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Abstract 
 

Terrestrial laser scanners (TLS) are a class of 3D imaging systems that produce a 3D point cloud 

by measuring the range and two angles to a point.  The fundamental measurement of a TLS is 

range.  Relative range error is one component of the overall range error of TLS and its estimation 

is therefore an important aspect in establishing metrological traceability of measurements 

performed using these systems. Target geometry is an important aspect to consider when 

realizing the relative range tests. The recently published ASTM E2938-15 mandates the use of a 

plate target for the relative range tests. While a plate target may reasonably be expected to 

produce distortion free data even at far distances, the target itself needs careful alignment at each 

of the relative range test positions. In this paper, we discuss relative range experiments 

performed using a plate target and then address the advantages and limitations of using a sphere 

target. We then present a novel dual-sphere-plate target that draws from the advantages of the 

sphere and the plate without the associated limitations. The spheres in the dual-sphere-plate 

target are used simply as fiducials to identify a point on the surface of the plate that is common 

to both the scanner and the reference instrument, thus overcoming the need to carefully align the 

target.  

 

Keywords: relative range error, terrestrial laser scanner, sphere target, plate target, dual-sphere-

plate target 

 

1. Introduction 

 

Terrestrial laser scanners (TLS) produce a 3D point cloud by measuring the range and two angles 

(azimuth and elevation) to points on the surfaces of objects in a scene. Establishing metrological 

traceability of TLS measurements is a challenge [1]. The ASME B89.7.5 [2] provides guidance 

to demonstrate metrological traceability for industrial dimensional measurements. A key step in 

the ASME B89.7.5 is the development of an uncertainty budget that describes and quantifies the 

significant uncertainty contributors. In the case of TLS measurements, the error sources may 

broadly be classified into instrumental errors, errors related to the form and nature of the object, 

errors caused by the environment in which the scanning is performed, and methodological errors 



[3]. It is a considerable challenge to quantify these error sources and develop detailed uncertainty 

budgets for TLS measurements. 

 

As a first step towards quantifying instrument errors, the ASTM E57 committee on 3D imaging 

systems developed a standard – the ASTM E2938-15 [4] - for relative-range error evaluation of 

3D imaging systems.  TLS systems generally use time-of-flight (TOF) techniques such as pulsed 

TOF, phase-based TOF, and frequency-modulated continuous wave (FMCW) techniques for 

range detection. The ranging unit realizes the SI unit of length and is therefore a key component 

of the system. Characterizing ranging errors is therefore an important aspect in establishing 

metrological traceability of TLS measurements. Relative range error is one component of the 

overall ranging error and can be characterized through a relative range error test. The test 

involves comparing the distance between two target positions along the ranging direction as 

measured by the TLS against the same distance determined by a reference instrument that offers 

higher accuracy such as a laser tracker (LT). 

 

The relative range test may be realized in many ways. We have realized it as shown in Fig. 1 

with the TLS located at one end of a long tunnel and the LT at the other end of the tunnel. The 

target is in-line with the TLS and the LT and has accommodations to move nominally in-line 

with both instruments. The target is first placed at the reference position (close to the TLS) and 

both the TLS and the LT measure the target position. The target is then moved to the test 

position, which is farther away from the TLS than the reference position, and both instruments 

again measure the target position. The relative range error is the difference in the displacement 

determined by the TLS and the LT between the reference and the test positions. The target is 

generally moved to different test positions so that the relative range error (with respect to the 

reference position) may be determined for different displacements. 
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Fig. 1 Schematic of a relative range test using (a) a sphere target and (b) a plate target shown. 

The reference and test positions are nominally along the line joining the TLS and the LT. Both 

instruments measure the target at the reference position. The target is then moved to the test 

position where both instruments measure the target. The relative range error is the difference 

between the displacement determined by the TLS and that determined by the LT.  
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The choice of target geometry [5-7] is an important factor in the realization of these tests. The 

recently published ASTM 2938-15 [4] describes a relative range test for 3D imaging systems 

using planar targets. The clear advantage of planar targets is that the laser beam strikes the target 

at incidence angle of nominally zero degrees, hence 3D imaging systems can produce 3D point 

clouds of these targets even at far distances. However, identifying the point on the plane 

measured by the TLS that coincides with the point measured by the LT is a challenge. If there is 

an offset between the two points, small misalignment angles in the orientation of the plate can 

result in Abbe errors that reflect as a range error.  

 

A sphere target offers the advantage of allowing the determination of a unique derived point, its 

geometric center. If both the LT and TLS can determine the true geometric center of the sphere, 

alignment of the target along the line joining the LT and the TLS is not an issue. Some TLS 

systems, however, may have difficulty in obtaining enough data from the surface of spheres at 

far distances to reliably determine the sphere center. It is therefore possible that the center 

determined from such data may result in larger errors in determining the geometric center, which 

would result in the incorrect determination of the relative range error. Also, large spheres with 

small form error that are suitable at far distances (50 m or greater) can be expensive. 

 

In this paper, we explore the advantages and limitations of the plate and the sphere target, and 

propose a novel dual-sphere-plate target that overcomes the limitations of the plate and the 

sphere target. The spheres in the dual-sphere-plate target are only used as fiducials to identify a 

point on the surface of the plate (i.e., finding the center of the plate from the TLS data), thus 

minimizing the errors induced by target misalignments. 

 

2. Reference measurement uncertainty 

 

Reference measurements for the relative range experiment are performed using a LT in absolute 

distance meter (ADM) mode. For this particular LT, the manufacturer-specified maximum 

permissible error (MPE) in range is 10 µm. This has been verified in our laboratory by 

comparing the ADM against our reference interferometer. Using the manufacturer-specified 

MPE as the upper bound for a rectangular distribution, the standard uncertainty in range 

measurement for any target position is 10/√3 = 6 µm. The uncertainty in displacement is 

therefore 6√2  = 8 µm. The k = 2 expanded uncertainty due to the LT is therefore 16 µm, which 

is at least a factor of 10 smaller than the observed errors of the TLS under study. 

 

3. TLS settings 

 

All TLS data are acquired at 92 points per degree along both the vertical and the horizontal angle 

direction. Four scans are acquired at each position of the target.  The data is then reduced to the 

derived point (the center of the plate or the sphere) and results from four scans averaged to 

attenuate the influence of random effects. 

 

4. Relative range measurements using a plate target 

 

4.1 Plate target 

 



The plate target is fabricated out of aluminum and is shown in Fig. 2. It is 304.8 mm x 304.8 mm 

(12 in x 12 in) on the front and has a thickness of 25.4 mm (1 in). The front surface is sand-

blasted to produce a scanner friendly dull gray matte finish. Five 38.1 mm (1.5 in) spherically 

mounted retroreflector (SMR) nests are glued onto the backside of the plate. One of the five 

SMR nests is located centrally on the plate and is used for reference measurements with the 

tracker. The other four SMRs are located on each of the four corners (≈250 mm apart) and are 

used to align the plate.  

 

  
(a)                              (b)          

Fig. 2 (a) Front view of the plate artifact (b) back view showing the SMRs 

 

4.2 Plate alignment and measurement procedure 

 

When performing relative range measurements, it is important that the center of the plate as 

determined by the TLS coincides with that determined by the LT to avoid Abbe errors. That is, 

however, often not possible. In our design of the plate, the center of the SMR (O1 at the reference 

position and O2 at the test position) is in fact offset from the front face of the plate by about d  = 

30 mm, see Fig. 3. When the artifact is moved from the reference to the test position, the 

displacement recorded by the LT is O1O2. If the plate suffers from a pitch angle α at the test 

position and the TLS measurements result in A1 and A2 as the centers of the plate at the reference 

and test positions, respectively, then the displacement determined by the TLS is larger than the 

reference displacement O1O2 by approximately d(1-cosα). For an offset d of 30 mm and a pitch 

angle α of 5º, the error is approximately 0.11 mm, which is a significant fraction (≈ 30 %) of the 

ranging error of the TLS under study. 

 

We do note that this offset d is of concern because the SMRs in our measurement are mounted 

on the backside of the plate. It is possible to obtain LT reference measurements by manually 

probing the sides of the plate with the SMR. This will reduce or eliminate the offset d but 

increase significantly the amount of time and effort to obtain reference measurements.   

 

The problem due to the offset d is further compounded by the fact that the TLS may in fact not 

record A1 and A2 as the centers of the plate. If the data are not uniformly distributed, it is quite 

possible for the TLS to record points B1 and B2 as the center of the plate at the reference and test 

positions, respectively. Then the displacement determined by the TLS is B1B2, which is larger 

than the reference by an amount esinα + d(1-cosα), where e is the offset A2B2 (Fig. 3(b)). For an 

offset e of 1 mm, an offset d of 30 mm, and a pitch angle α of 5º, the overall error is 0.2 mm (the 

contribution due to offset e is 0.09 mm), which is a significant fraction (≈ 60 %) of the ranging 



error of the TLS under study. Alignment is therefore critical in performing the relative range 

tests using a plate target. It should be noted that although Fig. 3(b) shows the effect of pitch 

angle only, the same discussion applies to yaw angle as well; an offset out of the plane of the 

paper in Fig. 3(b) in conjunction with a yaw angle will produce similar effect as a pitch angle. 

We also note that because there are no fiducials on the plane, the point recorded by the TLS may 

not necessarily intersect the line joining the TLS and the LT. It is therefore quite possible that 

some finite offset e will exist in relative range measurements made with planes. Alignment is 

therefore necessary to reduce or eliminate the effect of the offset. 
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Fig. 3 Effect of plate misalignment on relative range tests (a) showing the effect of offset d along 

the ranging direction (b) showing the effect of offset e perpendicular to the ranging direction 

 

To mitigate the errors discussed above, the following alignment and measurement procedure is 

adopted. The TLS and the LT are placed about 23 m apart in our tape tunnel facility. The laser 

beam of the LT is directed to the center of the rotating prism mirror of the TLS (by placing an 

SMR very close to the TLS) and the azimuth and elevation angles are recorded. This establishes 

the reference line, i.e., the approximate line joining the LT and the TLS. The plate is then placed 

at the reference position (≈2 m from the TLS) such that the center of the plate (as determined by 

the central SMR) is on the reference line to within about 0.1° along the azimuth and elevation 

axis directions from the reference line.  

 

The four corner SMRs are then measured to calculate the yaw and pitch angles. During the 

alignment, the objective is to align the plate until the range as measured by the LT to each of the 

four SMRs are within about ± 25 µm of each other while maintaining the azimuth and elevation 

angles of the central SMR to within 0.1° of the reference line. Because the four corner SMRs are 

located on a square of side length ≈250 mm, the pitch and yaw angles are then at most              

tan-1(0.025/250) =  0.006°. With the plate carefully aligned as described above, a 30 mm offset d 

will have negligible influence on the measurement. However, because we only align the central 

SMR to within 0.1° of the reference line, that plate may remain misaligned by as much as 0.1° 

even if the range values to all four corner SMRs are equal. A 1 mm offset e will then result in an 

error of 1sin(0.1) = 0.002 mm while a 50 mm offset e will result in an error of 0.087 mm. 
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Because our measurements resulted in a uniform distribution of points on the surface of the plate, 

alignment of the central SMR to within 0.1° was sufficient in our case. If the offset error e is 

anticipated to be large, a tighter tolerance may be required in the alignment of the central SMR to 

the reference line.  

 

4.3 Relative range errors 

 

The relative range measurements on the plate target are performed by moving the target in steps 

of 3 m starting from a reference distance that is 2 m from the TLS. The plate was carefully 

aligned at each of the positions as described earlier. This was a time consuming process, taking 

more than three hours to complete the measurements at the seven positions. 

 

Fig. 4 shows the relative range errors for the TLS under study at the 5 m, 8 m, 11 m, 14 m, 17 m, 

and 20 m range values (this corresponds to displacements of 3 m, 6 m, 9 m, 13 m, 15 m, and 18 

m, respectively, from the reference position). The relative range error is largest at the 5 m 

distance (3 m from the reference position) and decreases at larger distances. 

 

 

 
Fig. 4 Relative range errors using a plate artifact 

 

4.4 Plate target summary 

 

A clear advantage of planar targets is that the TLS can produce 3D point clouds of planar targets 

at far distances without introducing any artifacts (i.e., the data is nominally representative of a 

plane without any systematic errors) in the data. However, identifying the point on the plane 

measured by the TLS that coincides with the point measured by the LT is a challenge. In our 

design of the plate, the LT measures a point that is offset from the plate. It is therefore important 

that the TLS data be reduced to a point that lies on the line joining the LT and the TLS. If that 

cannot be achieved, the plate has to be carefully aligned at each of the test positions to reduce the 

effect of Abbe errors. This can be a challenging and time consuming task. 

 

5. Relative range measurements using a sphere target 

 

5.1 Sphere target 

 



Any sphere with scanner friendly characteristics such as matte finish, high diffuse reflectance 

factor, non-volumetric diffusion surface, large diameter, and small form error in comparison to 

the ranging error, may be suitable as a target. While solid spheres can be inexpensive, obtaining 

reference measurements using a LT is a challenge. Rachakonda et al. [8] discuss a LT based 

SMR-walking method to obtain reference measurements using solid (or hollow) sphere targets.  

In this method, the sphere surface is probed using an SMR, while being tracked by an LT to 

obtain the reference measurements. This method involves considerable manual labor, is time 

consuming, and very dependent on the skill of the operator. 

 

In this study, we use commercial targets called ‘integration spheres,’ depicted in Fig. 5. These 

are partial spheres made of aluminum with a satin finish that is suitable for 3D imaging systems. 

The inside of the sphere is machined out and a kinematic nest is located centrally to seat a 38.1 

mm (1.5 in) SMR as shown in Fig. 5(b). The SMR is held in place by magnetic preload. The 

concentricity between the outer surface of the scanning sphere and the center of the SMR is 

measured on a coordinate measuring machine (CMM) and determined to be less than 10 µm. The 

form error of the outer surface is also determined to be less than 10 µm. The concentricity and 

form error are at least an order of magnitude smaller than the ranging errors of the TLS under 

study.  

 

 

 

 

 

 

 

 

 

(a)                                           (b) 
Fig. 5 (a) Front view of the integration sphere, (b) back view showing a centrally located 38.1 

mm (1.5 in) SMR 

 

5.2 Determining center of sphere target 

 

It is important that the center of the sphere as determined by the TLS coincides with that 

determined by the LT to avoid Abbe errors. In the case of the integration sphere, the center of the 

SMR is in fact concentric with the outer surface to within 10 µm. However, it is still possible 

that the TLS point cloud obtained from the surface of the sphere is not a correct representation of 

the sphere geometry, but is somehow distorted by the material in the immediate vicinity of the 

target (because of secondary reflections) or by local averaging on the sphere surface. The 

diameter of the laser spot for the TLS under study is about 3 mm at exit and increases at the rate 

of about 3 mm for every 10 mm. The spot size is thus fairly substantial on a 100 mm diameter 

sphere and local averaging is therefore conceivable. This distortion often results in the sphere 

appearing to be squished or flared, i.e., the unconstrained radius of the sphere calculated from the 

sphere data could be smaller or larger than the calibrated diameter of the sphere, giving a center 

location that is influenced by the target rather than just TLS ranging errors.   

 



As an example, Fig. 6 shows the unconstrained best-fit radius of a nominal 75 mm radius sphere 

scanned at different point densities from 6 points per degree through 57 points per degree (equal 

sampling intervals along both the vertical and horizontal axis directions). The unconstrained 

radius changes by at least 3 mm indicating that surface averaging might be a problem for some 

scanners. We note that the points-per-degree specification is with respect to the TLS; that is, 6 

points per degree at a distance of 5 mm will result in a sampling interval of (1/6 x π/180) x 5000 

= 14.5 mm while a 57 points per degree specification will result in a sampling interval of 1.5 

mm. The spot size at the 5 m distance is about 4.5 mm; thus, data acquisition at 57 points per 

degree will result in the spot overlapping on the surface from one point to the next. 

 

 
Fig. 6 Unconstrained radius as a function of point density 

 

In other situations, mounting of the sphere (i.e., material in the immediate vicinity) has a 

considerable influence on the measured radius. As an example, a sphere of nominal 50 mm 

radius was mounted at the center of a square aluminum plate (each side measuring 457.2 mm as 

shown in Fig. 9). The sphere was scanned with the TLS from about 16 m and the unconstrained 

radius was determined to be 44 mm. When a 38.1 mm (1.5 in) wide ring of absorbing black flock 

paper was added around the sphere, the radius increased to 48 mm. When the sphere was 

mounted with 100 mm standoffs (i.e., not mounted directly on the plate but offset by 100 mm), 

the radius increased further to 49 mm. This indicates that the mounting of the sphere and the 

scanned surfaces close to it has considerable influence on the measured data, affecting the 

unconstrained radius, and therefore the sphere center location of a constrained or unconstrained 

fit. In the next section, we discuss the effect of squishing/flaring on sphere center and relative 

range error. 

 

5.3 Effect of sphere squishing/flaring on sphere center and relative range error 

 

The schematic in Fig. 7 illustrates profiles of a real sphere surface (solid gray line) and the point 

cloud (solid black line) of that sphere as measured by a TLS system. The measured surface in 

this illustration appears more ellipsoidal than spherical, with the long axis oriented along the 

ranging direction. The data are segmented so that data within a cone opening angle of 120° is 

retained. As can be seen in the figure, a constrained fit based on the calibrated radius of the 

sphere produces a center O1 that is farther away from the TLS than the true center O. An 

unconstrained fit produces a center O2 that is closer to the TLS than the true center O. 

 



To evaluate the effect of sphere squishing/flaring, the quantity of interest is the error in the center 

O1O. If the center error O1O is constant, that is, its value is the same at the reference and the test 

positions, the center error will not affect the relative range measurement. However, if the center 

error O1O is different at the reference and the test positions, the relative range error will appear 

to be larger or smaller than the true relative range error. It is difficult to quantify the center error 

O1O because the true center O is an unknown quantity. However, the measured data does 

provide another potentially useful quantity, the unconstrained radius, from which we can 

estimate the error in the center O1O through a simple simulation.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Error in the center coordinate because of apparent squishing of sphere 

 

For this purpose, we first perform an unconstrained orthogonal least-squares fit on the measured 

data to determine the unconstrained radius ruc. This provides an estimate of the extent of 

squishing or flaring of the sphere for this TLS/target combination under these measurement 

conditions. We then numerically generate a sphere data set with a radius ruc, centered at a distance 

r-ruc from the origin where r is the calibrated radius of the sphere, and truncated over a cone 

opening angle of 120°. The data is generated at the same sampling interval as that of the 

measured data. We then perform a constrained orthogonal least-squares fit with a radius equal to 

the calibrated radius of the sphere target. The distance of the constrained center from the origin 

of the sphere is an estimate of center error O1O. In Fig. 8, we plot the center error as a function 

of the unconstrained radius for a nominal 50 mm radius sphere.  Simulations characterizing 

center errors are reported by Shilling et al [9] for several cases. 

 

                
Fig. 8 Center error along the TLS ranging direction as a function of unconstrained radius 
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As an example on how this plot may be used, let the unconstrained radius of a nominal 50 mm 

radius sphere at the reference position be measured to be 48 mm. The error in the center at the 

reference position can be determined as -0.24 x (48-50) = 0.48 mm. At the test position, let the 

unconstrained radius be determined as 44 mm. The error in the center at the test position is -0.24 

x (44-50) = 1.44 mm. The difference, 0.96 mm, is therefore the magnitude of the error 

introduced into the relative range measurement because of the increased distortion of the sphere 

at the far distance. 

 

The plot in Fig. 8 may be assumed to be linear for all practical purposes, although in reality it is 

not. The slope of the graph is -0.24 for a cone opening angle of 120°. Table 1 shows the slope for 

other cone opening angles ranging from 60° through 160°. While Fig. 8 and Table 1 are based on 

a nominal 50 mm radius target placed 10 m away and sampled at 92 points per degree, we have 

performed such simulations for different target sizes, different sampling densities, and different 

target distances which have all resulted in the same slope of -0.24. 

 

Table 1 Slope as a function of cone angle 

Cone opening angle 

(degrees) 

Slope 

60 -0.07 

80 -0.13 

100 -0.19 

120 -0.24 

140 -0.28 

160 -0.30 

 

5.4 Verifying the simulation through an experiment 

 

In order to experimentally validate the above simulation, we mounted a nominal 50 mm radius 

sphere on a 457.2 mm x 457.2 mm (18 in x 18 in) plate as shown in Fig. 9. We refer to this 

artifact as the single-sphere-plate target. The front surface of the plate is sand-blasted to a matte 

gray finish. The idea is to determine the orthogonal distance between the sphere-center and the 

plate at different distances from the TLS; if the center of the constrained fit does move along the 

ranging direction because of the increased squishing or flaring of the sphere, the sphere-center to 

plate distance is also expected to change. Thus, by monitoring the sphere-center to plate distance, 

we can infer the movement of the center of the sphere. The sphere-center to plate distance was 

calibrated on a contact probe CMM and determined to be 0.02 mm. 

 

The artifact is scanned at distances of 2 m through 20 m in steps of 3 m. The unconstrained 

radius of the sphere is shown in Fig. 10 (a). It is clear that there is considerable squishing at the 

20 m distance compared to the 2 m distance, with an unconstrained radius of 46.9 mm at 20 m 

and 49.7 mm at 2 m. From the simulations in the previous section, we anticipate the center to 

have moved by -0.24 x (46.9-49.7) = 0.672 mm. The experimentally determined change of the 

sphere-center to plate distance is 0.66 mm, which is in excellent agreement with the simulations. 

Fig. 10 (b) shows the change in the sphere-center to plate distance with respect to that at the 

reference position (2 m distance) obtained experimentally at the different ranges along with the 



simulation predictions based on unconstrained radius. This experiment validates the simulation 

and clearly confirms the movement of the constrained fit center because of sphere 

squishing/flaring.  

 
 

     
 

Fig. 9 Different views of the artifact designed to determine if the constrained fit sphere moves 

because of sphere squishing/flaring 
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Fig. 10 (a) Unconstrained radius as a function of distance (b) Sphere-center to plate distance 

 

5.5 Relative range error using sphere target 



 

Fig. 11 shows the relative range errors using the sphere target for the TLS under study at the 5 m, 

8 m, 11 m, 14 m, 17 m, and 20 m range values (this corresponds to displacements of 3 m, 6 m, 9 

m, 13 m, 15 m, and 18 m, respectively). The center is determined using constrained radius 

fitting. The relative range error is considerably larger than that determined using the plate 

(shown in Fig. 4 and also shown in Fig. 11 for comparison) because the increased squishing of 

the sphere at far distances has moved the center of sphere resulting in an apparent range error. 

 

 
 Fig. 11 Relative range errors using the sphere target and the plate target 

 

5.6 Sphere target summary 

  

A sphere target, particularly the integration sphere target, offers users a convenient way to realize 

relative range tests. However, material in the immediate vicinity of the sphere and local surface 

averaging may cause the sphere to appear squished or flared resulting in an apparent range error. 

The range error caused by the target geometry cannot be separated from that caused by TLS 

ranging errors. A sphere target may be used for relative range tests if sphere squishing/flaring 

induced effects can be minimized or if it can be proven to be very low by comparing the 

unconstrained radius with the calibrated radius. A sphere target may also be used if sphere 

squishing/flaring induced effects can be tolerated because of large manufacturer provided range 

error specifications. 

 

In this context, it is worth highlighting again the difference between the ranging error of the 

range measurement technology and an apparent ranging error introduced by the incorrect 

determination of the center of the sphere. If the TLS can correctly reduce the 3D point cloud data 

to a derived point that coincides with the geometric center of the sphere but the range 

measurement technology incorrectly records a longer range (i.e., every point appears farther 

away), then the sphere appears farther away than it really is; such an error would be regarded as 

a true range error of the TLS. On the other hand, if a TLS possesses a perfect range measurement 

technology (with no ranging errors whatsoever), but the TLS 3D point cloud cannot be reduced 

to a center that coincides with the geometric center of the sphere, the result will be an apparent 

ranging error. It is important that this spherical geometry induced error not be confused as an 

error source of the underlying range measurement technology. 

 

6. Dual-sphere-plate target 



 

4.1 Description 

 

The dual-sphere-plate target consists of two 100 mm integration spheres mounted to the sides of 

the plate target described in Section 2.1. Two views of the target are shown in Fig. 12. The 

spheres are designed to be mounted in such a manner that the center of the spheres are on the 

plane defined by the front surface of the plate. Although Fig. 12 shows the five SMR/nests 

previously used with the plate target, they are no longer necessary and are not used here. 

The central idea of the dual-sphere-plate target is that the spheres are used as fiducials to identify 

a common point on the plane that is measured by both the TLS and the LT. By ensuring that the 

two instruments measure the same point, careful alignment of the plate is no longer necessary. At 

each position of the target, the LT measures the centers of both spheres. The average of the two 

measured coordinates is considered as the reference value for the center of the plate. The TLS 

scans both the plate and the two spheres. The sphere centers are extracted, averaged, and 

projected onto the plane determined from point cloud data of the plate. The coordinate so 

determined is considered to be the measured center of the plate at that position of the target.  

 

Because the TLS measurement results in a point on the best-fit plane, to ensure that both 

instrument measure the same point, it is important that the LT also determine the range to a point 

that lies on the same plane. It is for this reason that the dual-sphere-plate artifact is designed so 

that the center of the spheres lies on the front surface of the plate. However, offset along the 

ranging direction (into and out of the plane of the plate) will not significantly affect 

measurements. If the spheres are away from the plane by 0.1 mm, in presence of a 5° pitch, the 

error in the range is only 0.1(1-cos(5°)) = 0.0004 mm. The offset was measured using a CMM 

and determined to be less than 0.1 mm. 

 

  
                          (a)                                                    (b) 

Fig. 12 (a) Front view of the dual-sphere-plate target (b) back view of the target showing the 

SMRs mounted inside the integration spheres. 

 

We note here that the artifact shown in Fig. 9 may also be used as a dual-sphere-plate target. The 

only disadvantage with that artifact is that the central region of the plate is not available because 

it is occluded by the sphere. The design shown in Fig. 12 overcomes that problem by placing the 

fiducial spheres outside the central region. 

 

6.2 Relative range error measurement 

 

Fig. 13 shows the relative range errors using the dual-sphere-plate target for the TLS under study 

at the 5 m, 8 m, 11 m, 14 m, 17 m, and 20 m range values (this corresponds to displacements of  



3 m, 6 m, 9 m, 13 m, 15 m, and 18 m, respectively). The target was only visually aligned at each 

position. For comparison purposes, we also show the relative errors obtained using the plate 

target (the plot in Fig. 4). It is clear that the relative errors obtained using the dual-sphere-plate 

target are practically identical to that obtained using the plate target indicating that the dual-

sphere-plate target is suitable for relative range error evaluation, but requiring lower alignment 

effort than using the plate target 

 

Because four scans were obtained at each position of the targets, we are able to determine the 

one standard deviation repeatability at each target position along the ranging direction of the 

TLS. These are as small as 5 µm at the reference position and as large as 40 µm at the 20 m 

distance. The repeatability of the mean of the four scans is therefore 2.5 µm and 20 µm at the 

reference and 20 m distance, respectively. The repeatability in the displacement between the test 

position and the reference position can therefore be calculated as the root sum square, and is 

about 20 µm for the 20 m distance. We note that this is not the overall uncertainty in the TLS 

measurements, but simply the one standard deviation repeatability in the lengths.  

 
Fig. 13 Relative range errors using the dual-sphere-plate target and the plate target 

 

6.3 Dual-sphere-plate target summary 

 

The proposed dual-sphere-plate target offers a quick and convenient way of realizing relative 

range error tests. It draws from the advantages of the plate target and the sphere target without 

the associated limitations. The spheres in the dual-sphere-plate target are only used as fiducials 

to identify a point on the plane that coincides with that determined by the LT. The radial 

direction movement of the sphere center due to squishing/flaring is no longer an issue because 

the spheres centers are projected onto the plane defined by the TLS point cloud data of the plate.  

 

7. Conclusions 

 

Relative range error measurement is a critical aspect in the performance evaluation of TLS and 

target geometry is an important aspect in the realization of these tests. In this paper, we describe 

relative range tests performed on a TLS using a plate target, a sphere target, and a novel dual-

sphere-plate target. The plate target provides relatively distortion-free data even at far distances 

but the plate itself needs careful alignment which can be time consuming. The sphere target 

offers a unique derived point, the center, that in principle may be determined using both the LT 

and the TLS. However, many TLS systems produce point cloud data that results in the center 



being away from the true center of the sphere, resulting in target induced errors in the 

measurement. In this context, we propose a novel dual-sphere-plate target that draws from the 

advantages of the plate and the sphere target without the associated limitations. We 

experimentally demonstrate that the dual-sphere-plate target produces nearly identical relative 

range errors as a plate target, but the measurement may be performed without having to align the 

plate at each test position saving the user considerable time and expense in realizing the tests. 

 

Disclaimer 

Commercial equipment and materials may be identified in order to adequately specify certain 

procedures. In no case does such identification imply recommendation or endorsement by the 

National Institute of Standards and Technology, nor does it imply that the materials or equipment 

identified are necessarily the best available for the purpose. 

References 

 

1. S. Phillips, M. Krystek, C. Shakarji, and K. Summerhays, Dimensional measurement 

traceability of 3D imaging systems, Proceedings of the SPIE, Vol. 7239, 2009 

2. ASME B89.7.5-2006, Metrological Traceability of Dimensional Measurement to the SI Unit 

of Length 

3. Cosarca C, Jocea A, Savu A. Analysis of error sources in Terrestrial Laser Scanning. 

RevCAD - J Geod Cadastrem, 2009, p.115-124. 

4. ASTM E2938-15, Test method to evaluate the relative-range measurement performance of 

3D imaging systems in the medium range, 2015 

5. P. Rachakonda, B. Muralikrishnan, M. Shilling, G. Cheok, V. Lee, C. Blackburn, D. Everett, 

D. Sawyer, Targets for relative range error evaluation of 3D imaging systems, Proceedings of 

the CMSC, Nashville, TN, 2016 

6. MacKinnon, D., Cournoyer, L., Beraldin, J., Single-plane versus three-plane methods for 

relative range error evaluation of medium-range 3D imaging systems, Proc. SPIE 9528, 

Videometrics, Range Imaging, and Applications XIII, 95280R (June 21, 2015)   

7. G. Cheok, K. Saidi, and A. Lytle, Evaluating a ranging protocol for 3D imaging systems, 24th 

International Symposium on Automation and Robotics in Construction (ISARC 2007), 

Chennai, India, 2007 

8. Rachakonda, P., Muralikrishnan, B., Lee, V., Sawyer, D., Phillips, S., Palmateer, J., A 

method of determining sphere center to center distance using laser trackers for evaluating 

laser scanners, Proceedings of the ASPE, Boston, MA, 2014 

9. Shilling M, Muralikrishnan, B., and Sawyer, D., Point removal for fitting spheres to 3-d laser 

scanner data, Proceedings of the ASPE, Boston, MA, 2014 

 


