

NIST Special Publication 800-185

SHA-3 Derived Functions:
cSHAKE, KMAC, TupleHash and ParallelHash

John Kelsey
Shu-jen Chang

Ray Perlner

This publication is available free of charge from:
https://doi.org/10.6028/NIST.SP.800-185

C O M P U T E R S E C U R I T Y

NIST Special Publication 800-185

SHA-3 Derived Functions:
cSHAKE, KMAC, TupleHash and ParallelHash

John Kelsey
Shu-jen Chang

Ray Perlner
Computer Security Division

Information Technology Laboratory

This publication is available free of charge from:
https://doi.org/10.6028/NIST.SP.800-185

December 2016

U.S. Department of Commerce
Penny Pritzker, Secretary

National Institute of Standards and Technology

Willie May, Under Secretary of Commerce for Standards and Technology and Director

Authority

This publication has been developed by NIST in accordance with its statutory responsibilities under the
Federal Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3551 et seq., Public Law
(P.L.) 113-283. NIST is responsible for developing information security standards and guidelines,
including minimum requirements for federal information systems, but such standards and guidelines shall
not apply to national security systems without the express approval of appropriate federal officials
exercising policy authority over such systems. This guideline is consistent with the requirements of the
Office of Management and Budget (OMB) Circular A-130.

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory
and binding on federal agencies by the Secretary of Commerce under statutory authority. Nor should
these guidelines be interpreted as altering or superseding the existing authorities of the Secretary of
Commerce, Director of the OMB, or any other federal official. This publication may be used by
nongovernmental organizations on a voluntary basis and is not subject to copyright in the United States.
Attribution would, however, be appreciated by NIST.

National Institute of Standards and Technology Special Publication 800-185
Natl. Inst. Stand. Technol. Spec. Publ. 800-185, 32 pages (December 2016)

CODEN: NSPUE2

This publication is available free of charge from:
https://doi.org/10.6028/NIST.SP.800-185

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an
experimental procedure or concept adequately. Such identification is not intended to imply recommendation or
endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best
available for the purpose.

There may be references in this publication to other publications currently under development by NIST in
accordance with its assigned statutory responsibilities. The information in this publication, including concepts and
methodologies, may be used by federal agencies even before the completion of such companion publications. Thus,
until each publication is completed, current requirements, guidelines, and procedures, where they exist, remain
operative. For planning and transition purposes, federal agencies may wish to closely follow the development of
these new publications by NIST.

Organizations are encouraged to review all draft publications during public comment periods and provide feedback
to NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at
http://csrc.nist.gov/publications.

Comments on this publication may be submitted to:

National Institute of Standards and Technology
Attn: Computer Security Division, Information Technology Laboratory

100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930
Email: SP800-185@nist.gov

All comments are subject to release under the Freedom of Information Act (FOIA).

http://csrc.nist.gov/publications

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.S

P
.800-185

NIST SP 800-185 SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, AND PARALLELHASH

ii

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and
Technology (NIST) promotes the U.S. economy and public welfare by providing technical
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test
methods, reference data, proof of concept implementations, and technical analyses to advance
the development and productive use of information technology. ITL’s responsibilities include the
development of management, administrative, technical, and physical standards and guidelines for
the cost-effective security and privacy of other than national security-related information in
federal information systems. The Special Publication 800-series reports on ITL’s research,
guidelines, and outreach efforts in information system security, and its collaborative activities
with industry, government, and academic organizations.

Abstract

This Recommendation specifies four types of SHA-3-derived functions: cSHAKE, KMAC,
TupleHash, and ParallelHash, each defined for a 128- and 256-bit security strength. cSHAKE is
a customizable variant of the SHAKE function, as defined in Federal Information Processing
Standard (FIPS) 202. KMAC (for KECCAK Message Authentication Code) is a variable-length
message authentication code algorithm based on KECCAK; it can also be used as a pseudorandom
function. TupleHash is a variable-length hash function designed to hash tuples of input strings
without trivial collisions. ParallelHash is a variable-length hash function that can hash very long
messages in parallel.

Keywords

authentication; cryptography; cSHAKE; customizable SHAKE function; hash function;
information security; integrity; KECCAK; KMAC; message authentication code; parallel hashing;
ParallelHash; PRF; pseudorandom function; SHA-3; SHAKE; tuple hashing; TupleHash.

Acknowledgements

The authors thank the KECCAK team members: Guido Bertoni, Joan Daemen, Michaël Peeters,
and Gilles Van Assche, for their feedback. The authors also thank their colleagues for reviewing
drafts of this document and contributing to its development.

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.S

P
.800-185

NIST SP 800-185 SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, AND PARALLELHASH

iii

Table of Contents

1 Introduction .. 1

2 Glossary .. 3

2.1 Terms and Acronyms .. 3

2.2 Basic Operations... 4

2.3 Other Internal Functions ... 4

2.3.1 Integer to Byte String Encoding .. 5

2.3.2 String Encoding .. 5

2.3.3 Padding .. 6

2.3.4 Substrings .. 6

3 cSHAKE .. 7

3.1 Overview ... 7

3.2 Parameters ... 7

3.3 Definition ... 8

3.4 Using the Function-Name Input .. 8

3.5 Using the Customization String ... 9

4 KMAC .. 10

4.1 Overview ... 10

4.2 Parameters ... 10

4.3 Definition ... 10

4.3.1 KMAC with Arbitrary-Length Output ... 11

5 TupleHash ... 12

5.1 Overview ... 12

5.2 Parameters ... 12

5.3 Definition ... 12

5.3.1 TupleHash with Arbitrary-Length Output .. 13

6 ParallelHash.. 14

6.1 Overview ... 14

6.2 Parameters ... 14

6.3 Definition ... 14

6.3.1 ParallelHash with Arbitrary-Length Output ... 15

7 Implementation Considerations .. 17

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.S

P
.800-185

NIST SP 800-185 SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, AND PARALLELHASH

iv

7.1 Precomputation ... 17

7.2 Limited Implementations ... 17

7.3 Exploiting Parallelism in ParallelHash ... 17

8 Security Considerations .. 19

8.1 Claimed Security Strength .. 19

8.2 Security Properties for the Function-Name and Customization Strings 19

8.2.1 Equivalent Security to SHAKE for Any Legal N and S 19

8.2.2 Different N and S Give Unrelated Outputs .. 19

8.3 Collisions and Preimages ... 20

8.4 Guidance for Using KMAC Securely ... 20

8.4.1 KMAC Key Length .. 20

8.4.2 KMAC Output Length ... 20

List of Appendices
Appendix A— KMAC, TupleHash, and ParallelHash in Terms of KECCAK[c] 22

Appendix B— Hashing into a Range (Informative) ... 25

Appendix C— References .. 26

List of Tables

Table 1: Equivalent security settings for KMAC and previously standardized MAC
algorithms ... 21

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.S

P
.800-185

NIST SP 800-185 SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, AND PARALLELHASH

 1

1 Introduction

Federal Information Processing Standard (FIPS) 202, SHA-3 Standard: Permutation-Based Hash
and Extendable-Output Functions [1], defines four fixed-length hash functions (SHA3-224,
SHA3-256, SHA3-384, and SHA3-512), and two eXtendable Output Functions (XOFs),
SHAKE128 and SHAKE256. These SHAKE (Secure Hash Algorithm KECCAK) functions are a
new kind of cryptographic primitive; unlike earlier hash functions, they are named for their
expected security strength.

FIPS 202 also supports a flexible scheme for domain separation between different functions
derived from KECCAK—the algorithm [2] on which the SHA-3 Standard is based. Domain
separation ensures that different named functions (such as SHA3-512 and SHAKE128) will be
unrelated. cSHAKE—the customizable version of SHAKE—extends this scheme to allow users
to customize their use of the function, as described below.

Customization is analogous to strong typing in a programming language; such customization
makes it extremely unlikely that computing one function with two different customization strings
will yield the same answer. Thus, two cSHAKE computations with different customization
strings (for example, a key fingerprint and an email signature) are unrelated: knowing one of
these results will give an attacker no information about the other.

This Recommendation defines two cSHAKE variants, cSHAKE128 and cSHAKE256, in Sec. 3,
based on the KECCAK[c] sponge function [3] defined in FIPS 202. It then defines three additional
SHA-3-derived functions, in Secs. 4 through 6, that provide new functionality not directly
available from the more basic functions. They are:

• KMAC1281 and KMAC256, providing pseudorandom functions (PRFs) and keyed hash
functions with variable-length outputs;

• TupleHash128 and TupleHash256, providing functions that hash tuples of input strings
unambiguously2; and

• ParallelHash128 and ParallelHash256, providing efficient hash functions to hash long
messages more quickly by taking advantage of parallelism in the processors.

All four functions defined in this Recommendation—cSHAKE, KMAC, TupleHash, and
ParallelHash—have these properties in common:

• They are all derived from the functions specified in FIPS 202.
• All the functions except cSHAKE are defined in terms of cSHAKE.

1 KMAC stands for KECCAK Message Authentication Code.

2 TupleHash processes a tuple of one or more input strings, and incorporates the contents of all the strings, the
number of strings, and the specific content of each string in the calculation of the resulting hash value. Thus, any
change (such as moving bytes from one input string to an adjacent one, or removing an empty string from the
input tuple) is extremely likely to lead to a different result.

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.S

P
.800-185

NIST SP 800-185 SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, AND PARALLELHASH

 2

• All support user-defined customization strings.
• All support variable-length outputs of any bit length. KMAC, TupleHash, and

ParallelHash have the additional property that any change in the requested output length
completely changes the function. Even with identical inputs otherwise, any of these
functions, when called with different requested output lengths, will, in general, yield
unrelated outputs.

• All support two security strengths: 128 and 256 bits.

These functions are detailed in the specific sections below. In addition, a method is specified in
Appendix B to facilitate using these functions to produce output that is almost uniformly
distributed on the integers {0, 1, 2, ..., R−1} for any positive integer R.

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.S

P
.800-185

NIST SP 800-185 SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, AND PARALLELHASH

 3

2 Glossary

In this document, bits are indicated in the Courier New font. Bytes are typically written as two-
digit hexadecimal numbers from the ASCII characters 0 through 9 and A through F, preceded by
the prefix “0x”. In binary representation, bytes are written with the low-order bit first, while in
hexadecimal representation, bytes are written with the high-order digit first. E.g., 0x01 =
10000000 and 0x80 = 00000001. These bit-ordering conventions follow the conventions
established in Sec. B.1 of FIPS 202. Character strings appear in this document in double-quotes.
Character strings are interpreted as bit strings whose length is a multiple of 8 bits, consisting of a
0 bit, followed by the 7-bit ASCII representation of each successive character.

2.1 Terms and Acronyms

Bit A binary digit: 0 or 1.

CMAC Cipher-based Message Authentication Code.

cSHAKE The customizable SHAKE function.

Domain Separation For a function, a partitioning of the inputs to different application
domains so that no input is assigned to more than one domain.

eXtendable-Output
Function (XOF)

A function on bit strings in which the output can be extended to
any desired length.

FIPS Federal Information Processing Standard.

Hash Function A function on bit strings in which the length of the output is
fixed. The output often serves as a condensed representation of
the input.

HMAC Keyed-Hash Message Authentication Code.

KECCAK The family of all sponge functions with a KECCAK-f permutation
as the underlying function and multi-rate padding as the padding
rule. KECCAK was originally specified in [2], and standardized in
FIPS 202.

KMAC KECCAK Message Authentication Code.

MAC Message Authentication Code.

NIST National Institute of Standards and Technology.

PRF See Pseudorandom Function.

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.S

P
.800-185

NIST SP 800-185 SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, AND PARALLELHASH

 4

Pseudorandom Function
(PRF)

A function that can be used to generate output from a random
seed such that the output is computationally indistinguishable
from truly random output.

Rate In the sponge construction, the number of input bits processed
per invocation of the underlying function.

SHA-3 Secure Hash Algorithm-3.

Sponge Construction The method originally specified in [3] for defining a function
from the following: 1) an underlying function on bit strings of a
fixed length, 2) a padding rule, and 3) a rate. Both the input and
the output of the resulting function are bit strings that can be
arbitrarily long.

Sponge Function A function that is defined according to the sponge construction,
possibly specialized to a fixed output length.

String A sequence of bits.

XOF See eXtendable-Output Function.

2.2 Basic Operations

⌈x⌉ For a real number x, ⌈x⌉ is the least integer that is not strictly less than
x. For example, ⌈3.2⌉ = 4, ⌈−3.2⌉ = −3, and ⌈6⌉ = 6.

0s For a positive integer s, 0s is the string that consists of s consecutive 0
bits.

a mod b The modulo operation of integers a and b. “a mod b” returns the
remainder after dividing a by b.

enc8(i) For an integer i ranging from 0 to 255, enc8(i) is the byte encoding of i,
with bit 0 being the low-order bit of the byte.

len(X) For a bit string X, len(X) is the length of X in bits.

X || Y For strings X and Y, X || Y is the concatenation of X and Y. For example,
11001 || 010 = 11001010.

2.3 Other Internal Functions

This section describes the string encoding, padding and substring functions used in the definition
of the SHA-3-derived functions.

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.S

P
.800-185

NIST SP 800-185 SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, AND PARALLELHASH

 5

2.3.1 Integer to Byte String Encoding

Two internal functions, left_encode and right_encode, are defined to encode integers as byte
strings. Both functions can encode integers up to an extremely large maximum, 22040−1.

left_encode(x) encodes the integer x as a byte string in a way that can be unambiguously parsed
from the beginning of the string by inserting the length of the byte string before the byte string
representation of x.

right_encode(x) encodes the integer x as a byte string in a way that can be unambiguously parsed
from the end of the string by inserting the length of the byte string after the byte string
representation of x.

Using the function enc8() to encode the individual bytes, these two functions are defined as
follows:

right_encode(x):
Validity Conditions: 0 ≤ x < 22040

1. Let n be the smallest positive integer for which 28n > x.
2. Let x1, x2,…, xn be the base-256 encoding of x satisfying:

x = ∑ 28(n-i)xi, for i = 1 to n.
3. Let Oi = enc8(xi), for i = 1 to n.
4. Let On+1 = enc8(n).
5. Return O = O1 || O2 || … || On || On+1.

left_encode(x):
Validity Conditions: 0 ≤ x < 22040

1. Let n be the smallest positive integer for which 28n > x.
2. Let x1, x2, …, xn be the base-256 encoding of x satisfying:

x = ∑ 28(n-i)xi, for i = 1 to n.
3. Let Oi = enc8(xi), for i = 1 to n.
4. Let O0 = enc8(n).
5. Return O = O0 || O1 || … || On−1 || On.

As an example, right_encode(0) will yield 00000000 10000000, and left_encode(0) will
yield 10000000 00000000.

2.3.2 String Encoding

The encode_string function is used to encode bit strings in a way that may be parsed
unambiguously from the beginning of the string, S. The function is defined as follows:

encode_string(S):
Validity Conditions: 0 ≤ len(S) < 22040

1. Return left_encode(len(S)) || S.

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.S

P
.800-185

NIST SP 800-185 SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, AND PARALLELHASH

 6

As an example, encode_string(S) where S is the empty string "" will yield 10000000
00000000.

Note that if the bit string S is not byte-oriented (i.e., len(S) is not a multiple of 8), the bit string
returned from encode_string(S) is also not byte-oriented. However, if len(S) is a multiple of 8,
then the length of the output of encode_string(S) will also be a multiple of 8.

2.3.3 Padding

The bytepad(X, w) function prepends an encoding of the integer w to an input string X, then pads
the result with zeros until it is a byte string whose length in bytes is a multiple of w. In general,
bytepad is intended to be used on encoded strings—the byte string bytepad(encode_string(S), w)
can be parsed unambiguously from its beginning, whereas bytepad does not provide
unambiguous padding for all input strings.

The definition of bytepad() is as follows:

bytepad(X, w):
Validity Conditions: w > 0

1. z = left_encode(w) || X.
2. while len(z) mod 8 ≠ 0:

z = z || 0
3. while (len(z)/8) mod w ≠ 0:

 z = z || 00000000
4. return z.

2.3.4 Substrings

Let parameters a and b be non-negative integers that denote a specific position in a bit string X.
Informally, the substring(X, a, b) function returns a substring from the bit string X containing the
values at bit positions a, a+1, ..., b−1, inclusive. More precisely, the substring function operates
as defined below. Note that all bit positions in the input and output strings are indexed from zero.
Thus, the first bit in a string is in position 0, and the last bit in an n-bit string is in position n−1.

substring(X, a, b):

1. If a ≥ b or a ≥ len(X):

 return the empty string.
2. Else if b ≤ len(X):

 return the bits of X from position a to position b−1, inclusive.
3. Else:

 return the bits of X from position a to position len(X)−1, inclusive.

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.S

P
.800-185

NIST SP 800-185 SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, AND PARALLELHASH

 7

3 cSHAKE

3.1 Overview

The two variants of cSHAKE—cSHAKE128 and cSHAKE256—are defined in terms of the
SHAKE and KECCAK[c] functions specified in FIPS 202. cSHAKE128 provides a 128-bit
security strength, while cSHAKE256 provides a 256-bit security strength.

3.2 Parameters

Both cSHAKE functions take four parameters:

• X is the main input bit string. It may be of any length3, including zero.
• L is an integer representing the requested output length4 in bits.
• N is a function-name bit string, used by NIST to define functions based on cSHAKE.

When no function other than cSHAKE is desired, N is set to the empty string.
• S is a customization bit string. The user selects this string to define a variant of the

function. When no customization is desired, S is set to the empty string5.

An implementation of cSHAKE may reasonably support only input strings and output lengths
that are whole bytes; if so, a fractional-byte input string or a request for an output length that is
not a multiple of 8 would result in an error.

When N and S are both empty strings, cSHAKE(X, L, N, S) is equivalent to SHAKE as defined in
FIPS 202. Thus,

cSHAKE128(X, L, "", "") = SHAKE128(X, L) and
cSHAKE256(X, L, "", "") = SHAKE256(X, L).

cSHAKE is designed so that for any two instances:

 cSHAKE(X1, L1, N1, S1) and
 cSHAKE(X1, L1, N2, S2),

3 When a string is specified to be “of any length” in this document, a theoretical limit (e.g., 22040−1 bits) may apply.
This limit is imposed by the integer encoding schemes left_encode and right_encode, defined in Sec. 2.3.1.
Beyond this limit, the string cannot be encoded. In the remainder of this document, absurdly large limits like
22040−1 bits will often be treated interchangeably with no limit at all.

4 When the requested output length is zero, i.e., L=0, cSHAKE, KMAC, TupleHash, and ParallelHash return the

empty string as the output.

5 In computing languages that support default values for parameters, a natural way to implement this function would
be to set the default values for N and S to empty strings.

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.S

P
.800-185

NIST SP 800-185 SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, AND PARALLELHASH

 8

unless N1 = N2 and S1 = S2, the two instances produce unrelated outputs. Note that this includes
the case where N1 and S1 are empty strings. That is, cSHAKE with any customization is domain-
separated from the ordinary SHAKE function specified in FIPS 202.

3.3 Definition

cSHAKE is defined in terms of SHAKE or KECCAK[c], as follows: it either returns the result of a
call to SHAKE (if N and S are both empty strings), or returns the result of a call to KECCAK(c)
with a padded encoding of N and S concatenated to the input string X.

cSHAKE128(X, L, N, S):
Validity Conditions: len(N)< 22040 and len(S)< 22040

1. If N = "" and S = "":

 return SHAKE128(X, L);
2. Else:

 return KECCAK[256](bytepad(encode_string(N) || encode_string(S), 168) || X || 00, L).

cSHAKE256(X, L, N, S):
Validity Conditions: len(N)< 22040 and len(S)< 22040

1. If N = "" and S = "":

 return SHAKE256(X, L);
2. Else:

 return KECCAK[512](bytepad(encode_string(N) || encode_string(S), 136) || X || 00, L).

Note that the numbers 168 and 136 are rates (in bytes) of the KECCAK[256] and KECCAK[512]
sponge functions, respectively; the characters 00 in the Courier New font in these definitions
specify two zero bits.

3.4 Using the Function-Name Input

The cSHAKE function includes an input string that may be used to provide a function name (N).
This is intended for use by NIST in defining SHA-3-derived functions, and should only be set to
values defined by NIST6. This parameter provides a level of domain separation by function
name. Users of cSHAKE should not make up their own names—that kind of customization is the
purpose of the customization string S, to be discussed in Sec. 3.5. Nonstandard values of N could
cause interoperability problems with future NIST-defined functions.

6 NIST will always make the function name N a byte-oriented value.

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.S

P
.800-185

NIST SP 800-185 SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, AND PARALLELHASH

 9

3.5 Using the Customization String

The cSHAKE function also includes an input string (S) to allow users to customize their use of
the function. For example, someone using cSHAKE128 to compute a key fingerprint (the hash
value for a public key) might use:

cSHAKE128(public_key, 256, "", "key fingerprint"),

where "key fingerprint" is a customization string S.

Later, the same user might decide to customize a different cSHAKE computation for signing an
email:

cSHAKE128(email_contents, 256, "", "email signature"),

where "email signature" is the customization string S.

The customization string is intended to avoid a collision between these two cSHAKE values—it
will be very difficult for an attacker to somehow force one computation (the email signature) to
yield the same result as the other computation (the key fingerprint) if different values of S are
used.

The customization string may be of any length less than 22040; however, implementations may
restrict the length of S that they will accept.

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.S

P
.800-185

NIST SP 800-185 SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, AND PARALLELHASH

 10

4 KMAC

4.1 Overview

The KECCAK Message Authentication Code (KMAC) algorithm is a PRF and keyed hash
function based on KECCAK. It provides variable-length output, and unlike SHAKE and cSHAKE,
altering the requested output length generates a new, unrelated output. KMAC has two variants,
KMAC128 and KMAC256, built from cSHAKE128 and cSHAKE256, respectively. The two
variants differ somewhat in their technical security properties. Nonetheless, for most
applications, both variants can support any security strength up to 256 bits of security, provided
that a long enough key is used, as discussed in Sec. 8.4.1.

4.2 Parameters

Both KMAC functions take the following parameters:

• K is a key bit string of any length7, including zero.
• X is the main input bit string. It may be of any length, including zero.
• L is an integer representing the requested output length8 in bits.
• S is an optional customization bit string of any length, including zero. If no customization

is desired, S is set to the empty string.

4.3 Definition

KMAC concatenates a padded version of the key K with the input X and an encoding of the
requested output length L. The result is then passed to cSHAKE, along with the requested output
length L, the name N ="KMAC" = 11010010 10110010 10000010 110000109, and the
optional customization string S.

KMAC128(K, X, L, S):
Validity Conditions: len(K) < 22040 and 0 ≤ L < 22040 and len(S) < 22040

1. newX = bytepad(encode_string(K), 168) || X || right_encode(L).
2. return cSHAKE128(newX, L, “KMAC”, S).

7 Approved uses of KMAC require the length of K to be at least the required security strength, as discussed in Sec.
8.4.1.

8 Note that there is a limit of 22040−1 bits of output from this function unless the function is used as a XOF, as
discussed in Sec. 4.3.1.

9 Note that in binary representation, bytes are written with the low-order bit first in this document, as specified in
Sec. 2.

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.S

P
.800-185

NIST SP 800-185 SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, AND PARALLELHASH

 11

KMAC256(K, X, L, S):
Validity Conditions: len(K) <22040 and 0 ≤ L < 22040 and len(S) < 22040

1. newX = bytepad(encode_string(K), 136) || X || right_encode(L).
2. return cSHAKE256(newX, L, “KMAC”, S).

Note that the numbers 168 and 136 are rates (in bytes) of the KECCAK[256] and KECCAK[512]
sponge functions, respectively.

4.3.1 KMAC with Arbitrary-Length Output

Some applications of KMAC may not know the number of output bits they will need until after
the outputs begin to be produced. For these applications, KMAC can also be used as a XOF (i.e.,
the output can be extended to any desired length), which mimics the behavior of cSHAKE.

When used as a XOF, KMAC is computed by setting the encoded output length to 0, as shown in
right_encode(0) in Step 1 of the KMACXOF128(K, X, L, S) and KMACXOF256(K, X, L, S)
pseudocodes below. Conceptually, KMAC in XOF mode produces an infinite-length output
string, and the caller simply uses as many bits of the output string as are needed. Truncated
outputs of KMAC in XOF mode can be computed by the function KMACXOF128(K, X, L, S) or
KMACXOF256(K, X, L, S) given by the following pseudocode:

KMACXOF128(K, X, L, S):
Validity Conditions: len(K) < 22040 and 0 ≤ L and len(S) < 22040

1. newX = bytepad(encode_string(K), 168) || X || right_encode(0).
2. return cSHAKE128(newX, L, “KMAC”, S).

KMACXOF256(K, X, L, S):
Validity Conditions: len(K) <22040 and 0 ≤ L and len(S) < 22040

1. newX = bytepad(encode_string(K), 136) || X || right_encode(0).
2. return cSHAKE256(newX, L, “KMAC”, S).

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.S

P
.800-185

NIST SP 800-185 SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, AND PARALLELHASH

 12

5 TupleHash

5.1 Overview

TupleHash is a SHA-3-derived hash function with variable-length output that is designed to
simply hash a tuple of input strings, any or all of which may be empty strings, in an
unambiguous way. Such a tuple may consist of any number of strings, including zero, and is
represented as a sequence of strings or variables in parentheses like (“a”, “b”, “c”,...,“z”) in this
document.

TupleHash is designed to provide a generic, misuse-resistant way to combine a sequence of
strings for hashing such that, for example, a TupleHash computed on the tuple ("abc" ,"d") will
produce a different hash value than a TupleHash computed on the tuple ("ab","cd"), even though
all the remaining input parameters are kept the same, and the two resulting concatenated strings,
without string encoding, are identical.

TupleHash supports two security strengths: 128 bits and 256 bits. Changing any input to the
function, including the requested output length, will almost certainly change the final output.

5.2 Parameters

TupleHash takes the following parameters:

• X is a tuple of zero or more bit strings, any or all of which may be an empty string.
• L is an integer representing the requested output length in bits.
• S is an optional customization bit string of any length, including zero. If no customization

is desired, S is set to the empty string.

5.3 Definition

TupleHash encodes the sequence of input strings in an unambiguous way, then encodes the
requested output length at the end of the string, and passes the result into cSHAKE, along with
the function name (N) of “TupleHash” = 00101010 10101110 00001110 00110110
10100110 00010010 10000110 11001110 00010110, and the optional
customization string S.

If X is a tuple of n bit strings, let X[i] be the ith bit string, numbering from 0. The TupleHash
functions are defined in pseudocode as follows:

TupleHash128(X, L, S):
Validity Conditions: 0 ≤ L < 22040 and len(S) < 22040

1. z = "".
2. n = the number of input strings in the tuple X.
3. for i = 1 to n:

 z = z || encode_string(X[i]).
4. newX = z || right_encode(L).

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.S

P
.800-185

NIST SP 800-185 SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, AND PARALLELHASH

 13

5. return cSHAKE128(newX, L, “TupleHash”, S).

TupleHash256(X, L, S):
Validity Conditions: 0 ≤ L < 22040 and len(S) < 22040

1. z = "".
2. n = the number of input strings in the tuple X.
3. for i = 1 to n:

 z = z || encode_string(X[i]).
4. newX = z || right_encode(L).
5. return cSHAKE256(newX, L, “TupleHash”, S).

5.3.1 TupleHash with Arbitrary-Length Output

Some applications of TupleHash may not know the number of output bits they will need until
after the outputs begin to be produced. For these applications, TupleHash can also be used as a
XOF (i.e., the output can be extended to any desired length), which mimics the behavior of
cSHAKE.

When used as a XOF, TupleHash is computed by setting the encoded output length to 0, as
shown in right_encode(0) in Step 1 of the TupleHashXOF128(X, L, S) and
TupleHashXOF256(X, L, S) pseudocodes below. Conceptually, TupleHash in XOF mode
produces an infinite-length output string, and the caller simply uses as many bits of the output
string as are needed. Truncated outputs of TupleHash in XOF mode can be computed by the
function TupleHashXOF128(X, L, S) or TupleHashXOF256(X, L, S) given by the following
pseudocode:

TupleHashXOF128(X, L, S):
Validity Conditions: 0 ≤ L and len(S) < 22040

1. z = "".
2. n = the number of input strings in the tuple X.
3. for i = 1 to n:

 z = z || encode_string(X[i]).
4. newX = z || right_encode(0).
5. return cSHAKE128(newX, L, “TupleHash”, S).

TupleHashXOF256(X, L, S):
Validity Conditions: 0 ≤ L and len(S) < 22040

1. z = "".
2. n = the number of input strings in the tuple X.
3. for i = 1 to n:

 z = z || encode_string(X[i]).
4. newX = z || right_encode(0).
5. return cSHAKE256(newX, L, “TupleHash”, S).

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.S

P
.800-185

NIST SP 800-185 SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, AND PARALLELHASH

 14

6 ParallelHash

6.1 Overview

The purpose of ParallelHash10 is to support the efficient hashing of very long strings, by taking
advantage of the parallelism available in modern processors. ParallelHash supports the 128- and
256-bit security strengths, and also provides variable-length output. Changing any input
parameter to ParallelHash, even the requested output length, will result in unrelated output. Like
the other functions defined in this document, ParallelHash also supports user-selected
customization strings.

6.2 Parameters

ParallelHash takes the following parameters:

• X is the main input bit string. It may be of any length11, including zero.
• B is the block size in bytes for parallel hashing. It may be any integer such that 0 < B <

22040.
• L is an integer representing the requested output length in bits.
• S is an optional customization bit string of any length, including zero. If no customization

is desired, S is set to the empty string.

6.3 Definition

ParallelHash divides the input bit string X into a sequence of contiguous, non-overlapping
blocks, each of length B bytes, and then computes the hash value for each block separately.
Finally, these hash values are combined and passed to cSHAKE along with the function name
(N) of "ParallelHash" = 00001010 10000110 01001110 10000110 00110110
00110110 10100110 00110110 00010010 10000110 11001110 00010110, the
optional customization string S, and some encoded integer values (as shown below in the
pseudocode), to generate the final hash value of the function.

The ParallelHash functions are defined in pseudocode as follows:

ParallelHash128(X, B, L, S):
Validity Conditions: 0 < B < 22040 and ⌈ len(X)/B ⌉ < 22040 and

0 ≤ L < 22040 and len(S) < 22040

1. n = ⌈ (len(X)/8) / B ⌉.

10 A generic parallel hash mode for other NIST-approved hash functions may be developed in the future. The
function here (i.e., ParallelHash) is specifically based on cSHAKE, and thus, on KECCAK.

11 Where ⌈ len(X)/B ⌉ < 22040 and B is the block size in bytes as defined in Sec. 6.2. As specified in Footnote 2,
NIST will treat such absurdly large limit as interchangeable with having no limit at all.

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.S

P
.800-185

NIST SP 800-185 SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, AND PARALLELHASH

 15

2. z = left_encode(B).
3. for i = 0 to n−1:

z = z || cSHAKE128(substring(X, i*B*8, (i+1)*B*8), 256, "", "").
4. z = z || right_encode(n) || right_encode(L).
5. newX = z.
6. return cSHAKE128(newX, L, “ParallelHash”, S).

ParallelHash256(X, B, L, S):
Validity Conditions: 0 < B < 22040 and ⌈ len(X)/B ⌉ < 22040 and

0 ≤ L < 22040 and len(S) < 22040

1. n = ⌈ (len(X)/8) / B ⌉.
2. z = left_encode(B).
3. for i = 0 to n−1:

z = z || cSHAKE256(substring(X, i*B*8, (i+1)*B*8), 512, "", "").
4. z = z || right_encode(n) || right_encode(L).
5. newX = z.
6. return cSHAKE256(newX, L, “ParallelHash”, S).

6.3.1 ParallelHash with Arbitrary-Length Output

Some applications of ParallelHash may not know the number of output bits they will need until
after the outputs begin to be produced. For these applications, ParallelHash can also be used as a
XOF (i.e., the output can be extended to any desired length), which mimics the behavior of
cSHAKE.

When used as a XOF, ParallelHash is computed by setting the encoded output length to 0, as
shown in right_encode(0) in Step 1 of the ParallelHashXOF128(X, B, L, S) and
ParallelHashXOF256(X, B, L, S) pseudocodes below. Conceptually, ParallelHash in XOF mode
produces an infinite-length output string, and the caller simply uses as many bits of the output
string as are needed. Truncated outputs of ParallelHash in XOF mode can be computed by the
function ParallelHashXOF128(X, B, L, S) or ParallelHashXOF256(X, B, L, S) given by the
following pseudocode:

ParallelHashXOF128(X, B, L, S):
Validity Conditions: 0 < B < 22040 and ⌈ len(X)/B ⌉ < 22040 and

0 ≤ L and len(S) < 22040

1. n = ⌈ (len(X)/8) / B ⌉.
2. z = left_encode(B).
3. for i = 0 to n−1:

z = z || cSHAKE128(substring(X, i*B*8, (i+1)*B*8), 256, "", "").
4. z = z || right_encode(n) || right_encode(0).
5. newX = z.
6. return cSHAKE128(newX, L, “ParallelHash”, S).

ParallelHashXOF256(X, B, L, S):

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.S

P
.800-185

NIST SP 800-185 SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, AND PARALLELHASH

 16

Validity Conditions: 0 < B < 22040 and ⌈ len(X)/B ⌉ < 22040 and
0 ≤ L and len(S) < 22040

1. n = ⌈ (len(X)/8) / B ⌉.
2. z = left_encode(B).
3. for i = 0 to n−1:

z = z || cSHAKE256(substring(X, i*B*8, (i+1)*B*8), 512, "", "").
4. z = z || right_encode(n) || right_encode(0).
5. newX = z.
6. return cSHAKE256(newX, L, “ParallelHash”, S).

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.S

P
.800-185

NIST SP 800-185 SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, AND PARALLELHASH

 17

7 Implementation Considerations

7.1 Precomputation

cSHAKE is defined so that all the calls to the underlying KECCAK-f function [1] to accommodate
the function name N and the customization string S will process an integer multiple of r bits,
where r is the rate parameter. An implementation can precompute the result of processing this
padded block of N and S with cSHAKE, and thus, will suffer no performance penalty when
reusing the same choices of N and S in multiple cSHAKE executions. Since TupleHash and
ParallelHash are defined in terms of cSHAKE, this same precomputation is available to
implementations of those functions as well.

KMAC can precompute the result of processing N and S, and the result of processing the key K.
Thus, KMAC128 using a fixed, precomputed customization string and key will process an input
string as efficiently as SHAKE128.

7.2 Limited Implementations

The cSHAKE, KMAC, TupleHash, and ParallelHash functions are defined to accept a wide
range of possible inputs (including unreasonably long inputs, and inputs involving fractional
bytes), and to produce a wide range of possible output lengths. However, it is acceptable for a
specific implementation to limit the possible inputs that it will process, and the allowed output
lengths that it will produce.

For example, it would be acceptable to limit an implementation of any of these functions to
producing no more than 65536 bytes of output, or to producing only whole bytes of output, or to
accepting only byte strings (never fractional bytes) as inputs. Additionally, implementations
intended for only a specific, limited use may further restrict the sets of inputs they will process.
For example, an implementation of TupleHash256 used only to process a 6-tuple of strings, and
always using a customization string of "address tuple", would be acceptable.

If it is possible for an implementation of one of these functions to be given a set of inputs that it
cannot process, then the implementation shall signal an error condition and refuse to produce an
output.

7.3 Exploiting Parallelism in ParallelHash

Specific implementations of ParallelHash are permitted to restrict their implementation to a small
subset of the allowed values. For example, it would be acceptable for a particular implementation
to only allow a single value of B if it were only expected to interoperate with another
implementation that similarly restricted B to that same value.

ParallelHash can be implemented in a straightforward and reasonably efficient way even when
only sequential processing is available. However, a much faster implementation is possible when
each of the individual blocks of the message can be handled in parallel. The choice of block size
B can have a huge impact on the efficiency of ParallelHash in this case. ParallelHash is designed
so that any machine that can apply parallel processing can, in principle, benefit from that parallel
processing. For example, a machine that can hash four blocks in parallel and a machine that can

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.S

P
.800-185

NIST SP 800-185 SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, AND PARALLELHASH

 18

hash 32 blocks in parallel can each benefit from all the parallel processing ability that is
available.

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.S

P
.800-185

NIST SP 800-185 SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, AND PARALLELHASH

 19

8 Security Considerations

8.1 Claimed Security Strength

cSHAKE, KMAC, TupleHash, and ParallelHash are all defined for two claimed security
strengths: 128 bits and 256 bits.

cSHAKE128, KMAC128, TupleHash128, and ParallelHash128 each provide a security strength
of 128 bits. This means that, for a given output length L, there is no generic attack on one of
these functions requiring less than 2128 work that does not also exist for any hash function with
the same output length. Similarly, cSHAKE256, KMAC256, TupleHash256, and
ParallelHash256 each provides a security strength of 256 bits against generic attacks.

8.2 Security Properties for the Function-Name and Customization Strings

8.2.1 Equivalent Security to SHAKE for Any Legal N and S

For a given choice of the function name N and the customization string S, cSHAKE128(X, L, N,
S) has exactly the same security properties as SHAKE128(X, L); cSHAKE256(X, L, N, S) has
exactly the same security properties as SHAKE256(X, L). There are no "weak" values for N or S.

8.2.2 Different N and S Give Unrelated Outputs

Suppose that (n1, s1) and (n2, s2) are two name and customization string pairs, and either n1 ≠
n2, or s1 ≠ s2. Furthermore, suppose that q1 and q2 are the lengths of the requested output. Then,
cSHAKE(X, q1, n1, s1) and cSHAKE(X, q2, n2, s2) can be treated as unrelated functions of X.
That is, they can be treated as if they were two completely different functions, with output
lengths q1 and q2, respectively. This means, for example, that:

• Keys k1 and k2, where k1 = cSHAKE(x1, q1, n1, s1), and k2 = cSHAKE(x2, q2, n2, s2), and

both keys are derived from secret, but related, quantities x1 and x2, will not be susceptible to
related key attacks (with complexity less than the claimed security strength of the cSHAKE
function.)

• Finding a collision such that cSHAKE128(x1, L, n1, s1) = cSHAKE128(x2, L, n2, s2) will
require a computational complexity on the order of min(2L/2, 2128). Similarly, finding a
collision such that cSHAKE256(x1, L, n1, s1) = cSHAKE256(x2, L, n2, s2), will require a
computational complexity on the order of min(2L/2, 2256).

Because KMAC, TupleHash, and ParallelHash are derived from cSHAKE, they inherit these
properties. Specifically:

• Each of these functions gives outputs unrelated to the outputs of any of the other functions.

There is, for example, no relationship between the outputs of KMAC (for any set of inputs)
and TupleHash (for any set of inputs).

• For any of these functions, using a different customization string gives an unrelated output.
Thus, if s1 ≠ s2, ParallelHash(X, B, L, s1) and ParallelHash(X, B, L, s2) are expected to have
no particular relationship.

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.S

P
.800-185

NIST SP 800-185 SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, AND PARALLELHASH

 20

Except when used in XOF mode, KMAC, TupleHash, and ParallelHash have the additional
property that, even with the same customization string, blocksize, key, etc., instances of the
functions with different output lengths can be treated as unrelated functions of their remaining
inputs. Thus, for example, ParallelHash(X, B, q1, S) and ParallelHash(X, B, q2, S) can be treated
as independent hash functions with input X and output lengths q1 and q2, respectively.

Note that cSHAKE does not share this property. For q1< q2, cSHAKE(X, q1, N, S) is a prefix of
cSHAKE(X, q2, N, S). This is a property that cSHAKE shares with SHAKE and other XOFs.
This property is discussed in more detail in Appendix A.2 of FIPS 202.

8.3 Collisions and Preimages

All these functions support variable output lengths. The difficulty of an attacker finding a
collision or preimage for any of these functions depends on both the claimed security strength
and the output length.

A function like cSHAKE128, with a claimed security strength of 128 bits, may be vulnerable to a
collision or preimage attack with 2128 work regardless of its output length—a longer output does
not, in general, improve its security against these attacks. However, a shorter output can make
the function more vulnerable to these attacks. With an output of L bits, a collision attack will
require min(2L/2, 2128) work, and a preimage attack will require at least min(2L, 2128) work.

8.4 Guidance for Using KMAC Securely

For maximum flexibility and usefulness, the KMAC functions are defined for arbitrary-sized
output lengths and key lengths (up to 22040−1 bits). However, not all such output and key lengths
are secure.

8.4.1 KMAC Key Length

The input key length is the parameter that is most straightforwardly translated into a security
strength. Given a small number of known (MAC, plaintext) pairs, an attacker requires at most
2len(K) operations to find the key K.

Applications of this Recommendation shall not select an input key, K, whose length is less than
their required security strength. Guidance for cryptographic algorithm and key-size selection is
available in [4].

8.4.2 KMAC Output Length

The output length is another important security parameter for KMAC—it determines the
probability that an online guessing attack will succeed in forging a MAC tag. In particular, an
attacker will need to submit, on average, 2L invalid (message, MAC) pairs for each successful
forgery. Since L only affects online attacks, a system that uses KMAC for message
authentication can mitigate attacks that exploit a short L by limiting the total number of
verification failures allowed under a given key.

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.S

P
.800-185

NIST SP 800-185 SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, AND PARALLELHASH

 21

When used as a MAC, applications of this Recommendation shall not select an output length L
that is less than 32 bits, and shall only select an output length less than 64 bits after a careful risk
analysis is performed.

To illustrate the security properties of KMAC for given parameter settings, Table 1 lists a few
other approved MAC algorithms along with equivalent settings for KMAC as an example. Note
that no truncation of the associated tags (i.e., the 128-bit tag for AES-CMAC, the 256-bit tag for
HMAC-SHA256, and the 512-bit tag for HMAC-SHA512) is assumed in the listed algorithms,
and that equivalent settings of different MAC algorithms do not result in the same output.

Table 1: Equivalent security settings for KMAC and previously standardized MAC algorithms

Existing MAC Algorithm KMAC Equivalent

AES-CMAC (K, text) KMAC128 (K, text, 128, S)
HMAC-SHA256 (K, text) KMAC256 (K, text, 256, S)
HMAC-SHA512 (K, text) KMAC256 (K, text, 512, S)

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.S

P
.800-185

NIST SP 800-185 SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, AND PARALLELHASH

 22

Appendix A—KMAC, TupleHash, and ParallelHash in Terms of KECCAK[c]

FIPS 202 specifies the KECCAK[c] function, on which the SHA-3 and SHAKE functions are
built. KMAC, TupleHash, and ParallelHash are defined in terms of cSHAKE, as specified in
Sec. 3. In this appendix, KMAC, TupleHash, ParallelHash and these functions in XOF mode are
defined directly in terms of KECCAK[c]. These definitions are exactly equivalent to the
definitions made in terms of cSHAKE in Secs. 4, 5, and 6.

KMAC128(K, X, L, S):
Validity Conditions: len(K) < 22040 and 0 ≤ L < 22040 and len(S) < 22040

1. newX = bytepad(encode_string(K), 168) || X || right_encode(L).
2. T = bytepad(encode_string(“KMAC”) || encode_string(S), 168).
3. return KECCAK[256](T || newX || 00, L).

KMAC256(K, X, L, S):
Validity Conditions: len(K) < 22040 and 0 ≤ L < 22040 and len(S) < 22040

1. newX = bytepad(encode_string(K), 136) || X || right_encode(L).
2. T = bytepad(encode_string(“KMAC”) || encode_string(S), 136).
3. return KECCAK[512](T || newX || 00, L).

KMACXOF128(K, X, L, S):
Validity Conditions: len(K) < 22040 and 0 ≤ L and len(S) < 22040

1. newX = bytepad(encode_string(K), 168) || X || right_encode(0).
2. T = bytepad(encode_string(“KMAC”) || encode_string(S), 168).
3. return KECCAK[256](T || newX || 00, L).

KMACXOF256(K, X, L, S):
Validity Conditions: len(K) <22040 and 0 ≤ L and len(S) < 22040

1. newX = bytepad(encode_string(K), 136) || X || right_encode(0).
2. T = bytepad(encode_string(“KMAC”) || encode_string(S), 136).
3. return KECCAK[512](T || newX || 00, L).

TupleHash128(X, L, S):
Validity Conditions: 0 ≤ L < 22040 and len(S) < 22040

1. z = "".
2. n = the number of input strings in the tuple X.
3. for i = 1 to n:

 z = z || encode_string(X[i]).
4. newX = z || right_encode(L).
5. T = bytepad(encode_string(“TupleHash”) || encode_string(S), 168).
6. return KECCAK[256](T || newX || 00, L).

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.S

P
.800-185

NIST SP 800-185 SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, AND PARALLELHASH

 23

TupleHash256(X, L, S):
Validity Conditions: 0 ≤ L < 22040 and len(S) < 22040

1. z = "".
2. n = the number of input strings in the tuple X.
3. for i = 1 to n:

 z = z || encode_string(X[i]).
4. newX = z || right_encode(L).
5. T = bytepad(encode_string(“TupleHash”) || encode_string(S), 136).
6. return KECCAK[512](T || newX || 00, L).

TupleHashXOF128(X, L, S):
Validity Conditions: 0 ≤ L and len(S) < 22040

1. z = "".
2. n = the number of input strings in the tuple X.
3. for i = 1 to n:

 z = z || encode_string(X[i]).
4. newX = z || right_encode(0).
5. T = bytepad(encode_string(“TupleHash”) || encode_string(S), 168).
6. return KECCAK[256](T || newX || 00, L).

TupleHashXOF256(X, L, S):
Validity Conditions: 0 ≤ L and len(S) < 22040

1. z = "".
2. n = the number of input strings in the tuple X.
3. for i = 1 to n:

 z = z || encode_string(X[i]).
4. newX = z || right_encode(0).
5. T = bytepad(encode_string(“TupleHash”) || encode_string(S), 136).
6. return KECCAK[512](T || newX || 00, L).

ParallelHash128(X, B, L, S):
Validity Conditions: 0 < B < 22040 and ⌈ len(X)/B ⌉ < 22040 and

0 ≤ L < 22040 and len(S) < 22040

1. n = ⌈ (len(X)/8) / B ⌉.
2. z = left_encode(B).
3. for i = 0 to n−1:

z = z || KECCAK[256](substring(X, i*B*8, (i+1)*B*8) || 1111, 256).
4. z = z || right_encode(n) || right_encode(L).
5. newX = z.
6. T = bytepad(encode_string(“ParallelHash”) || encode_string(S), 168).
7. return KECCAK[256](T || newX || 00, L).

ParallelHash256(X, B, L, S):

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.S

P
.800-185

NIST SP 800-185 SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, AND PARALLELHASH

 24

Validity Conditions: 0 < B < 22040 and ⌈ len(X)/B ⌉ < 22040 and
0 ≤ L < 22040 and len(S) < 22040

1. n = ⌈ (len(X)/8) / B ⌉.
2. z = left_encode(B).
3. for i = 0 to n−1:

z = z || KECCAK[512](substring(X, i*B*8, (i+1)*B*8) || 1111, 512).
4. z = z || right_encode(n) || right_encode(L).
5. newX = z.
6. T = bytepad(encode_string(“ParallelHash”) || encode_string(S), 136).
7. return KECCAK[512](T || newX || 00, L).

ParallelHashXOF128(X, B, L, S):
Validity Conditions: 0 < B < 22040 and ⌈ len(X)/B ⌉ < 22040 and

0 ≤ L and len(S) < 22040

1. n = ⌈ (len(X)/8) / B ⌉.
2. z = left_encode(B).
3. for i = 0 to n−1:

z = z || KECCAK[256](substring(X, i*B*8, (i+1)*B*8) || 1111, 256).
4. z = z || right_encode(n) || right_encode(0).
5. newX = z.
6. T = bytepad(encode_string(“ParallelHash”) || encode_string(S), 168).
7. return KECCAK[256](T || newX || 00, L).

ParallelHashXOF256(X, B, L, S):
Validity Conditions: 0 < B < 22040 and ⌈ len(X)/B ⌉ < 22040 and

0 ≤ L and len(S) < 22040

1. n = ⌈ (len(X)/8) / B ⌉.
2. z = left_encode(B).
3. for i = 0 to n−1:

z = z || KECCAK[512](substring(X, i*B*8, (i+1)*B*8) || 1111, 512).
4. z = z || right_encode(n) || right_encode(0).
5. newX = z.
6. T = bytepad(encode_string(“ParallelHash”) || encode_string(S), 136).
7. return KECCAK[512](T || newX || 00, L).

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.S

P
.800-185

NIST SP 800-185 SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, AND PARALLELHASH

 25

Appendix B—Hashing into a Range (Informative)

XOFs, PRFs, and hash functions with variable-length output like cSHAKE, KMAC, TupleHash,
and ParallelHash can easily be used to generate an integer X within the range 0 ≤ X < R, denoted
as 0..R−1 in this document, for any positive integer R. The following method will produce
outputs that are extremely close to a uniform distribution over that range, assuming that the
above functions approximate a uniform random variable.

In order to hash into an integer in the range 0..R−1, do the following:

1. Let k = ⌈ lg(R) ⌉ + 128.
2. Call the hash function with a requested length of at least k bits. Let the resulting bit string be

Z.
3. Let N = bits_to_integer(Z) mod R, where the bits_to_integer function is defined below.

At the end of this process, the variable N contains an integer that is extremely close to being
uniformly distributed in the range 0..R−1. For any possible output value t such that 0 ≤ t < R, the
following statement is true12.

|Prob(N=t) – 1/R| ≤ 2−128/R.

In other words, the output of this process will have a very small bias. No value will be very much
more or less likely to appear as the result of this process than it would have been, had an integer
been selected uniformly at random from the integers between 0 and R−1, inclusive.

This technique can be applied to SHAKE, cSHAKE, KMAC, TupleHash, or ParallelHash
whenever an integer within a specific range is needed, so long as it is acceptable for the resulting
integer to have this very small deviation from the uniform distribution on the integers {0, 1,...,
R−1}.

The bits_to_integer function converts a bit string to an integer as follows:

bits_to_integer (b1, b2,…, bn):

1. Let (b1, b2,…, bn) be the bits of a bit string from the most significant to the least significant
bits.

2. 𝑥𝑥 = ∑ 2𝑛𝑛
𝑖𝑖=1

(n-i)bi.

3. Return (x).

12 In fact, the bound is slightly tighter than this. If w = the length of the bitstring Z in bits (w ≥ ⌈ lg(R) ⌉ + 128), then
|Prob(N=t) – 1/R| ≤ 2-w.

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.S

P
.800-185

NIST SP 800-185 SHA-3 DERIVED FUNCTIONS: CSHAKE,
KMAC, TUPLEHASH, AND PARALLELHASH

 26

Appendix C—References

[1] National Institute of Standards and Technology, SHA-3 Standard: Permutation-Based
Hash and Extendable-Output Functions, Federal Information Processing Standards
(FIPS) Publication 202, August 2015, 37 pp. http://dx.doi.org/10.6028/NIST.FIPS.202.

[2] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, The KECCAK reference, version
3.0, January 14, 2011, 69 pp. http://keccak.noekeon.org/Keccak-reference-3.0.pdf
[accessed 12/21/2016].

[3] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, Cryptographic sponge
functions, version 0.1, January 14, 2011, 93 pp. http://sponge.noekeon.org/CSF-0.1.pdf
[accessed 12/21/2016].

[4] E. Barker, Recommendation for Key Management, Part 1: General, NIST Special
Publication (SP) 800-57 Part 1 Revision 4, National Institute of Standards and
Technology, January 2016, 160 pp. http://dx.doi.org/10.6028/NIST.SP.800-57pt1r4.

http://dx.doi.org/10.6028/NIST.FIPS.202
http://keccak.noekeon.org/Keccak-reference-3.0.pdf
http://sponge.noekeon.org/CSF-0.1.pdf
http://dx.doi.org/10.6028/NIST.SP.800-57pt1r4

	NIST SP 800-185, SHA-3 Derived Functions: cSHAKE, KMAC, TupleHash and ParallelHash
	1 Introduction
	2 Glossary
	2.1 Terms and Acronyms
	2.2 Basic Operations
	2.3 Other Internal Functions
	2.3.1 Integer to Byte String Encoding
	2.3.2 String Encoding
	2.3.3 Padding
	2.3.4 Substrings

	3 cSHAKE
	3.1 Overview
	3.2 Parameters
	3.3 Definition
	3.4 Using the Function-Name Input
	3.5 Using the Customization String

	4 KMAC
	4.1 Overview
	4.2 Parameters
	4.3 Definition
	4.3.1 KMAC with Arbitrary-Length Output

	5 TupleHash
	5.1 Overview
	5.2 Parameters
	5.3 Definition
	5.3.1 TupleHash with Arbitrary-Length Output

	6 ParallelHash
	6.1 Overview
	6.2 Parameters
	6.3 Definition
	6.3.1 ParallelHash with Arbitrary-Length Output

	7 Implementation Considerations
	7.1 Precomputation
	7.2 Limited Implementations
	7.3 Exploiting Parallelism in ParallelHash

	8 Security Considerations
	8.1 Claimed Security Strength
	8.2 Security Properties for the Function-Name and Customization Strings
	8.2.1 Equivalent Security to SHAKE for Any Legal N and S
	8.2.2 Different N and S Give Unrelated Outputs

	8.3 Collisions and Preimages
	8.4 Guidance for Using KMAC Securely
	8.4.1 KMAC Key Length
	8.4.2 KMAC Output Length

	Appendix A— KMAC, TupleHash, and ParallelHash in Terms of Keccak[c]
	Appendix B—Hashing into a Range (Informative)
	Appendix C—References

