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Steady-state spin synchronization through the collective motion of trapped ions
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Ultranarrow-linewidth atoms coupled to a lossy optical cavity mode synchronize, i.e., develop correlations,
and exhibit steady-state superradiance when continuously repumped. This type of system displays rich collective
physics and promises metrological applications. These features inspire us to investigate if analogous spin
synchronization is possible in a different platform that is one of the most robust and controllable experimental
testbeds currently available: ion-trap systems. We design a system with a primary and secondary species of ions
that share a common set of normal modes of vibration. In analogy to the lossy optical mode, we propose to
use a lossy normal mode, obtained by sympathetic cooling with the secondary species of ions, to mediate spin
synchronization in the primary species of ions. Our numerical study shows that spin-spin correlations develop,
leading to a macroscopic collective spin in steady state. We propose an experimental method based on Ramsey
interferometry to detect signatures of this spin synchronization; we predict that correlations prolong the visibility
of Ramsey fringes, and that population statistics at the end of the Ramsey sequence can be used to directly infer
spin-spin correlations.
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I. INTRODUCTION

Steady-state synchronization of atomic dipoles forms the
foundation for ultrastable optical lasers utilizing narrow-
linewidth atoms coupled to a lossy cavity mode. Such lasers
have recently been proposed [1,2] and experimentally explored
with a Raman system [3], and in a true narrow-linewidth
transition in strontium [4]. The cavity mode acts as a channel
for synchronization of the atomic dipoles (spins) resulting
in a macroscopic collective spin in steady-state composed
of correlated atoms [2]. Synchronization here refers to the
development of a preferred relative phase (correlations)
between every pair of spins. The output light is a result of
collective spontaneous emission of this macroscopic spin, as
in the case of Dicke superradiance [5], with the difference
that the superradiance is in steady state with repumping of the
atoms balancing the cavity loss.

Steady-state superradiant lasers provide a platform for
studying quantum synchronization and have applications as
ultrastable optical frequency sources. The linewidth of the
output light is determined by the decay rate of the narrow-
linewidth transition [1], exploiting the all-to-all pairwise phase
locking of a large number of spins to drastically reduce
the linewidth. The exciting features of cavity steady-state
superradiance, such as the narrow-linewidth light and the spin
synchronization, motivate us to ask whether a superradiance
model can be used to synchronize quantum ensembles in other
platforms, and if such systems could exhibit interesting physics
and have possible applications.

Ion-trap systems are excellent candidates for studies of
spin synchronization, as they have become a robust platform
for experiments related to quantum computing, simulation,
and metrology [6–8]. Ion traps have long trapping times,
routinely trapping ions for several hours. The incoherent
repumping, crucial to maintain steady-state superradiance,
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introduces recoil heating which can kick neutral atoms out of
the shallow traps used in optical cavities. Complicated schemes
must be used to mimic a steady-state number of atoms in
this situation. However, this problem is negligible in ion traps
which have much deeper trapping potentials. Further, ions in a
trap are distinguishable because of the large spacings (∼μm)
between them, enabling access to individual spins for direct
measurement of spin-spin correlations.

One approach to synchronizing ions is to place ion traps
in optical cavities, allowing the ions to interact with the
cavity mode. However, the low density of trapped ions makes
it difficult to couple more than O(103) ions to the cavity,
prohibiting the large collective cooperativities possible with
neutral atoms, where 105 to 106 atoms are routinely used.

A second approach is to couple ions through the normal
modes of vibration of the trap, arising out of the Coulomb
interactions between the ions. Like optical cavity modes, these
normal modes are a natural coupling channel for interactions
between distant particles. A normal mode of vibration and
an optical cavity mode are both bosonic modes that can be
described in the language of quantum harmonic oscillators
[9]. Laser beams can be used to couple the electronic and
motional degrees of freedom in different ways [10,11]. Ion
traps also enable us to engineer a dedicated dissipative channel
with tunable properties: A subset of ions can be used to
sympathetically cool the entire crystal [12–14], removing
phonons from the normal modes analogous to lossy mirrors
removing photons from the cavity mode. The phonon loss
rate and equilibrium phonon number (temperature) can be
controlled by adjusting the power and detuning of the cooling
laser.

In this paper, we follow this second approach, to design
and analyze a scheme for generating spin synchronization in
an ion trap, by coupling a collection of continuously repumped
ions with a heavily damped normal mode of vibration. This
scheme offers several features that are different from that
found in most ion-trap systems. Most protocols in ion traps
use Hamiltonian interactions. However, the present approach
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promises to synchronize a mesoscopic (20–500) number of
ions using dissipation as a crucial ingredient. Our proposal
is enabled by recent demonstrations of control over hundreds
of ions in Penning traps [15], as well as improvements in
radio frequency (RF) traps [16,17] that make it possible to
control tens of ions in these traps. The key ingredients have
also been implemented with a small number of ions in RF traps
for preparing entangled states, demonstrating the feasibility of
our scheme [18].

Our primary motivation in this paper is to understand the
conditions under which spin synchronization and superradi-
ance occur in ion traps with the above approach, and to propose
a path for experimentally identifying spin synchronization
generated through superradiant physics. We anticipate that
ion-trap systems will enable features of spin synchronization
and superradiance to be studied that are difficult to pursue
with neutral atom platforms. In addition, spin synchronization
from steady-state superradiance can enhance metrology with
trapped ions. Theoretical studies have shown that when
continuously repumped spins interact with a heavily damped
cavity mode during the interrogation time of a Ramsey
pulse sequence, the resulting Ramsey fringes can decay at
a rate much slower than the decay and dephasing rates for
unsynchronized atoms [19]. Implementing such a protocol
using a damped normal mode in an ion trap could mitigate
inhomogeneous broadening effects, and improve the capability
of trapped ions for sensing, for example, of time-varying
magnetic fields.

This paper is organized as follows. In Sec. II, we consider a
model of two species of ions loaded in an ion trap that can be
used to explore spin synchronization mediated by a damped
normal mode. In Sec. III, we consider a specific example of
an ion trap system where this scheme could be implemented.
We numerically investigate this model system, comparing the
results with the corresponding atom-cavity model. We look

for signatures of synchronization brought about by steady-
state superradiance such as the pairwise correlations between
ions. We also propose an experimental scheme to observe
features of the spin synchronization based on a Ramsey pulse
sequence. We show that synchronization results in Ramsey
fringes that decay with a slower rate than that expected from
incoherent repumping, and the variance in the population
readout at the end of the Ramsey sequence directly measures
the steady-state spin-spin correlations. We then briefly touch
on how this model can be a potential candidate for improving
metrology with ion-trap systems. We conclude by summa-
rizing our results in Sec. IV, and indicating possible future
directions.

II. MODEL

There are three crucial ingredients to generate steady-state
superradiance in a cavity (see Fig. 1): (a) a heavily damped
cavity mode, (b) a Jaynes-Cummings interaction between
two-level atoms and the nearly-resonant cavity mode, and
(c) incoherent repumping of the two-level atoms to maintain
steady state.

In Fig. 1, we schematically show the mapping of the
problem of cavity steady-state superradiance onto an ion-trap
system. We consider two species of ions, τ (secondary) and σ

(primary), loaded in an ion trap [20]. The two species could
be, for example, two different elements, or isotopes of the
same element. The system has a total of N = Nτ + Nσ ions,
and therefore the transverse (z-axis) motion of any ion can be
described using the N transverse normal modes of the system.
The τ ions are used to sympathetically cool the normal modes
of vibration of the system of ions. The σ ions provide the
effective spins that synchronize through the interaction with a
damped normal mode.

FIG. 1. Mapping cavity steady-state superradiance onto an ion-trap system. In the left panel, we show the model for cavity steady-state
superradiance, where the cavity mode serves as a mediator for collective decay of the spins formed by the σ atoms. In the right panel, we show
the ion trap system where a normal mode of vibration serves as a mediator for collective decay of the spins formed by the σ ions. The figure
illustrates the model with a two-dimensional crystal. More generally our model can also be applied to 1D crystals of ions.
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FIG. 2. Level diagram of a τ ion. The τ ions are driven using a
cooling laser that is red detuned from the dipole allowed |e〉 ↔ |g〉
transition. This results in cooling of the normal modes of vibration of
the ion-trap system.

In Sec. II A, we demonstrate that Doppler cooling of the
two-level τ ions leads to an effective damping of the normal
modes. The effective dynamics for each mode can be described
as an interaction of a single-mode harmonic oscillator with
a reservoir at a finite temperature. Then, in Sec. II B, we
derive the interaction of the three-level σ ions with a pair
of off-resonant Raman beams, taking into account the effects
of dissipative processes. When the difference frequency of
the Raman beams is suitably tuned, this interaction models
a Jaynes-Cummings-type interaction between an effective
spin-1/2 system and a particular normal mode. Finally, in
Sec. II C, we consider the interaction between the spin-1/2
systems formed by the σ ions and the strongly damped
normal modes. We obtain an effective dynamics for these
spin-1/2 systems, that consists only of spin-spin interactions.
We then compare our ion trap model with the model for cavity
steady-state superradiance [21], and highlight the similarities
in the dynamics, as well as the differences.

A. Doppler cooling of τ ions

The τ ions are two-level systems that are placed at the node
of a standing-wave cooling laser [22]. A traveling-wave laser
may be used for cooling provided the achieved steady-state
temperature, characterized by the mean occupation number of
the normal modes, is not very high. The level diagram of a
τ ion is shown in Fig. 2. The |e〉 ↔ |g〉 transition is dipole
allowed, and can be used to Doppler cool the normal modes
of the system. The level |e〉 decays to |g〉 at a rate �τ . The
cooling laser has a Rabi frequency of �τ and a wave vector
�ksw = kswẑ. We use the notation τ±,τ z to denote the Pauli spin
matrices associated with the τ ions.

The master equation for the interaction of the Nτ τ ions and
N normal modes with the cooling laser is

ρ̇τ,ph =−i[Hτ,ph,ρτ,ph] + �τ

2

∑
m

∫ 1

−1
duW (u)

×D[τ−
m e(−ikτ zmu)]ρτ,ph. (1)

Here, ρτ,ph is the density matrix describing the τ spins
and the normal modes (the subscript “ph” is shorthand
for “phonons”). Throughout this paper, we have set h̄ = 1,
unless we explicitly specify otherwise. The notation D[O]
is used to represent the standard Lindblad dissipator, i.e.,

D[O]ρ = 2OρO† − O†Oρ − ρO†O. The second term on the
right-hand side of Eq. (1) accounts for the dissipation due to
spontaneous emission, and its effects on the transverse motion
of the ions. The wave vector �kτ of the spontaneously emitted
photon makes an angle θ = cos−1u with the z axis, where
the distribution of the angles is given by the normalized, even
function W (u). The transverse position of the ion m is denoted
by zm.

In a frame rotating at the cooling laser frequency, the
Hamiltonian Hτ,ph in Eq. (1) is

Hτ,ph = −1

2
�τ

∑
m

τz
m +

∑
n

ωnb
†
nbn

+ �τ

2

∑
m

sin(kswzm)(τ−
m + τ+

m ), (2)

where �τ = ωsw − (ωe − ωg) is the detuning of the cooling
laser. The frequency of the normal mode n is given by ωn, and
its annihilation and creation operators are bn and b

†
n.

For small detunings, ksw ≈ kτ ≡ k. The dimensionless
quantity kzm for the ion m can be expressed in terms of the
normal modes of the system as

kzm =
∑

n

ητ
nMmn(bn + b†n), (3)

and captures the spread in the position of the ion relative to
the wavelength of the light it interacts with. The quantity ητ

n =
k
√

h̄
2mτ ωn

is the Lamb-Dicke parameter [23] for the normal

mode n. The equilibrium positions of the σ and τ ions are
due to a balance between the trap potential and the Coulomb
interactions between the ions. Displacement of an ion from
equilibrium results in simple harmonic motion. The matrix
M diagonalizes the potential energy matrix (written in mass-
weighted coordinates) of this simple harmonic motion. The
frequencies ωn of the normal modes are obtained from the
eigenvalues of this potential energy matrix [24].

In the Lamb-Dicke regime (〈(kzm)2〉1/2 	 1) [23], we can
expand the right-hand side of the master equation in powers
of {ητ

n}. When the decay rate �τ is large compared with the
couplings {�τη

τ
n} between the system of normal modes and

the reservoir of τ ions, second-order perurbation theory and a
Markov approximation can be used to arrive at an effective
master equation for the damping of the system of normal
modes (see Appendix A). The cooling introduces couplings
between the normal modes, resulting in a new dressed set
of normal modes that are decoupled from each other. For
simplicity, here we neglect couplings between different modes,
and approximate the bare modes to be decoupled from each
other.1 Then, the effective master equation that describes the
damping of normal modes is given by

μ̇ph = −i

[∑
n

ω′
nb

†
nbn,μph

]

+
∑

n

D−
n D[bn]μph +

∑
n

D+
n D[b†n]μph, (4)

1See Eq. (A11) and the subsequent remarks in Appendix A.
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FIG. 3. Level diagram of a σ ion. The three level configuration
{|1〉,|2〉,|3〉} is used to drive stimulated Raman transitions in a far
detuned regime, giving rise to an effective two-level system in
the {|1〉,|3〉} manifold. The detuning δ can be adjusted to drive
red sideband transitions coupling the electronic dynamics with an
external normal mode of vibration. Incoherent pumping through an
excited state |a〉 replenishes energy lost via Doppler cooling (not
shown here) of the normal mode.

where

ω′
n = ωn + R−

n (�τ + ωn) + R+
n (�τ − ωn), and

D±
n = R±

n

�τ

2
with

R±
n =

∑
m

(
1
2�τη

τ
nMmn

)2

�2
τ

4 + (�τ ∓ ωn)2
. (5)

Here μph is the density matrix describing the normal modes.
To draw an analogy with cavity QED models, it is useful to
define a cooling rate per mode κn = 2(D−

n − D+
n ) and a mean

occupation number per mode n̄n = D+
n /(D−

n − D+
n ). Then

Eq. (4) can be written as

μ̇ph = −i

[∑
n

ω′
nb

†
nbn,μph

]
+

∑
n

κn(n̄n + 1)

2
D[bn]μph

+
∑

n

κnn̄n

2
D[b†n]μph. (6)

Equation (6) describes the decay of N individual harmonic
oscillators with frequencies {ωn}, each, respectively, in contact
with a reservoir in a thermal state with mean occupation
number n̄n, at rates κn [25].

B. Interaction of σ ions with Raman beams

The level diagram of a σ ion is shown in Fig. 3. The
|1〉 ↔ |2〉 and |3〉 ↔ |2〉 transitions are dipole allowed, but
the |1〉 ↔ |3〉 transition is dipole forbidden. A pair of Raman
beams is used to drive the |1〉 ↔ |2〉 and |3〉 ↔ |2〉 transitions.
Their wave vectors, frequencies, and Rabi coupling strengths
are, respectively, �kR,1,ωR,1,g1 and �kR,2,ωR,2,g2. The Rabi
coupling strengths have a position dependency arising from
the traveling-wave Raman beams, i.e.,

g1 = g1,0e
i�kR,1·�x, and g2 = g2,0e

i�kR,2·�x. (7)

The difference wave vector �kσ = �kR,1 − �kR,2 is along the
(transverse) z axis. The level |2〉 decays to levels |1〉 and

|3〉 at rates �1 and �2, respectively. The Raman beams
operate in a regime where they are far detuned from the
transitions they drive: �1 = ωR,1 − (ω2 − ω1),�2 = ωR,2 −
(ω2 − ω3) � |g1|,|g2|,�1,�2.

The master equation for a σ ion interacting with Raman
beams is given by

ρ̇σ = −i[Hσ ,ρσ ] + �1

2
D[σ12]ρσ + �2

2
D[σ32]ρσ , (8)

where ρσ is the density matrix for a single σ ion.
The Hamiltonian appearing in Eq. (8) is

Hσ = �1σ11 + �2σ33 +
(

g1

2
σ21 + g2

2
σ23 + H.c.

)
, (9)

where we use the notation σij = |i〉〈j |,i,j = 1,2,3 to repre-
sent operators acting on the electronic levels of the σ ion.

Driving this three-level system in a far detuned regime
results in Rabi oscillations between levels |1〉 and |3〉. While
this is a well-known result [23], it is important for our study
to consider the dissipative processes that arise because of the
scattering from |2〉. We use a recently developed Schrieffer-
Wolff formalism for dissipative systems [26], which is a
projection operator method, to rigorously obtain the effective
dynamics of the two-level system formed by the {|1〉, |3〉}
manifold.

The use of this formalism in the present case is detailed
in Appendix B. We then get a description of the effective
dynamics in the {|1〉, |3〉} manifold. We denote operators in
this space using Pauli spin matrices: σ z = σ33 − σ11,σ

+ =
σ31,σ

− = σ13. For a collection of σ ions, the master equation
describing the dynamics in the {|1〉, |3〉} manifold of these
ions is then

μ̇ = −i[H eff,μ] + �31

2

∑
l

D[σ−
l ]μ

+ �13

2

∑
l

D[σ+
l ]μ + �d

8

∑
l

D
[
σ z

l

]
μ, (10)

where

H eff = −1

2
δR

∑
l

σ z
l +

∑
l

(
�R,l(zl)

2
σ+

l + H.c.

)
. (11)

Here, μ is the density matrix for the effective spin-1/2
systems formed by the {|1〉,|3〉} manifolds of the σ ions.
In writing Eq. (10), we have omitted certain “cross-terms”
[27] which eventually contribute at order �2

1,2/�
2(	1) lesser

than the interactions of interest. To avoid digressing, we
outline the reasoning behind this omission in Appendix B.
We have introduced several new symbols in Eq. (10), which
are explained in Table I.

At this point, we consider a collection of Nσ σ ions and
Nτ τ ions loaded in an ion trap. The collection of ions has
N = Nσ + Nτ normal modes in total. The σ ions with index
l,l ∈ {1, . . . ,Nσ } have an effective Rabi frequency �R,l(zl) =
�0

Reikσ zl . Once again, the dimensionless quantity kσ zl for ion
l can be expressed in terms of the normal modes of the system
as

kσ zl =
∑

n

ησ
nMln(bn + b†n), (12)
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TABLE I. Symbols used in writing the effective master equation
for the σ ions [Eq. (10)].

Symbol Description Expression

δR Effective detuning (�1 + |g1|2
4�1

) − (�2 + |g2|2
4�2

)

�R Effective Rabi frequency
g1g∗

2
4 ( 1

�1
+ 1

�2
)

� Average detuning �1+�2
2

�31 Effective spontaneous emission �1
|g2|2
4�2

�13 Effective incoherent repumping �2
|g1|2
4�2

�d Effective dephasing �1
|g1|2
4�2 + �2

|g2|2
4�2

where the quantity ησ
n = kσ

√
h̄

2mσ ωn
is the Lamb-Dicke param-

eter for the normal mode n.
In the Lamb-Dicke regime (〈(kσ zl)2〉1/2 	 1), the effective

Rabi frequency �R,l can be expanded up to first order as

�R,l(zl) ≈ �0
R + i�0

R

∑
n

ησ
nMln(bn + b†n). (13)

The Raman lasers are now tuned to the red sideband [23] by
adjusting the effective detuning δR . If |�0

R| 	 |δR| ∼ ωn, the
contributions from the carrier and blue sideband interactions
can be neglected, as the coherences associated with these
processes are O(�0

R/δR) and O(�0
Rησ

n /δR), respectively. The
effective Hamiltonian in Eq. (10) is approximately

H eff ≈ −1

2
δR

∑
l

σ z
l +

∑
n

ωnb
†
nbn

+
∑

l

∑
n

(Flnσ
+
l bn + H.c.), (14)

where Fln = i�0
Rησ

nMln/2 is the effective coupling strength
for a Jaynes-Cummings-type interaction between ion l and
normal mode n. We have included the self-energy terms for the
normal modes, since the master equation (10) now describes
the combined system of σ ions and the normal modes. Note that
Fln is smaller than the effective Rabi frequency �0

R by a factor
ησ

nMln. This is the reason why the (usually) small dissipative
processes arising from the stimulated Raman process could be
important in our study.

C. Effective spin-spin model for σ ions

In Sec. II B, we obtained the effective dynamics for the
interaction of the σ ions with the Raman lasers. The σ

ions, henceforth treated as effective spin-1/2 systems, interact
with the normal modes through a Jaynes-Cummings-type
interaction. Earlier, in Sec. II A, the Doppler cooling of the
τ ions was used to derive an effective damping for the normal
modes. In this section, we proceed by describing the interaction
of the σ ions with these damped set of normal modes.

The master equation for the interaction of the σ ions with
the damped set of normal modes is given by

ρ̇σ,ph = −i[Hσ,ph,ρσ,ph] +
∑

n

κn(n̄n + 1)

2
D[bn]ρσ,ph

+
∑

n

κnn̄n

2
D[b†n]ρσ,ph, (15)

where

Hσ,ph = −1

2

∑
l

δRσ z
l +

∑
n

ω′
nb

†
nbn

+
∑

l

∑
n

(Flnσ
+
l bn + H.c.). (16)

Here, ρσ,ph is the density matrix describing the σ spins and
the normal modes.

It is convenient to first transform to an interaction pic-
ture with H0 = −δR( 1

2

∑
l σ

z
l + ∑

n b
†
nbn). The Hamiltonian

appearing in Eq. (15) in this interaction picture is

HI =
∑

n

δ̃nb
†
nbn +

∑
l

∑
n

(Flnσ
+
l bn + H.c.), (17)

where δ̃n = ω′
n + δR is the effective detuning of the normal

mode n. We assume that the Raman laser beams are tuned
very close to the highest frequency mode, which we take to be
the center-of-mass (COM) mode, so that δR ≈ −ωCOM. As a
result, |δ̃n| is very small for the COM mode and increases with
decreasing mode frequency.

The Liouvillian in Eq. (15) can be split into a term LR

acting on the reservoir of normal modes and a term LSR that
couples the system of σ spins with this reservoir:

ρ̇σ,ph = LRρσ,ph + LSRρσ,ph, where

LRρσ,ph = −i

[∑
n

δ̃nb
†
nbn,ρσ,ph

]

+
∑

n

κn(n̄n + 1)

2
D[bn]ρσ,ph

+
∑

n

κnn̄n

2
D[b†n]ρσ,ph,

LSRρσ,ph = −i

[∑
l

∑
n

(Flnσ
+
l bn + H.c.),ρσ,ph

]
. (18)

The spin-spin interactions are mediated predominantly by
the nearly resonant COM mode. If the damping rate κCOM of
the COM mode is large compared to the collectively enhanced
spontaneous emission rate Nσ�COM(1 + n̄COM), with �COM =
F2

COM/κCOM, we can obtain an effective master equation for
the spin dynamics using second-order perturbation theory and
a Markov approximation. The details of this procedure, and
an explanation for the validity condition mentioned above are
presented in Appendix C. The off-resonant modes are detuned
by δ̃n > κCOM, ensuring the Markov approximation can be
used for the off-resonant modes as well while studying the
system on time scales t � κCOM.

The damping of the normal modes leads to dissipation of
energy from the system. To maintain steady state, energy is
replenished by continuous incoherent repumping of the σ spins
at a rate w. This can be achieved by driving the |1〉 state to
an excited state |a〉, which then rapidly decays to |3〉. The
effective master equation for the density matrix μσ of the σ

spins, interacting with a damped set of normal modes and
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being incoherently repumped is given by

μ̇σ = −i
[
H eff

σ ,μσ

]
+

∑
l,m

�−
lm(2σ−

m μσ σ+
l − σ+

l σ−
m μσ − μσσ+

l σ−
m )

+
∑
l,m

�+
lm(2σ+

l μσ σ−
m − σ−

m σ+
l μσ − μσσ−

m σ+
l )

+ �31

2

∑
l

D[σ−
l ]μσ +

(
w + �13

2

) ∑
l

D[σ+
l ]μσ

+ �d

8

∑
l

D
[
σ z

l

]
μσ , (19)

where

H eff
σ = 1

2

∑
l

Blσ
z
l +

∑
l,m

l �= m

Jlmσ+
l σ−

m . (20)

The expressions for the coefficients introduced in Eq. (19)
are as follows [20]:

Bl = −
∑

n

|Fln|2
κ2

n

4 + δ̃2
n

δ̃n(1 + 2n̄n),

Jlm = −
∑

n

FlnF∗
mn

κ2
n

4 + δ̃2
n

δ̃n,

�−
lm =

∑
n

FlnF∗
mn

κ2
n

4 + δ̃2
n

κn

2
(1 + n̄n),

�+
lm =

∑
n

FlnF∗
mn

κ2
n

4 + δ̃2
n

κn

2
n̄n. (21)

It is useful to gain some physical insight into the
terms present in the master equation (19). The terms∑

l,m �−
l,m(2σ−

m μσσ+
l − · · · ) and

∑
l,m �+

l,m(2σ+
l μσσ−

m − · · · )
describe collective emission and collective absorption of
the spins, respectively. The emission is stronger than the
absorption when the modes are continuously cooled; this is
reflected in the expressions for �−

l,m,�+
l,m in Eq. (21). The

terms of the form D[σ−
l ]μσ , D[σ+

l ]μσ , and D[σ z
l ]μσ describe

spontaneous emission, incoherent repumping, and dephasing,
respectively. The Hamiltonian terms arise because of couplings
mediated by the off-resonant normal modes; note that the ex-
pressions for Bl and Jl,m vanish when the detunings of all the
modes are zero. The Hamiltonian terms comprise an effective
magnetic field Bl for each spin, as well as pairwise spin-spin
interactions which swap the excitation between the spins.

Equation (19) reveals that the ion trap model has the key
ingredients required to capture steady-state superradiance:
collective emission and incoherent repumping. In addition, the
ion trap model also replicates the spontaneous emission and de-
phasing processes that may arise with neutral atoms in a cavity.

There are two important differences between the steady-
state superradiance models in an ion trap and in a cavity. First,
the ion trap model also has a collective absorption process,
which is present because of the nonzero temperature set by the
Doppler cooling. Further, there are Hamiltonian interactions
that are mediated by the off-resonant normal modes. This

feature is absent in the cavity model where it is usually a
good approximation to consider just a single optical mode. In
spite of this, the qualitative features of the dynamics in the
ion trap model are the same as in the cavity model, as we
demonstrate in the next section.

III. A MODEL SYSTEM

A. Trap, ions, and laser configurations

We first set the stage by considering a concrete example
of an ion trap system. We consider two species of ions,
24Mg+ and 25Mg+, loaded in a Penning trap. The Penning trap
allows for controlling large numbers of ions, and also gives
a well-separated center-of-mass (COM) mode [28] (tens of
kilohertz higher than subsequent mode) that makes it possible
to mediate superradiant interactions predominantly through a
single bosonic mode, as in the cavity case.

Penning traps employ static electric fields and a strong
uniform magnetic field �B = Bẑ to confine ions [15]. The
static electric fields are generated by applying potentials to
electrodes with a common symmetry axis that is aligned with
the magnetic field (ẑ) axis. The electric fields provide harmonic
confinement along the z axis characterized by a transverse
frequency ωCOM [this is the frequency of the center-of-mass
(COM) mode, which is also the highest frequency mode].
The combination of the electric and magnetic fields leads to
�E × �B drift of the ions around the z axis. This rotation pro-

vides the necessary radial confinement. Additional segmented
electrodes can be used to apply a rotating potential (“rotating
wall”), and the rotation of the ions can be phase locked to
this “rotating wall” potential, lending stability to the system.
For sufficiently weak radial confinement, the ions form a 2D
planar crystal with a triangular lattice, as indicated in Fig. 1.
For our model parameters, we set the transverse frequency
ωCOM/2π = 2 MHz, and the lattice spacing between adjacent
ions to be a = 10 μm. This is possible with a trap magnetic
field of B ≈ 5 T.

The centrifugal force brought about by the rotation, causing
the heavier ions to move outwards, enables separating the two
species for different functions of the system. The 24Mg+ ions,
to be used for Doppler cooling (τ ions), are located in the
center, while the 25Mg+ ions, to be used as effective spin-1/2
systems (σ ions), form hexagonal rings around the inner core
of cooling ions. The actual equilibrium configuration of ions
is not a perfect triangular lattice, as the boundary becomes
progressively circular with increasing crystal size, and the
interion spacing increases slightly for the outer ions. Neverthe-
less, we use an idealized configuration (see Table II) wherein
the ions form a regular triangular lattice. We have verified that
the trap parameters can be tuned to provide an equilibrium
configuration whose normal mode spectrum is consistent with
the spectrum of our ideal lattice for modes close to, and
including, the COM mode. Since the spin-spin interactions are
primarily mediated by the COM mode, and the dominant off-
resonant contributions are from the modes close to the COM
mode, our ideal lattice is a good approximation for this study.

In the high magnetic field regime of the Penning trap, the
nuclear spin I essentially decouples from the electronic spin
J , and {J,mJ } are good quantum numbers to describe the state
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TABLE II. Summary of important parameters for a numerical simulation, for a system consisting of Nσ = 124 and Nτ = 93 ions (giving
a total of N = 217 ions). The table also shows the ion positions used for numerical simulation.

1. Trap
Input parameters

a. System size (Nσ ,N ) (124,217)
b. Lattice spacing 10 μm
c. COM mode frequency 2 MHz

d. Ion positions (orange, σ ; blue, τ )

Derived parameters
a. Other normal modes Diagonalize potential energy matrix for above geometry

2. τ ions
Input parameters

a. Upper level decay rate �τ 41.4 (2π × MHz)
b. Transition wavelength 280.3 (nm)
c. Cooling laser detuning �τ −�τ/2
d. Cooling laser Rabi freq. �τ 10 (2π × MHz)

Derived parameters
a. Cooling rate κCOM 5.1(2π × kHz)
b. Mean occupation n̄COM 4.7

3. σ ions
Input parameters

a. Raman beams g1 = g2 44.7 (2π × MHz)
b. Average detuning � 230 (2π × GHz)
c. Difference detuning δR −ω′

COM

d. Lamb-Dicke parameter ηCOM (sets difference wave vector |kσ |) 0.1
e. Scattering from |2〉: �1, �2 27.27,13.63 (2π × MHz)
f. Repump w variable; 0.05–1.0 Nσ �c

Derived parameters
a. Coupling constants Bl , Jlm, �±

lm Calculate from Eq. (21)
b. Net collective emission rate �c 0.84 (2π × Hz)
c. Spontaneous Raman �13, �31, �d 0.12,0.24,0.36 (2π × Hz)

of the ions. The level structure of these ions, as well as the laser
configurations to be used are shown in Fig. 4.

1. 24Mg+ (τ ions)

A standing-wave cooling laser (σ− polarization) is used
to drive the 3s 2S1/2(mJ = −1/2) ↔ 3p 2P3/2(mJ = −3/2)
transition (|g〉 ↔ |e〉) which has a separation of ∼280.3 nm.
The upper level decays at a rate �τ/2π ≈ 41.4 MHz back
to the lower level, thereby providing a cycling transition for
Doppler cooling. The cooling laser has a detuning �τ =
−�τ/2 to obtain fast cooling rates. Using a Rabi frequency
of �τ/2π = 10 MHz gives a cooling rate of κCOM/2π ∼ 5–6
kHz and a mean occupation n̄COM ≈ 4.7 for the COM mode.

2. 25Mg+ (σ ions)

Two Raman beams (Rabi frequencies |g1|/2π =
|g2|/2π ≈ 44.7 MHz), with π and σ+ polarizations, re-
spectively, couple the 3s 2S1/2(mJ = +1/2) (|3〉) and the
3s 2S1/2(mJ = −1/2) (|1〉) levels to the 3s 2P1/2(mJ =
+1/2) (|2〉) level in a far detuned regime (� ≈ 230 GHz).
Their difference detunings are chosen such that δR ≈ −ω′

COM,
where ω′

COM is the frequency of the COM mode, slightly
shifted in the presence of the Doppler cooling. The Raman

beams are oriented such that the Lamb-Dicke parameter for
the COM mode is ησ

COM ≈ 0.1. A repump laser (σ+ po-
larization) drives the 3s 2S1/2(mJ = −1/2) ↔ 3p 2P3/2(mJ =
+1/2) transition (|1〉 ↔ |a〉), and the upper level rapidly
decays to |1〉 and |3〉 with a relative branching ratio χ of
0.5. Here, χ is the ratio of the decay rate back to the level |1〉
and the decay rate to the level |3〉. To illustrate the important
physics, the branching back to the initial state will be ignored
initially; however, we will discuss its effects subsequently.

We note here that the Raman beams resonantly tuned to
interact with the 25Mg+ ions will not resonantly interact with
the 24Mg+ ions; the 25Mg+ ions have a nonzero nuclear spin
�I leading to a hyperfine perturbation AmImJ that changes
the level spacing of the effective two-level system by a few
gigahertz [29].

B. Results from numerical simulation

In a cavity system, steady-state superradiance can be
observed experimentally by measuring the intensity (photons)
and phase properties of the output light from the cavity [3].
The corresponding observables in an ion trap are the intensity
(phonons) and oscillation phase of the COM mode. While
in principle measurable [31,32], factors like the background
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FIG. 4. Level structure of 24Mg+ and 25Mg+ ions in high field
[29,30]. The hyperfine shifts between the two species are not
shown here. The laser configurations to be used are also indicated.
The repump laser drives the 3s 2S1/2(mJ = −1/2) ↔ 3p 2P3/2(mJ =
+1/2) transition in 25Mg+, and the upper state rapidly decays to
3s 2S1/2(mJ = −1/2) and 3s 2S1/2(mJ = +1/2) with branching ratios
of 1/3 and 2/3, respectively.

phonons from Doppler cooling have to be carefully considered
before embarking on such measurements. Standard techniques
in ion traps offer convenient ways to directly study the spin de-
grees of freedom. Steady-state superradiance is characterized
by the development of nonzero steady-state spin-spin correla-
tions, leading to the formation of a giant collective spin which
behaves very differently compared to uncorrelated spins. It is
this aspect of superradiance that we study numerically and
propose techniques for probing via experiments.

We define an ensemble-averaged (EA) rate �c =
(2/N2

σ )
∑

l,m(�−
lm − �+

lm), which plays an analogous role to
the net single-atom emission rate into the cavity mode in
the superradiant laser [2]. The strength of the Raman beams
have been chosen such that the nearly resonant COM mode
is strongly damped compared to the collectively enhanced
spontaneous emission rate, i.e., κCOM � Nσ �c(1 + n̄COM).
Steady-state superradiance is expected in a regime where the
repump strength w � Nσ�c [2]. We are interested in the col-
lective behavior of a large number of ions; however, the exact
solution is near impossible to compute since the density matrix
lives in a 4Nσ dimensional Hilbert space, limiting computation
of exact solutions of the master equation to Nσ � 10. We use
an approximate technique using c-number Langevin equations
to analyze this problem. This involves writing the quantum
Langevin equations for the spin operators σ±

l ,σ z
l using the

master equation (19), obtaining the noise correlations using the
Einstein relations [33], and finally making a correspondence
between quantum operators and classical c numbers in order
to obtain c-number Langevin equations. This is elaborated
in Appendix D. Table II gives the important parameters for

FIG. 5. Steady-state (a) inversion and (b) spin-spin correlation as
a function of repump strength for three different system sizes (SS)
(Nσ , N ). The corresponding values for a minimal cavity model with
Nσ = 40 atoms are also plotted. As the system size increases, the
inversion and correlation in the ion trap case become similar to the
cavity case.

numerical simulation of a system comprising Nσ = 124 and
Nτ = 93 ions.

1. Steady-state inversion and spin-spin correlation

In this section, we summarize numerical results for the
steady-state inversion and spin-spin correlations for different
system sizes. We then compare these results with the case of
steady-state superradiance in a cavity.

The system size (SS) can be specified using the notation
(Nσ , N ), where N = Nσ + Nτ . An increase in Nσ is accompa-
nied by an increase in Nτ , because for the same laser intensity,
more coolant ions are required to provide fast cooling rates
when a larger number of ions are present. We will use the
notation 〈· · · 〉E to denote expectation values that are averaged
over the entire ensemble of spins. Figure 5 shows the steady-
state EA inversion and spin-spin correlation (〈σ+

i σ−
j 〉E)2 for

2In steady state, 〈σ±
i 〉 = 0 for all spins i. Therefore, the correlation

〈σ+
i σ−

j 〉 − 〈σ+
i 〉〈σ−

j 〉 for every pair i,j of spins is simply 〈σ+
i σ−

j 〉.
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three different system sizes: (i) (10, 19), (ii) (48, 91), and
(iii) (124, 217). In a minimal cavity model that accounts for
only collective emission and incoherent repumping [21], the
steady-state values do not change significantly for Nσ � 30
atoms. The inversion and correlation in the cavity case for
Nσ = 40 atoms are shown for comparison. As the system
size increases, both the inversion and correlation for the
ion-trap system become similar to the cavity case [21]: for
large Nσ , the inversion grows monotonically with w, and is
approximately 1/2 at w = 0.5Nσ �c (collective Bloch vector
is halfway between equator and North Pole). The correlation
increases with w, reaches a maximum around w = 0.5Nσ �c,
and then decreases with further increase in w. The development
of steady-state pairwise spin-spin correlations implies the
phase locking of spins (synchronization), which is a signature
of steady-state superradiance. It is reasonable to expect that
the ion trap system gives results similar to the zero temperature
minimal cavity model as the system size increases; the
corrections to the inversion and correlation, due primarily to a
nonzero temperature set by n̄COM, scale as n̄COM/Nσ . This can
be seen by estimating the steady-state values by writing the
equations of motion for these expectation values and closing
the set of equations by performing a cumulant approximation
as was done in Refs. [2,19].

2. Experimental access: Ramsey fringes

In order to observe this spin synchronization experimen-
tally, a Ramsey pulse sequence [or separated-oscillatory field
experiment; see Fig. 6(a)] [34] could be used. For short
precession intervals, we show that spin synchronization causes
the Ramsey fringes to decay at a rate slower than that expected
from the incoherent repumping applied to the spins. For long
precession intervals, after the fringes have decayed away,
we show that spin synchronization can be detected through
measurements of the population variance.

In a traditional Ramsey sequence, the spins initially in
the ground state (South Pole of Bloch sphere), are brought
to a uniform superposition of ground and excited states
(equator) by applying a π/2 pulse about the x axis. In the
frame of the initial laser, the spins then precess around the
z axis at a rate set by the detuning of the laser, for an
interrogation period T . Finally, a second π/2 pulse rotates
the spin about the x axis and the population is read out using
resonance fluorescence. The result is a sinusoidal variation
(“fringe”) of the population, with the amplitude damped by
incoherent processes such as spontaneous emission, incoherent
repumping, and/or dephasing.

Here, after the initial π/2 pulse, we intend to allow the
σ spins to interact with the damped set of normal modes
during the interrogation period, while continuously repumping
the spins incoherently at a rate w [19]. This is achieved by
continuous Doppler cooling of the τ ions, and applying Raman
and repump beams to the σ spins, during the interrogation
period. Finally, the second π/2 pulse is applied and the
population is read out. In the presence of only the repump,
the amplitude of the fringe decays at a rate w/2. However,
the damped COM mode mediates phase locking of the spins,
that leads to a collective spin that is robust against individual
ion incoherent processes. After a fast initial transient during

FIG. 6. (a) Ramsey pulse sequence to probe the spin synchro-
nization. During the interrogation time, the σ ions interact with a
heavily damped normal mode while being continuously repumped.
(b) Decay of the Ramsey fringe envelope for uncorrelated ions and a
system of correlated ions with SS (124, 217) and w = Nσ �c/2. Once
the σ spins have phase locked, the Ramsey fringe decays at a slower
rate than when the spins are uncorrelated. (Inset) Fringe decay as a
function of time for three different system sizes for w = Nσ �c/2.

which the spins phase lock, the fringe decays at a slower rate,
a rate that is set by the phase diffusion of this collective spin.
The pairwise spin-spin interactions [O(N2) interactions] lead
to phase locking of the spins, while the self-interactions of
the spins [O(N ) interactions] are phase-destroying processes
that result in phase diffusion. Figure 6(b) compares the fringe
decays for uncorrelated ions and correlated ions. The inset
shows the normalized Ramsey fringe amplitude for three
different system sizes.

Figure 7(a) shows the decay rate of the Ramsey fringe
envelope as a function of repump strength for SS (124, 217).
The collective spin clearly decays at a slower rate compared
to the case when only repumping is present, indicating phase
locking of the spins.

In contrast to simple repumping schemes (Fig. 3), the
excited state |a〉 does not rapidly decay to |3〉 alone in
realistic repumping schemes. A fraction of the population in
|a〉 also decays back to the initial state |1〉, with a relative
branching ratio χ that gives the ratio of population transfer to
|1〉 and |3〉. The effect of this is to introduce an additional
dephasing �w = χw, where w is the repumping strength.
This can be accounted for by setting �d → �d + �w in the
master equation (19). The decay rate for various relative
branching ratios is shown in Fig. 7(b) for SS (124, 217) and
w = 0.5Nσ �c. The dephasing due to branching scales with the
rate of synchronization, which is set by the repump strength w.
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FIG. 7. (a) Decay rate of the Ramsey fringe envelope (dots) as
a function of repump strength for SS (124, 217). The solid line
shows the decay rate if only repumping is present. (b) Decay rate of
the Ramsey fringe envelope (dots) as a function of the relative
branching ratio for SS (124, 217) and w = Nσ �c/2. The solid line
shows the decay rate if only repumping (with branching) is present.
The repumping scheme proposed in this paper (see Fig. 4) with the
25Mg+ ions has a relative branching ratio of 0.5, and is indicated by
a green triangle.

Despite this, the phase locking of the spins still ensures that
the fringe amplitude decays slower compared to the situation
when only repumping (with branching) is present.

In the cavity model, the plot of decay rate vs repump
strength for reasonably large system sizes (Nσ � 40) is
approximately the same, when the repump strength is in units
of Nσ �c. However, the constant �c is independent of Nσ in
the cavity case. In the ion-trap system, the spin-spin coupling
is predominantly mediated by the single nearly resonant COM
mode, although a total of N modes are available. Hence, the
coupling of each spin to the COM mode scales as 1/

√
N , and

hence �c [see Eq. (21)] decreases as N increases. As a result,
when the decay rate is measured in absolute units, say, hertz,
for example, the decay rate decreases as N increases. This is
demonstrated in Fig. 8 for SS (i) (48, 91), (ii) (94, 169), and
(iii) (124, 217).

FIG. 8. Decay rate of the Ramsey fringe envelope (dots) as a
function of repump strength for three different system sizes. The
fringes persist for longer with increasing N .

The variance of the population measurement at the end of
the Ramsey sequence gives information about the spin-spin
correlations present in the system. Using J x,J y,J z to denote
the components of the collective spin, we note that the variance
of the total inversion (�Jz)2 after the second π/2 pulse in
the Ramsey sequence is just (�Jy)2 before that pulse. Before
the second π/2 pulse, the variance (�Jy)2 can be expressed
as

(�Jy)2 = Nσ

4
+ Nσ (Nσ − 1)

2
(〈σ+

i σ−
j 〉E − Re〈σ+

i σ+
j 〉E)

−N2
σ (Im〈σ+

i 〉E)2. (22)

The quantities Re〈σ+
i σ+

j 〉E and Im〈σ+
i 〉E are zero once the

fringe envelope has decayed to zero. Thus, the steady-state
variance (�Jz)2 ((�Jy)2 before the second π/2 pulse) scales
as N2

σ 〈σ+
i σ−

j 〉E (Nσ � 1) giving a measure of the nonzero
steady-state spin-spin correlations. Experimentally, this corre-
sponds to a situation where the Ramsey fringe amplitude has
decayed to zero but the variance of the population inversion
readout is significantly larger (N2

σ scaling) than what we would
expect for uncorrelated spins, as shown in Fig. 9. This means
that, although the collective spin is diffusing around leading to
complete decay of the Ramsey fringe amplitude, the relative
directions of each pair of spins remains fixed, as signaled by
the nonzero steady-state spin-spin correlations. Further, the N2

σ

scaling shows the all-to-all nature of the spin-spin interactions.
The variance could be a measurable quantity even when the
repumping has a nonzero relative branching ratio: The inset of
Fig. 9 shows the steady-state variance as a function of relative
branching ratio for SS (124, 217) and w = Nσ�c/2.

3. Potential advantage of sub-Doppler cooling

Our current design uses Doppler cooling to provide a
heavily damped COM mode that can mediate spin-spin
interactions. In a minimal model, we can ignore the coupling
of the spins to all the modes other than the resonant COM
mode. Further ignoring spontaneous emission and dephasing,
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FIG. 9. Steady-state variance of inversion as a function of repump
strength w for SS (124, 217) at the end of the Ramsey pulse sequence,
normalized to the projection noise for uncorrelated ions (Nσ /4).
(Inset) Normalized steady-state variance of inversion as a function
of relative branching ratio χ for SS (124, 217) and w = Nσ �c/2. The
repumping scheme proposed in this paper (see Fig. 4) with the 25Mg+

ions has a relative branching ratio of 0.5, and is indicated by a green
triangle.

this minimal model is described by the master equation,

μ̇σ = �c

2
(n̄COM + 1)D[J−]μσ

+ �c

2
n̄COMD[J+]μσ + w

2

∑
l

D[σ+
l ]μσ , (23)

where J± = ∑
l σ

±
l are ladder operators for the collective

spin. It is instructive to study the change in the decay rate as
n̄COM is changed. We note that this model is invariant under
the permutation of spins. We compute exact decay rates of the
Ramsey fringes for different values of n̄COM using a numerical
method that exploits the SU(4) symmetry of spin systems
that obey permutation symmetry [35]. We summarize these
results in Fig. 10(a) for SS (124, 217) and w = Nσ�c/2. The
decay rate can be as low as �c if the COM mode is cooled
to n̄COM ≈ 0. With Doppler cooling, our model system has
n̄COM ≈ 4.7, and this gives us a decay rate around 10�c, an
order of magnitude higher than what is achievable. Clearly,
sub-Doppler cooling techniques [36–39] could be used to
observe longer lasting fringes.

Spin synchronization mediated by a sub-Doppler cooled
normal mode, and with a repumping scheme that has a
negligible relative branching ratio, can improve metrology
with ion traps. With uncorrelated ions that have 1/T1 (pop-
ulation decay) and 1/T2 (dephasing) rates, the Ramsey fringe
envelope decays at a rate �s = (T −1

1 + T −1
2 )/2. However, with

synchronized ions, the Ramsey fringe envelope decays slower
than in the case of uncorrelated ions in the regime where
�c 	 �s 	 w [19]. The synchronization effect causes the
collective spin to be robust against individual ion decoherence
processes. This is illustrated in Fig. 10(b) for the minimal
model considered in Eq. (23) with n̄COM = 0, and with
additional spontaneous emission (�sp = 1/T1) and dephasing
(�d = 1/T2) processes for the individual ions.

FIG. 10. (a) Decay rate of the Ramsey fringe envelope as a
function of the mean occupation n̄COM of the center-of-mass (COM)
mode for Nσ = 124 ions. The rates shown here are calculated using
the SU(4) method for a minimal model of a single mode (COM)
interacting with the σ ions [Eq. (23)]. The Doppler cooling scheme
proposed is shown by a green triangle. (b) Decay rate of the Ramsey
fringe envelope as a function of repump strength w for Nσ = 124
ions. The minimal model of Eq. (23) is used with n̄COM = 0, but with
additional spontaneous emission and dephasing processes for the
individual ions (�sp = �d = 5�c). The decay rate for uncorrelated
ions is shown by the horizontal line (λ = 5�c). Synchronization can
prolong visibility of Ramsey fringes.

IV. CONCLUSION

We have presented and numerically analyzed a model of
steady-state spin synchronization in an ion trap, where the
synchronization is mediated by a heavily damped normal mode
of vibration. This is achieved by mapping the dynamics of
cavity steady-state superradiance onto an ion-trap system by
exploiting the overarching similarity of an optical cavity mode
and a normal mode of vibration.

We have considered a model system of two species of
ions in a Penning trap, although the present scheme can
also be implemented with 1D or 2D RF traps that can trap
a mesoscopic number (�20) of ions. As the system size
increases, the steady-state spin-spin correlations in the ion
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trap are similar to that in the cavity case, since the effects of a
nonzero temperature due to the Doppler cooling are negated.

We have proposed an experimental scheme using a Ramsey
pulse sequence that can be used to observe features of the
steady-state collective spin that develops as a result of the
synchronization. The Ramsey fringes persist longer when
the spins are synchronized, with a lower decay rate than we
expect from the incoherent repumping. Further, the variance
of the population readout at the end of the Ramsey sequence
scales as N2

σ 〈σ+
i σ−

j 〉E , providing a straightforward means for
documenting spin-spin correlation and the all-to-all nature of
the coupling. These signatures of spin synchronization persist
even when the repumping is imperfect and has a nonzero
branching ratio back to the initial state. We also show that
the Ramsey fringes decay slower with increasing ion number
N since the rate �c decreases with increasing N . In the cavity
case, this would be equivalent to a single-atom cooperativity
parameter in the superradiant laser that scales inversely with
the number of atoms.

We observe that a Ramsey fringe decay rate of around
10�c, achieved with Doppler cooling (n̄COM ≈ 4.7), can be
as low as ∼ �c if the ions are cooled to their zero-point
motion (n̄COM ≈ 0). An ensemble of spins synchronized via
this scheme can give fringes that decay slower than what the
decay and dephasing processes dictate for uncorrelated spins.
This also relies on using a repump scheme that has a negligible
branching ratio back to the initial state.

With this mapping, we can apply the unique tools that ion
traps offer to study spin synchronization from steady-state
superradiance. The ability to address single ions or specific
subsets of ions in a trap can greatly advance studies of synchro-
nization of two ensembles of ions that share the same damped
normal mode [40]. Ion traps could be used to explore quantum
phase transitions between synchronized and unsynchronized
phases, studying the build-up of correlations at the individual
spin level. Recently, a cooling scheme for atoms in cavities
that takes advantage of the collective interactions via a damped
cavity mode has been proposed [41]. It will be interesting to
see if there are analogies to this “supercooling” in ion trap
systems. From a broader perspective, studying steady-state
spin synchronization among tens or hundreds of ions is a
step towards exploiting the potential of ion traps to explore
driven-dissipative quantum many-body systems.
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APPENDIX A: DAMPING OF THE NORMAL MODES

For brevity, we will use the notation ρ ≡ ρτ,ph and μ ≡ μph

in this section.
In the Lamb-Dicke regime (〈(kzm)2〉1/2 	 1), we can

expand the right-hand side of the master equation (1) in powers
of {ητ

n}. Up to second order in {ητ
n} we get

ρ̇ = (LS + LR + LSR)ρ, (A1)

where

LSρ = −i

[∑
n

ωnb
†
nbn,ρ

]
,

LRρ = −i

[
−1

2
�τ

∑
m

τz
m,ρ

]
+ �

2

∑
m

D[τ−
m ]ρ, and

LSRρ = L(1)
SRρ + L(2)

SRρ, (A2)

with

L(1)
SRρ = −i

[
�τ

2

∑
m

(kzm)(τ−
m + τ+

m ),ρ

]
, and

L(2)
SRρ = �τ

2
〈u2〉

∑
m

τ−
m [2(kzm)ρ(kzm)

− (kzm)2ρ − ρ(kzm)2]τ+
m . (A3)

Here S denotes the system of normal modes, and R denotes
the reservoir of τ ions.

We first transform to an interaction picture with L0 = LS +
LR [42]. We then have

˙̃ρ = L̃SRρ̃ = (
L̃(1)

SR + L̃(2)
SR

)
ρ̃, (A4)

where ρ̃ = e−(LS+LR )t ρ and L̃SR = e−(LS+LR )tLSRe(LS+LR )t .
Integrating Eq. (A4) and substituting the formal solution of
ρ̃(t) back into Eq. (A4) gives (up to second order in {ητ

n}),

˙̃ρ = L̃(1)
SRρ̃(0) + L̃(2)

SRρ̃(0) +
∫ t

0
dt ′L̃(1)

SR(t)L̃(1)
SR(t ′)ρ̃(t ′).

(A5)

When the couplings {�τη
τ
n} 	 �τ , the τ ions serve as a

reservoir of ions in a steady state dictated by the reservoir
Liouvillian LR . In this case, the steady-state R0 is the ground
state of the τ ions, i.e., R0 = |g〉〈g|⊗Nτ . Starting from an initial
uncorrelated state ρ̃(0) = μ̃(0)R0, we then use a decorrelation
approximation to write ρ̃(t) ≈ μ̃(t)R0 for subsequent times,
and trace out the spin degrees of freedom of the τ ions:

˙̃μ = TrR
[
L̃(1)

SR(t)μ̃(0)R0
] + TrR

[
L̃(2)

SR(t)μ̃(0)R0
]

+
∫ t

0
dt ′TrR

[
L̃(1)

SR(t)L̃(1)
SR(t ′)μ̃(t ′)R0

]
. (A6)

The first term vanishes because 〈τ±
m 〉 = 0 in the ground

state, and the second term vanishes because 〈τ+
m τ−

m 〉 is zero in
the ground state.

The structure of L(1)
SR [Eq. (A2)] suggests that we need

to find the time evolution of the superoperators τ̃±
m ⊗ I and

I ⊗ (τ̃∓
m )T .

This notation for a superoperator is to be understood
as follows. Let A,B be two operators acting on a Hilbert
space spanned by |e〉,|g〉. Then the action of a superoperator
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L = A ⊗ (B)T on a vector in the corresponding Liouville
space, for, e.g., |λ〉〉 = |e〉〈g| is L|λ〉〉 = A|e〉〈g|B.

From L̃I = e−(LS+LR )tLI e
(LS+LR )t , we have

˙̃LI = [L̃I ,LR]. (A7)

This immediately gives the following complete set of
equations:

d

dt
τ̃−
m ⊗ I = −

(
�τ

2
− i�τ

)
τ̃−
m ⊗ I,

d

dt
τ̃+
m ⊗ I =

(
�τ

2
− i�τ

)
τ̃+
m ⊗ I + �τ τ̃

z
m ⊗ (τ̃+

m )T ,

d

dt
τ̃ z
m ⊗ I = −2�τ τ̃

−
m ⊗ (τ̃+

m )T . (A8)

The time evolution of the superoperators is then given by

τ̃−
m ⊗ I (t) = τ−

m ⊗ Ie−( �τ
2 −i�τ )t ,

τ̃+
m ⊗ I (t) = τ+

m ⊗ Ie( �τ
2 −i�τ )t + τ z

m ⊗ (τ+
m )T

× (
e( �τ

2 −i�τ )t − e−( �τ
2 +i�τ )t

)
. (A9)

Hermitian conjugation of the above two equations gives the
time evolution of the other two superoperators.

The master equation can then be written as

˙̃μ = −
∑
m

∑
n

∑
k

(
�τ

2
ητ

nMmn

)(
�τ

2
ητ

kMmk

)
×

∫ t

0
dt ′

× [{b̃n(t) + b̃†n(t)}{b̃k(t ′) + b̃
†
k(t ′)}μ̃(t ′)e−( �τ

2 −i�τ )(t−t ′)

−{b̃n(t) + b̃†n(t)}μ̃(t ′){b̃k(t ′) + b̃
†
k(t ′)}e−( �τ

2 +i�τ )(t−t ′)

−{b̃k(t ′) + b̃
†
k(t ′)}μ̃(t ′){b̃n(t) + b̃†n(t)}e−( �τ

2 −i�τ )(t−t ′)

+ μ̃(t ′){b̃k(t ′) + b̃
†
k(t ′)}{b̃n(t) + b̃†n(t)}e−( �τ

2 +i�τ )(t−t ′)].
(A10)

The time evolution of the mode annihilation and creation
operators is given by b̃n(t) = bne

−iωnt and b̃
†
n(t) = b

†
ne

iωnt .
If μ̃(t ′) doesn’t change significantly on the time scale �−1

τ

for the decay of correlations in the reservoir of τ spins, we
can perform a Markov approximation and set μ̃(t ′) ≈ μ̃(t)
in Eq. (A10). This is reasonable since the damping rates of

the normal modes are of the order of (�τ η
τ
n)2

�τ
, and for laser

intensities such that �τη
τ
n 	 �τ , this implies (�τ η

τ
n)2

�τ
	 �τ .

Further, we can extend the upper limit of the integration to
∞ since for significant evolution of μ(t), we are interested in
t � �−1

τ .
After performing the integration over χ = t − t ′ in

Eq. (A10), we encounter terms rotating with frequencies
ωn + ωk and ωn − ωk . The former terms are rapidly oscil-
lating, and can be dropped.

Performing the reverse transformation μ = eLS t μ̃ gives us
the master equation for the damping of the normal modes,
which accounts for the coupling between the modes as well:

d

dt
μ = −i

[∑
n

ω′
nb

†
nbn,μ

]

+
∑

n

D−
n,n(2bnμb†n − b†nbnμ − μb†nbn)

+
∑

n

D+
n,n(2b†nμbn − bnb

†
nμ − μbnb

†
n)

− i
∑
n�=k

C−
k,n(bnμb

†
k − bkμb†n + b†nbkμ − μb

†
kbn)

− i
∑
n�=k

C+
k,n(b†nμbk − b

†
kμbn + bnb

†
kμ − μbkb

†
n)

×
∑
n�=k

D−
k,n(bnμb

†
k + bkμb†n − b†nbkμ − μb

†
kbn)

×
∑
n�=k

D+
k,n(b†nμbk + b

†
kμbn − bnb

†
kμ − μbkb

†
n).

(A11)

Here the coefficients are given by

ω′
n = ωn + R−

n,n(�τ + ωn) + R+
n,n(�τ − ωn),

C±
k,n = R±

k,n(�τ ∓ ωk),

D±
k,n = R±

k,n

�τ

2
, where

R±
k,n =

∑
m

(
1
2�τη

τ
nMmn

)(
1
2�τη

τ
kMmk

)
�2

τ

4 + (�τ ∓ ωn)2
. (A12)

The Doppler cooling introduces couplings between the
different modes, with the coupling strengths between two
modes decreasing as their frequency separation increases. The
result of such mode cross-coupling is to introduce an admixture
of other modes into the mode of interest, which in the exam-
ple we consider is the highest frequency center-of-mass
(COM) mode. The symmetric coupling of the COM mode
to the ions then deteriorates, but the essential physics still
remains the same. The situation is analogous to introducing
a random component in the positions of atoms relative to the
cavity standing wave in the superradiant laser. For simplicity,
we assume these mode cross-couplings to be small and neglect
them, use D±

n ≡ D±
n,n,R

±
n ≡ R±

n,n to simplify the notation,
and arrive at the master equation describing the damping of
individual normal modes [Eq. (4)].

APPENDIX B: SCHRIEFFER-WOLFF FORMALISM
FOR THE THREE-LEVEL σ IONS

The idea is to work in operator space, i.e., in the vector
space S spanned by the vectors |1〉〈1|,|1〉〈2|, . . . ,|3〉〈3|. The
Liouvillian describing the dynamics can be written as the sum
of a zeroth-order Liouvillian L0 and a perturbation V . Based
on the eigenvalues {λi} of L0, the space S can be partitioned
into a slow subspace, spanned by eigenvectors with eigenvalue
0, and a complementary fast subspace spanned by eigenvectors
with nonzero eigenvalue [26]. If the left and right eigenvectors
associated with an eigenvalue λi are 〈〈li | and |ri〉〉, respectively,
the projectors P and Q onto the slow and fast subspaces are

P =
∑

i:{λi }=0

|ri〉〉〈〈li |,

Q = 1 − P =
∑

i:{λi }�=0

|ri〉〉〈〈li |. (B1)
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TABLE III. Basis vectors in operator space S. The chosen zeroth-
order Liouvillian L0 is diagonal in the below basis. The eigenvalues
of L0 are given in the third column.

Notation Basis Eigenvalue

|A1〉〉 |1〉〈1| 0
|A2〉〉 |1〉〈2| −i�1

|A3〉〉 |1〉〈3| 0
|A4〉〉 |2〉〈1| i�1

|A5〉〉 |2〉〈2| 0
|A6〉〉 |2〉〈3| i�2

|A7〉〉 |3〉〈1| 0
|A8〉〉 |3〉〈2| −i�2

|A9〉〉 |3〉〈3| 0

Any superoperator A : S → S can now be represented as

A =
(

AP A−

A+ AQ

)
=

(
PAP PAQ

QAP QAQ

)
. (B2)

The perturbation V in general couples the slow and
fast subspaces. The Schrieffer-Wolff formalism provides a
systematic, order-by-order procedure to find the effective

Liouvillian Leff in the slow subspace that arises from this
coupling. Explicitly, at the first three orders of perturbation
theory,

Leff
1 = VP ,

Leff
2 = −V−L−1

0 V+,

Leff
3 = V−L−1

0 VQL−1
0 V+ − 1

2

{
VP ,V−L−2

0 V+}
+, (B3)

where {A,B}+ = AB + BA.
Table III gives the notation we adopt for the basis vectors

in S. We split the superoperator appearing in Eq. (8) into
a zeroth-order Liouvillian L0 and a perturbation V . L0 is
already diagonal in the chosen basis. The third column of
Table III gives the eigenvalues associated with L0 for each
of the bases. Then, the subspace spanned by the eigenvectors
with eigenvalue 0, i.e., {|A1〉〉,|A3〉〉,|A5〉〉,|A7〉〉,|A9〉〉} is the
slow subspace.

We also write the perturbation V explicitly as a matrix
acting on S. A better insight is obtained if we write vec-
tors and matrices in the following order of basis vectors:
|A1〉〉,|A3〉〉, . . . ,|A9〉〉,|A2〉〉, . . . ,|A8〉〉. In this representa-
tion, V is given by

V =
(
VP V−

V+ VQ

)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 �1 0 0 i
g1

2 −i
g∗

1
2 0 0

0 −i(�1 − �2) 0 0 0 i
g2

2 0 −i
g∗

1
2 0

0 0 −(�1 + �2) 0 0 −i
g1

2 i
g∗

1
2 i

g∗
2

2 −i
g2

2

0 0 0 i(�1 − �2) 0 0 −i
g∗

2
2 0 i

g1

2

0 0 �2 0 0 0 0 −i
g∗

2
2 i

g2

2

i
g∗

1
2 i

g∗
2

2 −i
g∗

1
2 0 0 −�1+�2

2 0 0 0

−i
g1

2 0 i
g1

2 −i
g2

2 0 0 −�1+�2
2 0 0

0 −i
g1

2 i
g2

2 0 −i
g2

2 0 0 −�1+�2
2 0

0 0 −i
g∗

2
2 i

g∗
1

2 i
g∗

2
2 0 0 0 −�1+�2

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B4)

The matrix has been partitioned to show the various blocks that make up the perturbation. Using Eq. (B3), we calculate
Leff = Leff

1 + Leff
2 + Leff

3 , which is the effective Liouvillian in the slow subspace. In terms of the symbols defined in Table I, the

effective Liouvillian Leff, correct up to O( |g1,2|2
�2 ) is given by⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−�13 i �R

2 + �1,×−�3,×
2 �1 − 2�11 − �31 −i

�∗
R

2 + �∗
1,×−�∗

3,×
2 �31

i
�∗

R

2 − �∗
1,×+�∗

3,×
2 −iδR − �13+�31+�11+�33

2 −�∗
1,×+�∗

3,×
2 0 −i

�∗
R

2 − �∗
1,×+�∗

3,×
2

0 0
−(�1 + �2)+2�11 + �13

+�31 + 2�33

0 0

−i �R

2 − �1,×+�3,×
2 0 −�1,×+�3,×

2 iδR − �13+�31+�11+�33
2 i �R

2 − �1,×+�3,×
2

�13 −i �R

2 − �1,×−�3,×
2 �2 − �13 − 2�33 i

�∗
R

2 − �∗
1,×−�∗

3,×
2 −�31

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(B5)

Here, the quantities �1,× = �1
g1g

∗
2

4�2 and �3,× = �2
g1g

∗
2

4�2 . The
master equation for the σ ion in the slow space is then
μ̇ = Leffμ, and this is given in Eq. (10) for a collection of
σ ions.

There are two points of note here. First, if the
system starts within the {|1〉,|3〉} manifold spanned by
|A1〉〉,|A3〉〉,|A7〉〉, and |A9〉〉, then it stays within that man-
ifold. Then we do not need to consider the |A5〉〉 state.
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Secondly, the terms proportional to �1,× and �3,× give rise to
certain cross-terms. A typical cross-term in the master equation
appears as

�1,×
2

(−σ+μ − σ zμσ+). (B6)

We intend to couple the effective two-level system formed
by the σ ions to their external motion by tuning the Raman
lasers to the red vibrational sideband. In that case, the only
significant contributions to ion l from a term such as (B6) will
be of the approximate form,

1

2

�1

�

∑
n

Flnσ
+
l bnμ. (B7)

The spin-motion coupling strength in this term is a factor
of �

�
smaller than the coherent spin-motion coupling present

in the Hamiltonian terms. Subsequently, when we treat the
spin-motion coupling perturbatively in comparison with
the damping of the normal modes, the contribution from these
cross-terms will be �2

�2 smaller than the contribution from the
Hamiltonian terms. Hence we neglect these cross-terms while
writing down Eq. (10).

APPENDIX C: EFFECTIVE SPIN-SPIN MODEL:
INTERACTION OF σ SPINS WITH DAMPED

NORMAL MODES

We will use the notation μ ≡ μσ in this section. Starting
with Eq. (18), we first transform to an interaction picture with
L0 = LR . Following the steps outlined in the beginning of
Appendix A, we arrive at the following integro-differential
equation for the reduced density matrix μ(t) describing the σ

spins only:

μ̇(t) = TrR[L̃SR(t)μ(0)R0]

+
∫ t

0
dt ′TrR[L̃SR(t)L̃SR(t ′)μ(t ′)R0]. (C1)

Here, we have used a decorrelation approximation to write
ρ̃(t) ≈ μ(t)R0, where R0 is the steady-state density matrix for
the normal modes under the action of LR . Once again, we start
from an initial uncorrelated state: ρ(0) = μ(0)R0. Note that the
density matrix μ(t) and the σ -spin operators do not have over-
head tilde (∼) in this appendix sinceLS = 0 in the present case.

Under the action of LR , the steady-state density matrices of
each of the normal modes are thermal states. The first term on
the right-hand side of Eq. (C1) vanishes, since the expectation
values 〈bn〉,〈b†n〉 are zero in a thermal state. In order to evaluate
the second term, we need to find the time evolution of the super-
operators b̃n ⊗ I,b̃

†
n ⊗ I,I ⊗ (b̃n)T ,and I ⊗ (b̃†n)T . Following

the lines of the procedure we adopted in finding the time evolu-
tion of the superoperators τ̃−

m ⊗ I , etc., in Appendix A, we get

d

dt
b̃n ⊗ I (t) = −

(κn

2
(1 + 2n̄n) + iδ̃n

)
b̃n ⊗ I

+ κnn̄nI ⊗ (b̃n)T ,

d

dt
I ⊗ (b̃n)T =

(κn

2
(1 + 2n̄n) − iδ̃n

)
I ⊗ (b̃n)T

− κn(1 + n̄n)b̃n ⊗ I. (C2)

Solving the above pair of coupled differential equations, we
get

b̃n ⊗ I (t) = n̄n[I ⊗ (bn)T − bn ⊗ I ]e( κn
2 −iδ̃n)t

+ [(1 + n̄n)bn ⊗ I − n̄nI ⊗ (bn)T ]e−( κn
2 +iδ̃n)t ,

I ⊗ (b̃n)T (t) = (1 + n̄n)[I ⊗ (bn)T − bn ⊗ I ]e( κn
2 −iδ̃n)t

+ [(1 + n̄n)bn ⊗ I − n̄nI ⊗ (bn)T ]e−( κn
2 +iδ̃n)t .

(C3)

Hermitian conjugation of the above two equations gives
the time evolution of I ⊗ (b̃†n)T and b̃

†
n ⊗ I . Using the fact

that 〈b†nbn〉 = n̄n, we can now perform the trace over the
reservoir of normal modes in Eq. (C1) to arrive at an expression
involving intergrals over the σ -spin operators, μ(t ′) and
complex exponentials. As an example, we consider one of
the terms that occur in this expression:

−
∑
l,m,n

FlnF∗
mn(1 + n̄n)

∫ t

0
dt ′σ+

l σ−
m μ(t ′)e−( κn

2 +iδ̃n)(t−t ′).

(C4)

We perform a Markov approximation by setting μ(t ′) ≈
μ(t). For significant evolution of μ(t), we are interested in
evolution over times that are large compared to the time
scales of the reservoir correlations. Only the upper limit of
integration in terms like (C4) contribute in this coarse-graining
procedure.

We then evaluate the simple time integrals over complex
exponentials and group the coherent and dissipative parts
separately. We then account for the incoherent Raman pro-
cesses and the incoherent repumping, and arrive at the effective
spin-spin model described by the master equation (19), which
is the starting point for our numerical analysis.

A note on the validity of approximations. To stop at second
order in perturbation theory, the time scale for the system-
reservoir interaction must be long compared to the reservoir
correlation time [43]. Further, the Markov approximation
requires that the time scale for significant evolution of the
system TS is long compared to the reservoir correlation time. In
a minimal model where the spin-spin interactions are mediated
only by the COM mode and the other modes are neglected,
the perturbation strength and fastest time scale for the σ

spins are determined by the collectively enhanced spontaneous
emission rate, given by Nσ�COM(1 + n̄COM), where �COM =
F2

COM/κCOM. Since the correlation time for the COM mode
is set by κCOM, we require κCOM � Nσ�COM(1 + n̄COM) �
TS for second-order perturbation theory and the Markov
approximation to be valid.

APPENDIX D: NUMERICAL SIMULATION USING
C-NUMBER LANGEVIN EQUATIONS

We start by writing the quantum Langevin equations (QLE)
for the spin operators σx

i , σy

i , and σ z
i for a spin i from the master
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equation (19):

d

dt
σ x

i = Dx
i + Fx

i

= −
{
�−

ii + �+
ii + �31

2
+ �13 + w

2
+ �d

2

}
σx

i − Biσ
y

i

+
∑
j �=i

(�−
ji − �+

ji)σ
z
i σ x

j +
∑
j �=i

Jjiσ
z
i σ

y

j + Fx
i ,

d

dt
σ

y

i = D
y

i + F
y

i

= −
{
�−

ii + �+
ii + �31

2
+ �13 + w

2
+ �d

2

}
σ

y

i + Biσ
x
i

+
∑
j �=i

(�−
ji − �+

ji)σ
z
i σ

y

j −
∑
j �=i

Jjiσ
z
i σ x

j + F
y

i ,

d

dt
σ z

i = Dz
i + Fz

i

= −{2(�−
ii + �+

ii ) + �31 + �13 + w}σ z
i

+{�13 + w − [2(�−
ii − �+

ii ) + �31]}
−

∑
j �=i

(�−
ji − �+

ji)
(
σx

i σ x
j + σ

y

i σ
y

j

)

−
∑
j �=i

Jji

(
σx

i σ
y

j − σ
y

i σ x
j

) + Fz
i . (D1)

Here, Fx
i , F

y

i , and Fz
i are operators that account for the

noise because of coupling to an external environment. These
noise operators are correlated according to

〈Fμ

i (t)Fν
j (t ′)〉 = 2〈Dμν

ij 〉δ(t − t ′), (D2)

where μ,ν = x,y,z and i,j are the spin indices. The gen-
eralized Einstein relation [33] can be used to determine the
correlation matrix elements 2〈Dμν

ij 〉:

2〈Dμν

ij 〉 = −〈σ i
μDj

ν 〉 − 〈Di
μσ j

ν 〉 + d

dt
〈σ i

μσ j
μ〉. (D3)

Next, we perform a quantum-classical correspondence by
associating a c number with each of the spin operators, i.e.,
σx

i ↔ sx
i , σ

y

i ↔ s
y

i , and σ z
i ↔ sz

i . The equations of motion
for these c numbers are obtained from the QLEs (D1) by
replacing the quantum operators with their corresponding c

numbers. The quantum noise operators F
μ

i are replaced by
c-number noise terms Fμ

i .

We use symmetric correspondence to match the correlations
of the c-number noise terms Fμ

i with the correlations of the
quantum noise operators F

μ

i , i.e.,

〈Fμ

i (t)F ν
j (t ′)〉 = 2Dμν

ij δ(t − t ′) with

2Dμν

ij = 〈Dμν

ij 〉 + 〈Dνμ

ji 〉. (D4)

The elements of the correlation matrix 2Dμν

ij are summa-
rized in Eq. (D5).

2Dxx
ii = 2Dyy

ii = 2(�−
ii + �+

ii ) + �31 + (�13 + w) + �d,

2Dxy

ii = 0,

2Dzz
ii = 2[w + �13 + �31 + 2(�−

ii + �+
ii )]

+ 2[�31 + 2(�−
ii − �+

ii ) − (w + �13)]〈σ z
i 〉,

2Dxz
ii = [�31 + 2(�−

ii − �+
ii ) − (w + �13)]〈σx

i 〉,
2Dyz

ii = [�31 + 2(�−
ii − �+

ii ) − (w + �13)]〈σy

i 〉,
2Dxx

ij = 2Dyy

ij = 2(�−
ij + �+

ij )〈σ z
i σ z

j 〉,
2Dxy

ij = 0,

2Dzz
ij = 2(�−

ij + �+
ij )(〈σx

i σ x
j 〉 + 〈σy

i σ
y

j 〉),
2Dxz

ij = −2(�−
ij + �+

ij )〈σ z
i σ x

j 〉,
2Dyz

ij = −2(�−
ij + �+

ij )〈σ z
i σ

y

j 〉. (D5)

By construction, the diffusion matrix is symmetric, and
this property can be used to obtain the other elements. We
simulate the 3Nσ c-number Langevin equations subject to the
noise correlation matrix 2D with elements given by Eq. (D5).
Using vector notation, these stochastic differential equations
(SDEs) can be written as

d

dt
�s(t) = �f {�s(t)} + B(t)d �W, (D6)

where the {dWj } are independent Gaussian random variables
with zero mean and variance dt . The function �f accounts for
the drift part of the SDEs, while the matrix B(t) is given by

B =
√

2D = V
√

�V −1, where

2D = V �V −1
(D7)

is the transformation that diagonalizes 2D to the diagonal
matrix �. We use an explicit second-order weak scheme [44]
to numerically integrate these SDEs.
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