then used a probe beam with A ~ 780 nm detuned a variable & from the f =2 to f’ = 3 cycling
transition (without a repumping laser) to image the transferred N ~ 1 x 10* atoms after a 6 ms
time of flight (TOF) with the three cameras simultaneously.

Figures 4 and 5 depict our imaging system and camera setup. We used standard 25.4 mm
acromatic lenses with a near infrared anti-reflective coating from Thorlabs and Flea3 CCD
cameras from FLIR [16]. In Sec. 4.1, we present the results of this experiment for 6 = 2.0(1).
We used a probe beam with intensity I ~ 2.5[,, where Iy ~ 1.67 mW/cm? [17] for a circularly
polarized probe beam.

4. Measurement and analysis

4.1. Experimental data

Figure 6(a) shows the fractional absorption g recorded on each camera as described by eqn. (9).
In practice we obtained a third image with neither the atoms nor the probe light that was subtracted
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Fig. 6. Raw and refocused data. (a) Raw data with defocus distances of M2z = 1.5 mm,
M?7? =33 mm and M?73 = 7.6 mm showing clear defocus patterns. A radial mask
excluded artifacts from the probe beam diffracting off of the edge of the CCD sensor. (b)
Refocused images. The first three images depict individual ORDI reconstructions and the
right-most image shows a McORD reconstruction. The ring-like artifacts present in the
ORDI method are less prevalent in the McORD data. (c) Cross sections along e, (black
markers) along with fits (red curves) to the expected “Thomas-Fermi” distribution. The fit
uncertainty on the peak OD is 4 x 1073 for the ORDI cases, and falls to 1.4 x 1073 for the
McORD recovery. Likewise, the uncertainty in the Thomas-Fermi radius falls from 0.14 um
to 0.09 um. It is likely that systematic uncertainties exceed these statistical contributions,
but they still serve to indicate the noise reduction in the McORD method.
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from I(f) and I to remove dark counts and stray light from the images, and then used Eq. (9)
to obtain the fractional drop in intensity g associated with each camera. The camera 1 image
was defocused a distance z() = 1.5 mm away from the image plane. Similarly, the diffraction
patterns from cameras 2 and 3 resulted from defocus distances of z@ =33 mmand z® =7.6 mm,
respectively. These distances were chosen to insure the diffraction patterns were discernible
within the imaging system resolution, and the interference pattern was contained within the spatial
extent of the detector. We then computed the Fourier transforms ®; used Eq. (24) to compute
ORDI reconstructions (using just one term in the summations) and the McORD reconstruction
(using all three images); and took the inverse Fourier transform to obtain the final reconstructions.

To compare the ORDI and McORD imaging techniques, we show the single-camera ORDI
results for each of the three cameras independently in the left three panels of Fig. 6(b), and the
three-camera McORD reconstructed on the right panel. The background of the McORD method
has visibly fewer artifacts than the ORDI reconstructed images. Lastly, we address the fidelity of
the reconstruction by comparing to the expected “Thomas-Fermi” density distribution [18]

3/2 25)

n(x) = ng [1 = (x — x0)*/r3g]

Figure 6(c) plots cross-sectional cuts along e, through the reconstructions with black symbols

along with fits to the Tomas-Fermi model with red curves. We see that the data is in good
agreement with the expected behavior.

The defocus distances z'” used in the ORDI and McORD reconstructions shown in Fig. 6 were

first measured in the lab with ~ 1 mm uncertainties, we then used the focusing technique in Ref.
[19] to fine tune the displacements 720,

5. Conclusion

We experimentally demonstrated an improvement to the single-camera ORDI technique by using
three cameras simultaneously to eliminate the divergences that arise in any single CTF. We
studied the systematic uncertainties of the McORD method, and theoretically compared multiple
techniques using simulated data to understand the array of imaging techniques on equal footing.
We showed that in the regime of far detuned probe beam and low optical depth, the McORD
method is comparable to PCI. Therefore, in experiment, the easier to implement McORD set-up
may be preferable to PCI.

Because the first low-spatial-frequency divergence of a CTF may occur at length scales of
tens of micrometers, ORDI has been limited to imaging relatively large objects. By eliminating
the spatial CTF divergences, McORD offers a complementary technique to in-situ Al and PCI
imaging of quantum gases. The SNR of McORD imaging is about 1.5 times below both Al and
PCI in their respective optimal operating conditions: resonant imaging for Al and far-detuned
imaging for PCI. As a result McORD can switch between near optimal strong (destructive)
measurements and weak (minimally destructive) measurements with no hardware modifications.
In addition, McORD eliminates the need to refocus the imaging systems, for example in TOF
experiments where the object plane shifts depending on the TOF.

A final noteworthy outcome of our noise analysis is that even with spatially uncorrelated detector
noise, the ORDI and McORD methods introduce correlations into the reconstructed signal,
meaning that without added calibration, these techniques would not be of use in experiments
studying noise-correlations between atoms [20].
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