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Abstract

An accurate and cost-efficient methodology for the estimation of the enthalpies

of formation for closed-shell compounds composed of C, H, O, and N atoms is pre-

sented and validated against critically-evaluated experimental data. The computa-

tional efficiency is achieved through the use of the Resolution-of-Identity (RI) and

Domain-Based Local Pair-Natural Orbital Coupled Cluster (DLPNO-CCSD(T)) ap-

proximations, which results in drastic reduction in both the computational cost and

the number of necessary steps for a composite quantum chemical method. The ex-

panded uncertainty for the proposed methodology evaluated using a data set of 45

thoroughly vetted experimental values for molecules containing up to 12 heavy atoms

is about 3 kJ⋅mol−1, competitive with those of typical calorimetric measurements. For

the compounds within the stated scope, the methodology is shown to be superior to

a representative, more general, and widely-used composite quantum chemical method,

G4.

Introduction

The importance of reliable and readily-accessible values for the gas-phase enthalpies of for-

mation (∆fH○) of organic compounds is well recognized. Reliable experimental data are

available only for a limited number of cases, resulting in a long history of estimation method

development. The oldest and most widely used approach is the application of empirical

group-contribution schemes.1–3 Group-contribution methods are very accessible as they re-

quire almost no computational effort. However, they are limited both in scope (group value

availability) and in accuracy (additivity approximation within the chosen group decompo-

sition scheme). The alternative is the use of quantum chemical methods which are free of

these limitations. Unlike the group-contribution approaches, quantum chemical methods do

not yield ∆fH○ directly; it is derived from either the enthalpy of atomization or the enthalpy

of suitable, preferably isodesmic, reaction (subject to availability of reliable experimental
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enthalpies of formation for all participants except for the one under consideration). The

former approach can be formally viewed as a direct method, given tabulated experimen-

tal and precomputed data for all atoms involved. However, strong multireference nature

of atomic configurations necessitates advanced quantum chemical calculations to obtain at-

omization enthalpies of acceptable accuracy. Practical application of quantum chemistry

for prediction of ∆fH○ requires at least two steps: one needs (1) to obtain the optimized

model geometry and its electronic energy (E) and (2) to compute vibrational frequencies

needed for evaluation of zero-point vibrational energy (ZPVE) and the enthalpy change

from 0 K to the reference temperature of 298.15 K (∆T
0 H). These two calculations are very

computationally-expensive and one has to use relatively low levels of theory and small basis

sets even for moderately-sized compounds. Consequently, the energies obtained after opti-

mization are rarely of acceptable accuracy and additional steps, in the form of single-point

energy calculations at higher levels of theory and with larger basis sets, need to be taken.

As using both at the same time is often also computationally-prohibitive, several multiple-

step procedures were proposed, including Gaussian (Gn, n=1,2,3,4),4–7 Complete Basis Set

(CBS),8–11 HEAT,12,13 ATOMIC,14,15 and Weizmann (Wn, n=1,2,3,4)16–18 protocols; more

sophisticated schemes are under active development.19,20 Most of these approaches involve

multiple single-point energy calculations with balanced combinations of theory levels and

basis set sizes, thus reducing the overall computational requirements. The final energy is

derived from the results of these multiple steps. It should also be noted that routine use of

high-accuracy HEAT or the Wn theories is extremely computationally-expensive on mod-

ern mainstream hardware, even for moderately-sized molecules. Consequently, the “budget”

Gn and CBS procedures presently dominate the practical estimation of the enthalpies of

formation.21–25 Most methods from these families approximate coupled-cluster with single,

double, and perturbative triple excitations (CCSD(T)) level of theory with large (or ex-

trapolated to infinite) basis set. Recent benchmarking for ∆fH○ derived from atomization

enthalpies reported the best performance at the level of 2.5-3 kJ⋅mol−1 standard deviation
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(s) for C/H/O systems22 and nitrogen-containing organics,23 although reliable experimental

data for nitrogen compounds are limited,24,25 making large-scale assessment problematic.

This brings another issue related to the performance assessment: the method perfor-

mance is normally evaluated by comparing predictions with reliable experimental data. The

majority of ∆fH○ for organic compounds are determined from their energies of combustion

measured in bomb calorimeters. This requires a few grams of a sample of very high purity,

preferably above 99.9 %. The high purity is important since the relative standard uncer-

tainty in the energies of combustion is typically about 0.02 %. Accurate chemical analysis

of the combustion products is also necessary to achieve this data quality. This analysis

is especially important for large molecules and cases involving heteroatoms. Furthermore,

since bomb experiments are usually conducted with compounds in the condensed state, the

enthalpy of vaporization or sublimation is required to derive the gas-phase ∆fH○. While the

standard uncertainty in gas-phase enthalpies of formation is about 1 kJ⋅mol−1 for state-of-

the-art studies, uncertainties of a few kJ⋅mol−1 are typical for the majority of the competent

measurements. This imposes a limitation on determination of the performance metrics as

one cannot achieve accuracy better than that of the data themselves.

The focus of this work is the development of a method for efficient estimation of ∆fH○

suitable for practical applications with moderate computational resources. Of note is the

fact that most of composite (multiple-step) methods rely on numerical solution of exact

model equations. However, a number of methods based on efficient approximate solution

exist, and some of them have evolved to a level of practical maturity. Specifically, the

“Resolution-of-Identity” (RI) (also referred to as “Density-Fitted”, DF) methods can sub-

stantially accelerate Self-Consistent Field (SCF), Density Functional Theory (DFT), and

the Møller-Plesset second-order perturbation theory (MP2) calculations.26–28 With the use

of the RI approximations, the first step of a composite method, geometry optimization, can

be conducted very efficiently and with significantly larger basis sets as compared to those

that can be afforded in a course of the canonical solution. Furthermore, if a sufficiently
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accurate and efficient CCSD(T) approximation is available, one can bypass multiple steps

and use this approximation with a large basis set as a final step of the method. The recently

reported DLPNO-CCSD(T) approach29–32 offers a very efficient and accurate approximation

of the canonical CCSD(T) with nearly linear scaling of the computational time with the

system size. Provided that the approximations are sufficiently accurate for the application

considered here, a drastic reduction in computational time and memory requirements can

be achieved or, alternatively, the calculations for very large molecules become possible. This

represents the basic idea of the proposed method. The specific implementation details are

given below.

Methods

Computational methods

In this study, we focus on efficient estimation of the enthalpies of formation for closed-shell

compounds with compositions restricted to C, H, O, and N elements. We consider two

methods, B3LYP-D3(BJ)33 and RI-MP2, for geometry optimization and frequency calcula-

tions, and DLPNO-CCSD(T) for single-point electronic energy calculations. The balanced

Karlsruhe “def2” triple- and quadruple-zeta basis sets34 were used in these calculations. Ad-

ditional computations with the popular G4 method, representative of the current budget

composite methods, were also done for comparison. The direct estimation of the enthalpy

of formation is performed with the following equation:

∆fH
○ = E + ZPVE +∆T

0 H −
N

∑
i=1

nihi. (1)

The summation in the last term of Eq. (1) is performed over all chemical elements present

in the compound (N equals to 4 in this study); ni is the ith element count, and hi is

the element-specific constant. Eq. (1) is mathematically equivalent to the derivation of
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∆fH○ using the enthalpy of atomization, and hi can be formally defined via computed

atomic electronic energies, reference enthalpies of formation, and reference enthalpy changes

for individual atomic species. The present implementation of DLPNO-CCSD(T) does not

support open-shell systems, a restriction that does not apply to gas-phase atomic species

in their ground states considered in this study. To circumvent this problem, we treat hi as

empirical constants and determine them from the regression analysis against the experimental

data. This approach resembles earlier semi-empirical “atom-equivalent” proposals35–37 to

convert SCF and DFT energies to ∆fH○, but with the full rigor of explicitly accounting

for ZPVE and ∆T
0 H terms. Our tests have shown that exclusion of these terms results in

a nearly 4-fold increase in the standard deviation between the experiment and the model.

It should also be noted that absolute DLPNO-CCSD(T) energies used in Eq. (1) are very

sensitive to the DLPNO threshold parameters;31 consequentely, the hi regression constants

depend on them as well. “TightPNO” settings31 were used in all cases and need to be applied

if hi constants reported here are used to predict ∆fH○. The use of default, “NormalPNO”

settings31 leads to larger data scatter, manifested in about 0.1-0.2 kJ⋅mol−1 increase in the

standard deviation and wider ranges of deviations between the experimental and predicted

values. Because hi constants are determined empirically using the experimental data, they

are also expected to compensate, at least to some extent, for the deficiencies in the computed

ZPVE and the lack of the post-CCSD(T)38 contributions.

The computational schemes tested using the present approach are listed in Table 1. They

include four schemes based on RI-MP2 geometries (“small”, “small+”, “medium”, and “large”);

the naming follows an increase in the basis sets used in the scheme. Additionally, the combi-

nation based on B3LYP-D3(BJ) geometry, “medium-DFT”, with the basis sets corresponding

to the “medium” scheme was tested. Energies in all schemes, except for the “small+”, were

obtained from a single-point DLPNO-CCSD(T) calculation. The “small+” scheme is a test

of a more complex composite protocol that includes additional MP2 energy correction, simi-

lar to the Gaussian theory methodology.5 In comparison with the “small”, “small+” includes
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an additional single-point RI-MP2/def2-QZVP calculation, and the DLPNO-CCSD(T)/def2-

TZVP energy is corrected by the energy increment between the corresponding RI-MP2/def2-

QZVP and RI-MP2/def2-TZVP values.

Finally, two schemes based on the popular G4 procedure were evaluated for comparison.

The scheme labeled “G4” represents canonical G4 calculation of ∆fH○ via the enthalpy of

atomization. The scheme “G4-E” is the case when only E was taken from the G4 results,

while ∆fH○ was computed using Eq. (1) with ZPVE, ∆T
0 H, and the hi constants determined

in the same manner as for the schemes based on DLPNO-CCSD(T).

Table 1: Computational schemes testeda

scheme E ZPVE & ∆T
0 H

small DLPNO-CCSD(T)/def2-TZVP// B3LYP-D3(BJ)/def2-TZVP
RI-MP2/def2-TZVP

medium DLPNO-CCSD(T)/def2-QZVP// B3LYP-D3(BJ)/def2-TZVP
RI-MP2/def2-TZVP

large DLPNO-CCSD(T)/def2-QZVP// B3LYP-D3(BJ)/def2-TZVP
RI-MP2/def2-QZVP

medium-DFT DLPNO-CCSD(T)/def2-QZVP// B3LYP-D3(BJ)/def2-TZVP
B3LYP-D3(BJ)/def2-TZVP

small+ E(small) +∆E(RI-MP2)b B3LYP-D3(BJ)/def2-TZVP
G4c G4 G4
G4-E G4 B3LYP-D3(BJ)/def2-TZVP
aunless specified, ∆fH

○ were computed via Eq. (1); b∆E(RI-MP2)= E(RI-
MP2/def2-QZVP//RI-MP2/def2-TZVP)−E(RI-MP2/def2-TZVP//RI-
MP2/def2-TZVP); c∆fH

○ were computed via conventional atomization
procedure using atomic data from Ref. 39

From the initial tests, it was recognized that the vibrational frequency analysis needed

for evaluation of ZPVE and ∆T
0 H terms posed a significant “bottleneck” in practical RI-MP2

calculations. To keep the computational costs down, the vibrational frequencies used in all

proposed schemes (except for the canonical G4) were computed with B3LYP-D3(BJ)/def2-

TZVP using the geometries optimized at the same level. For the schemes based on geometries

other than those produced with B3LYP-D3(BJ)/def2-TZVP, this introduces an additional

optimization step. However, the overall computational effort still remains lower as compared

to the alternative of using RI-MP2 for frequency calculations. Prior to their use, the com-

puted frequencies were scaled with the factors of 0.96 for hydrogen stretches and 0.985 for
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all other modes. The ∆T
0 H terms were evaluated using conventional rigid rotor - harmonic

oscillator approximation,40 and anharmonicities due to internal rotations were ignored. The

compounds for which anharmonicities can significantly affect ∆T
0 H were deliberately avoided

during the data set selection.

The assignments for scaling factors used here are consistent with reported recommen-

dations41–43 and the results do not show strong sensitivity to variations in their values.

Their fidelity was also tested by including them in the optimization procedure along with hi

constants. This did not lead to significant performance improvements (standard deviation

reduction was within 0.1 kJ⋅mol−1) or variations in the scaling factor for the lower frequen-

cies, but resulted in unrealistically low values of the scaling factor for hydrogen stretches,

about 0.8.

All computations (except for G4) were performed with ORCA44 v.3.0.3 package. The G4

calculations were performed with Gaussian 09.45

Critically-evaluated data set

The data set of reliable, critically-evaluated experimental enthalpies of formation at 298.15 K

for 45 compounds compiled from evaluated data reviews39,46,47 and from the original exper-

imental works is given in Table 2. Only cases with at least two independent experimental

verifications were considered. If the values in the reviews were consistent and no new data

were available, the recommended values from the reviews were used. Otherwise, the exper-

imental data and their uncertainties were evaluated to identify outliers. The uncertainties

included contributions due to repeatability, calibration, auxiliary compounds, and chemi-

cal analysis, if this information was available. The most reliable combustion energies were

weight-averaged and the condensed-state enthalpies of formation were derived using the

enthalpies of formation for carbon dioxide and water recommended by CODATA.48 The un-

certainties in the enthalpies of formation also included the uncertainties in ∆fH○ for reference

compounds present in the combustion equations. Similar analysis for the enthalpies of vapor-
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Table 2: List of compounds, experimental ∆fH○, and deviations between the experiment and the calculationsa

experimentalb (∆fH
○, exp −∆fH

○, calc)c
name formula ∆fH

○ U Ref. S M L M-DFT S+ G4 G4-E
methane CH4 −74.53 0.06 39 0.6 −1.7 −1.7 −1.6 −1.7 0.1 1.7
ethane C2H6 −83.78 0.15 39 1.6 −0.3 −0.3 −0.2 −0.3 −0.6 1.1
propane C3H8 −104.6 0.2 39 1.8 0.2 0.2 0.3 0.2 −1.2 0.8
butane C4H10 −125.8 0.3 39 1.8 0.4 0.4 0.5 0.3 −1.5 0.8
isobutane C4H10 −135.1 0.5 49–51 0.2 −1.5 −1.5 −1.4 −1.6 −2.5 −0.2
neopentane C5H12 −168.0 0.8 46 1.0 −1.6 −1.6 −1.4 −1.6 −0.7 1.7
cyclohexane C6H12 −123.3 0.8 46 1.1 0.2 0.2 0.3 0.1 −3.7 −1.9
ethylene C2H4 52.53 0.14 39 2.3 0.3 0.3 0.1 0.7 0.2 1.1
propene C3H6 20.3 0.3 39 1.8 0.3 0.3 0.2 0.6 −0.4 0.9
(E)-2-butene C4H8 −11.2 0.5 39 0.8 −0.6 −0.6 −0.7 −0.5 −1.6 0.1
(Z)-2-butene C4H8 −7.3 0.5 39 −1.1 −1.8 −1.9 −1.9 −1.7 −3.2 −1.7
cyclohexene C6H10 −5.0 1.0 52–54 0.8 0.4 0.4 0.4 0.5 −3.5 −2.5
norbornene C7H10 81.9 1.7 55–57 3.7 2.7 2.6 3.0 2.8 1.0 1.7
1,3-butadiene C4H6 110.0 1.0 46 −0.1 −1.7 −1.7 −1.9 −1.1 −1.8 −0.8
ethyne C2H2 228.32 0.14 39 3.1 0.7 0.8 0.5 1.0 −0.5 −0.2
propyne C3H4 185.1 0.5 58–60 2.5 0.0 0.2 −0.2 0.2 −0.7 −0.5
1-butyne C4H6 165.4 0.9 39 1.4 −0.8 −0.7 −0.9 −0.7 −2.2 −1.7
benzene C6H6 82.9 0.9 47 0.1 0.9 1.0 0.9 1.1 −1.8 −2.0
styrene C8H8 148.0 1.4 46 −2.0 −1.4 −1.4 −1.7 −1.3 −1.1 −1.4
naphthalene C10H8 150.6 1.5 47 −0.6 1.0 1.0 1.2 0.6 3.6 2.0
biphenyl C12H10 180.2 1.8 61–68 −0.8 0.8 0.9 0.8 0.6 3.2 1.6
water H2O −241.83 0.04 48 −13.5 −0.4 −0.3 −0.5 −0.6 −1.8 −1.2
carbon dioxide CO2 −393.51 0.13 48 9.6 1.5 1.5 1.9 2.0 3.6 1.6
methanol CH4O −200.7 0.2 39 −3.8 1.0 1.0 0.9 0.9 0.2 0.9
ethanol C2H6O −234.6 0.2 39 −3.8 0.9 1.0 0.9 0.8 −0.7 0.2
2-propanol C3H8O −272.8 0.4 39 −3.5 0.8 0.8 0.8 0.6 −0.9 0.3
2-methylpropan-2-ol C4H10O −312.5 0.8 46 −3.5 −0.2 −0.2 −0.1 −0.4 −0.2 1.2
phenol C6H6O −95.7 1.1 69–74 −7.8 −2.8 −2.7 −2.8 −2.8 −4.9 −5.6
1-naphthol C10H8O −27.5 1.7 75–77 −7.2 −1.7 −1.7 −1.4 −2.2 2.0 0.1
dimethyl ether C2H6O −184.0 0.4 39 2.6 0.7 0.7 0.5 0.9 0.7 1.6
anisole C7H8O −69.9 1.0 78–82 0.3 −0.3 −0.4 −0.6 −0.2 0.0 −0.7
methanal CH2O −109.16 0.11 39 6.5 2.1 2.1 1.9 2.8 2.7 2.3
ethanal C2H4O −165.5 0.3 39 4.6 0.8 0.8 0.8 1.2 0.6 0.6
propanone C3H6O −216.1 0.4 39 3.5 0.2 0.2 0.3 0.4 −0.3 0.0
formic acid CH2O2 −378.5 0.2 39 1.9 1.3 1.3 1.2 1.2 0.2 −0.6
acetic acid C2H4O2 −432.8 0.6 39 −1.2 −1.4 −1.4 −1.4 −1.8 −2.8 −3.4
benzoic acid C7H6O2 −294.1 1.0 83,d 0.8 1.5 1.6 1.5 0.9 1.2 −0.9
ammonia H3N −45.56 0.03 39 −7.2 −0.2 −0.1 −0.2 −0.5 −2.8 −0.6
acetonitrile C2H3N 74.0 0.3 46 11.0 2.2 2.4 2.4 2.8 1.2 2.0
urea CH4N2O −237.8 0.5 84–92 −5.5 −2.0 −2.0 −2.1 −2.8 −5.6 −3.6
piperidine C5H11N −47.3 0.8 93–97 2.2 2.6 2.6 2.8 2.7 −0.8 1.5
pyridine C5H5N 140.4 0.7 46 5.5 2.0 2.0 2.0 2.6 0.6 0.8
aniline C6H7N 87.1 1.2 98–102 −3.7 0.6 0.7 0.4 0.6 −1.5 −0.5
nitrobenzene C6H5NO2 66.0 1.1 102–104,e 5.6 −1.7 −1.8 −1.5 −0.4 8.5 6.6
benzamide C7H7NO −99.8 1.0 98,99,105–109 −2.6 −1.7 −1.7 −1.7 −2.2 −2.1 −2.5
standard deviation 4.6 1.4 1.4 1.4 1.5 2.5 2.0
aenergy units are kJ⋅mol−1; bU represents expanded uncertainty (0.95 level of confidence); cS, M, L, M-DFT, and S+ refer to “small”, “medum”, “large”,
“medium-DFT”, and “small+” schemes, respectively (see Table 1); denthalpy of sublimation was evaluated using the NIST ThermoData Engine 10.1
software110 with full list of literature sources available;111 ethe enthalpy of combustion reported in Ref. 103 was corrected to −(3086.7 ± 0.7) kJ⋅mol−1
because the term for adjustment to the standard pressure (estimated to be 6 J⋅g−1) had an incorrect sign; the resulting liquid-phase standard enthalpy of
formation is 11.1 ± 1.0 kJ⋅mol−1
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ization and sublimation included both calorimetric results and temperature-dependent vapor

pressures. An effort was made to achieve a balanced representation of different functional

groups and to avoid cases exhibiting significant conformational ambiguity or, as mentioned

earlier, vibrations with strong anharmonicity affecting evaluation of ∆T
0 H terms. The ex-

panded uncertainties (0.95 confidence level) were below 2 kJ⋅mol−1 in all cases. We note

that much larger data sets with the same restrictions on elemental composition and elec-

tronic structure as applied here were reported in the literature (e.g., Ref. 37). However, the

imposed strict requirements of the confirmed experimental accuracy are critical for robust

determination of parameters in Eq. (1) and meaningful assessment of the method perfor-

mance, and they firmly constrain any significant extension of the present set of compounds.

It should be emphasized that development of the present data set (inclusive of the associated

critical evaluation procedures) is significant and absolutely critical part of the present effort.

Performance metric and uncertainty of predictions

For the main model performance metric, the standard deviation was used:

s = [(
M

∑
j=1

(∆fH
○
j , exp −∆fH

○
j , calc)2) /(M − np)]

1/2
, (2)

where ∆fH○
j , exp and ∆fH○

j , calc are experimental and computed enthalpies of formation for

the jth compound, respectively, M the total number of compounds in the data set, and np

the number of optimized parameters (equals N for all schemes except for the canonical G4

method, for which it is zero).

For the model with optimized parameters, the standard uncertainty of the predicted value

can be estimated as112

u(∆fH
○) = [s2 + nVnT]1/2

, (3)

where n is the row-vector of the chemical element counts in the compound for which the
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prediction was made, and V is the covariance matrix:

V = s2 (NTN)−1
. (4)

In the above equation, N is the M ×N design matrix of the linear least squares problem

defined by Eq. (1) and composed of row-vectors of element counts for the compounds in the

data set. Combining Eqs (3) and (4), one can obtain

u(∆fH
○) = s [1 + n (NTN)−1

nT]1/2
. (5)

As seen, the expression in the brackets of Eq. (5) has no dependency on the computational

scheme used in the method; it depends only on compositions of the compounds in the data

set and the compound for which the estimate is being made. It is, therefore, possible to

precompute (NTN)−1 matrix for the data set adopted here and use it for a priori assessment

of the relative contributions of the two terms in Eq. (5) to the standard uncertainty. The

(NTN)−1 matrix computed for the present data set is given in Table 3. Clearly, some off-

Table 3: Matrix (NTN)−1 from Eq. (5) computed for the data set listed in Table 2

C H O N
C 0.005 073 −0.003 146 −0.001 679 −0.000 443
H −0.003 146 0.002 544 −0.000 692 −0.001 579
O −0.001 679 −0.000 692 0.037 142 −0.008 760
N −0.000 443 −0.001 579 −0.008 760 0.103 257

diagonal terms (e.g., carbon-hydrogen) are rather significant, indicative of the obvious fact

that element counts in closed-shell organic compounds are correlated following the chemical

bonding patterns. All off-diagonal terms are negative, suggesting the rate of uncertainty

increase with compound size that is slower than what would be expected for uncorrelated

element counts. For all compounds in the present data set (with sizes ranging from water

to biphenyl), the term in Eq. (5) associated with (NTN)−1 can be neglected and u(∆fH○)
is nearly equal to the corresponding standard deviation s.
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Finally, the commonly reported expanded uncertainty (coverage factor of 2, corresponding

to 0.95 confidence for normal distribution) is twice of the standard uncertainty,

U(∆fH
○) = 2 × u(∆fH

○). (6)

Results and Discussion

The results for all schemes are presented in Table 2 (deviations between the experiment

and predictions for individual compounds and standard deviations for each scheme), Ta-

ble 4 (regression constants hi), and Fig. 1 (box-and-whisker diagram of deviation distri-

butions). As seen, the “small” scheme based on def2-TZVP basis set yields rather high

standard deviation of 4.6 kJ⋅mol−1 and 3 outliers. Elevating the basis set for the single-

point DLPNO-CCSD(T) energy calculations to def2-QZVP results in dramatic improvement

over the “small” scheme. All three schemes using DLPNO-CCSD(T)/def2-QZVP energies,

“medium”, ”large”, and ”medium-DFT”, exhibit very similar performance. They differ only in

terms of the method used to generate the optimized model geometry; no noticeable effect on

performance is observed for the choices tested (Table 2 and Fig. 1). The obtained regression

constants hi are also very close for these three cases (Table 4). The standard deviations for

“medium”, ”large”, and ”medium-DFT” schemes do not exceed 1.5 kJ⋅mol−1 (corresponding

to about 3 kJ⋅mol−1 expanded uncertainty), and they feature no apparent outliers. ∆fH○

for all compounds in the set are predicted within 3 kJ⋅mol−1 for all three schemes. Among

the three, “medium-DFT” is the most economical computationally and can be suggested as

the first choice to consider. However, the other two schemes, “medium” and ”large”, do not

pose significantly higher computational expenses and may be considered in situations that

can benefit from the use of RI-MP2 geometries over those obtained with B3LYP-D3(BJ).

The “small+” scheme presents an interesting dilemma. Formally, it can be viewed as an

intermediate case between the “small” and the “’medium” schemes: instead of performing
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Table 4: Regression constants −hi in Eq. (1) for the tested computational schemes

−hi/kJ⋅mol−1

scheme C H O N

small 99 880.13 1516.17 197 071.22 143 562.88

medium 99 904.57 1525.81 197 129.56 143 605.50

large 99 904.58 1525.78 197 129.66 143 605.53

medium-DFT 99 904.56 1525.80 197 129.63 143 605.41

small+ 99 907.55 1527.03 197 131.91 143 608.06

G4-E 100 044.38 1528.35 197 275.39 143 749.04
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Figure 1: Box-and-whisker diagram of the deviations between the experimental and com-
puted ∆fH○. Whiskers indicate data extrema within 1.5 of the interquartile range from the
corresponding box edges.113 The outliers: ● - nitrobenzene, ◆ - urea, ◾ - phenol, ▴ - water, ▾ -
carbon dioxide, ◇ - acetonitrile. The shaded area represents a 50 % confidence interval (con-
sistent with the box sizes) for the state-of-the-art calorimetric measurements corresponding
to 0.95 confidence level of 2 kJ⋅mol−1.
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full DLPNO-CCSD(T)/def2-QZVP calculation as in the case of the “medium” scheme, the

DLPNO-CCSD(T)/def2-TZVP energy of “small” scheme is corrected with the RI-MP2 en-

ergy increment due to basis set increase from def2-TZVP to def2-QZVP. The resulting stan-

dard deviation for the “small+” scheme is nearly the same as those for the three DLPNO-

CCSD(T)/def2-QZVP-based methods discussed above (only about 0.1 kJ⋅mol−1 increase).

However, the distribution of deviations between the experimental and predicted values for

this scheme appears noticeably different (Fig. 1). The deviations span over approximately

the same range as for the DLPNO-CCSD(T)/def2-QZVP-based schemes, but the interquar-

tile range (box size in Fig. 1) is smaller. This implies a narrower middle portion of the

distribution with higher “tails”. More detailed analysis of the data in Table 2 indicates that

the changes in the distribution are not uniform across the data set: while improvement is

generally observed for the hydrocarbons (which represent the largest fraction of the data

set), it is accompanied by some degradation of predictions for oxygenates and especially

nitrogen-containing compounds, mainly responsible for the elevated “tails” of the distribu-

tion. This is not unexpected as oxygen and nitrogen contributions are more affected by the

basis set size and the theory level. Therefore, although “small+” represents an attractive

budget alternative, the DLPNO-CCSD(T)/def2-QZVP-based schemes are expected to be

more reliable for the general use.

As seen in Fig. 1, the canonical G4 atomization scheme shows significant bias (system-

atically overpredicts ∆fH○) for the present data set, consistent with prior observations.22

Two outliers, urea and nitrobenzene, are present. “Parametrization” of G4 via Eq. (1),

“G4-E” scheme, allows more objective comparison of G4 procedure with the present results

by introducing the same set of adjustable parameters (it should be noted, however, that

G4 energies already incorporate an empirical term, “the higher-level correction” 7). “G4-E”

does have significantly reduced bias as compared to the canonical G4. However, the out-

liers still persist (nitrobenzene and phenol), resulting in only moderate reduction in the

standard deviation, from 2.5 to 2.0 kJ⋅mol−1 (Table 2). With the outliers excluded, the re-
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maining compounds are predicted within 4.9 and 3.7 kJ⋅mol−1 for “G4” and “G4-E“ schemes,

respectively. Comprehensive and scrupulous analysis of the original experimental data for

the outliers exhibited by the G4-based methods (urea, phenol, and nitrobenzene) carried

out in this study did not yield reasons to suspect significant experimental errors. Similar

problem with the G4 method for nitrobenzene was reported previously, and the discrep-

ancy was circumvented with an empirical correction.104 Recent extensive G4 investigation114

suggested revision to the experimental ∆fH○ of phenol based on their theoretical findings.

The reported G4 results114 are consistent with the present G4-based predictions. On the

other hand, the deviation of the present DLPNO-CCSD(T)/def2-QZVP-based results from

our critically-evaluated experimental value is within 2.8 kJ⋅mol−1. Although it is one of the

highest deviations for this data set, it remains within two standard deviations, giving no

sufficient grounds for revision.

Finally, the computational performance of the presented procedures needs to be men-

tioned. The efficiency of the most expensive step, DLPNO-CCSD(T), was documented in

detail by its developers.32 In the present study with the “TightPNO” settings,31 DLPNO-

CCSD(T)/def2-QZVP calculations took about 30 min for butane (4 heavy atoms) and 9.5

hours for biphenyl (12 heavy atoms) on 10 Intel Xeon E5-4617 CPU cores at 2.9 GHz with

100 Gb of RAM and 7200 rpm mechanical disk RAID storage. This performance opens

possibility for large-scale applications of the presented methodology over a wide range of

molecular sizes.

Conclusions

The proposed computational schemes provide simple and economical approach to estimate

the enthalpies of formation of closed-shell organic compounds requiring only 3-5 steps per-

formed using very cost-efficient approximations. The results obtained with the critically-

evaluated experimental data set containing molecules with up to 12 heavy atoms suggest the
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expanded uncertainties of predicted values to be about 3 kJ⋅mol−1, well below 4 kJ⋅mol−1

of the target “chemical accuracy” 19 and competitive with the typical experimental uncer-

tainties. For the compounds within the stated scope, the proposed schemes were also found

to be superior to the more general, budget composite method (G4) widely used at present.

Due to their efficiency, the schemes can be used for large-scale validation of the existing data

collections and emerging new data.115 Furthermore, as more accurate and efficient methods

become available,116 the approach presented here can be easily upgraded via straightforward

reparametrization of Eq. (1).
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