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Abstract—While prior evaluation methodologies for data-
science research have focused on efficient and effective teamwork
on independent data science problems within given fields [1],
this paper argues that an enriched notion of evaluation-driven
research (EDR) supports methodologies and effective solutions to
data-science problems across multiple fields. We adopt the view
that progress in data-science research is enriched through the ex-
amination of a range of problems in many different areas (traffic,
healthcare, finance, sports, etc.) and through the development
of methodologies and evaluation paradigms that span diverse
disciplines, domains, problems, and tasks. A number of questions
arise when one considers the multiplicity of data science fields and
the potential for cross-disciplinary “sharing” of methodologies,
for example: the feasibility of generalizing problems, tasks,
and metrics across domains; ground-truth considerations for
different types of problems; issues related to data uncertainty
in different fields; and the feasibility of enabling cross-field
cooperation to encourage diversity of solutions. We posit that
addressing the problems inherent in such questions provides
a foundation for EDR across diverse fields. We ground our
conclusions and insights in a brief preliminary study developed
within the Information Access Division of the National Institute
of Standards and Technology as a part of a new Data Science
Research Program (DSRP). The DSRP focuses on this cross-
disciplinary notion of EDR and includes a new Data Science
Evaluation series to facilitate research collaboration, to leverage
shared technology and infrastructure, and to further build and
strengthen the data-science community.

I. INTRODUCTION

The Information Access Division (IAD) of the National
Institute of Standards and Technology (NIST) has developed
a new Data Science Research Program (DSRP) [2], [3]. While
prior evaluation methodologies for data-science research have
focused on efficient and effective teamwork on independent
data-science problems within given fields [1], the DSRP fo-
cuses on enriched evaluation-driven research (EDR) to support
methodologies and effective solutions to data-science problems
across multiple fields. The motivation for this shift is the
need to share common solutions and metrics, while avoiding
reformulation of solutions to data-science problems in one
discipline that are applicable to problems in another seemingly
distinct discipline. The DSRP relies on the development of
domain-independent solutions, and thus is well positioned for
examination of a range of problems and solutions in many
different fields, such as traffic, healthcare, finance, sports, etc.1

1This paper draws from these four domains for representative examples
of data-science solutions; however, many other domains lend themselves to
data-science solutions: weather, biology, law, ecology, economics, business,
security, medical informatics, social sciences, humanities, and several others.

In this program, data science is viewed as the application
of techniques for analysis and extraction of knowledge from
potentially massive data. Data science includes notions of big
data technical challenges in distributed and parallel processing,
as well as considerations and insights that might arise even
with smaller datasets. This paper aims to cover methodological
questions for data science more broadly, thus subsuming issues
inherent in big data challenges.

In this position paper, we adopt the view that progress
in data-science research is enabled through this cross-field
examination and through the development of methodologies
for transferring knowledge of approaches, solutions, measures,
and evaluation paradigms across those diverse disciplines,
problems, and tasks. Taking this approach yields a significantly
enriched notion of EDR beyond that of prior work through
the cross-disciplinary sharing of ideas across fields and the
discovery of solutions that otherwise would not have been
apparent within a given field.

Toward that end, we have developed a new Data Science
Evaluation (DSE) series—central to the DSRP—within which
evaluations are expected to recur annually. The series consists
of several tracks, where a track is made up of problems set in
a given field of data science. Each track is planned, organized,
and implemented by a “track coordinator,” either a NIST data
scientist or a non-NIST expert in the field of interest.

The first phase of the DSE series was completed in spring
2016: a small-scale pre-pilot evaluation was conducted by
NIST that consisted of a single track with a traffic prediction
use case in the automotive domain. In the fall of 2016, a
pilot evaluation will take place that extends the pre-pilot
evaluation track and is open to all who wish to participate. The
pilot evaluation is designed to pave the way for a successful
and informative full-scale evaluation encompassing multiple
disciplines.

Toward that end, the goal for 2017 is to develop an inaugural
evaluation, consisting of multiple evaluation tracks in different
domains and use cases—championed by experts in different
fields. As a first step toward this goal, the upcoming 2016 pilot
evaluation encompasses these objectives:

• further develop and exercise the evaluation process at
NIST in the context of data science,

• provide participants the opportunity to exercise the eval-
uation process prior to participating in larger-scale eval-
uation,



TABLE I
FOUNDATIONAL QUESTIONS FOR ENRICHED EDR

A. Classes of Problems: What kinds of measurable problems, techniques,
and algorithms generalize across domains?

B. Tasks: What is an appropriate series of tasks on which data researchers
in different fields may want to test their approaches, either at the task-
component level or at a higher end-to-end level?

C. Methods and Metrics: What kinds of methods and metrics generalize
to problems across domains? How effective is the generalization and
what can be done to make algorithms and methods more domain-
independent?

D. Ground Truth: Are there ground-truth considerations common to
different areas of data science? Are there effective techniques to handle
the lack of or limited ground truth in different both for solving problems
and for evaluating methods and metrics?

E. Data Uncertainty: What approaches to handling gaps and inconsisten-
cies in data are applicable to multiple domains?

F. Community Cooperation: Is it possible to foster cross-field coopera-
tion for sharing of solutions?

G. Diversity of Solutions: Can cross-field synergies yield diverse solutions
within a given field?

• serve as an archetype for the development of future
evaluation tasks, datasets, and metrics,

• establish baseline performance measurements,
• identify new measurement methods and techniques that

might be applied to a broad range of use cases, regardless
of data type and structure.

It is the last objective above that is the central theme of
this position paper. Most notably, although the pilot evaluation
is set in the automotive domain, it is expected that many of
the algorithms and techniques to be evaluated (as well as the
evaluation approaches and metrics themselves) will generalize
to other domains. This theme is fundamental to an enhanced
notion of EDR where methodologies, approaches, solutions,
measures, and evaluation paradigms are considered in new
domains, with the expectation that many of these will be of
significant utility across diverse fields.

A framework for enriched EDR can be characterized as a
set of answers to questions such as those shown in Table I.
We argue that addressing the issues inherent in such questions
provides a foundation for EDR across diverse fields and thus
enables research progress on many shared problems and tasks
in different domains.

The next section presents related work in evaluation-driven
research and generalizability across domains. Following this,
Section III makes a case for concrete steps toward this
generalizability and explores an enriched notion of EDR
through examination of each of the questions above in turn. In
Section V, we ground our conclusions and insights in a brief
preliminary study developed within the DSE for evaluation-
driven research aimed at strengthening the data-science com-
munity. Concluding remarks are provided in Section VI.

II. BACKGROUND

The earliest seeds for EDR were sown in the 1970’s,
when George H. Heilmeier—while serving as Director of
the Defense Advanced Research Projects Agency (DARPA)—
developed the Heilmeier Catechism. (This was published two

decades later (as [4]) and was subsequently reviewed by others,
e.g., [5].) In this work, several questions related to innovation
and novelty were posed, but also a set of evaluation-driven
questions were posed along the following lines [4, pg. 15]:
“What difference will it make? What are the midterm and
final “exams” to check for success?”

These questions are foundational to EDR and have become
the basic tenets for many evaluation campaigns across different
disciplines. Moreover, these questions have driven progress in
many different areas of research. EDR has been around for
a long while (more on that below), it has served us well for
decades, and it is not likely to go away anytime soon.

The implication is that progress in research is heavily guided
by goals related to evaluation. What is often overlooked,
however, is an aspect related to the cross-disciplinary (en-
riched) notion of EDR espoused in this paper. Interestingly,
Heilmeier’s 1992 article [4] included several important lessons
that were relevant to this enriched notion, but that (at the
time) received less attention than the oft-cited questions in the
Heilmeier Catechism. For example, the following statement
from the article is relevant [4, pg. 14]: “Approach problems
from an interdisciplinary point of view. Remove the barriers
to exploiting the viewpoints of other disciplines, and do not
be afraid to be called naı̈ve when venturing outside your own
professional discipline.”

In short, while experts in diverse fields such as those
enumerated in Section I might consider their own problems
to be unique, it may be the case—more often than not—
that data-science solutions and metrics used in one field may
be applicable to problems in another field. Before exploring
this enriched notion of EDR, it is worthwhile to examine the
history leading up to the point where research progress began
to be driven in large part by discipline-wide evaluations.

Falling in line with Helmeier, speech researchers expe-
rienced a paradigm shift in the 1980’s, where evaluations
served to push research forward [6], [7]. The DARPA TIP-
STER speech evaluation involved evaluation methodologies
designed to support focused research, to establish momentum,
to maintain continuity, and to encourage longevity, while
pushing forward the state of the art. However, evaluation
methodologies and metrics spanning domains and disciplines
were generally unheard of back in these early days; generally
each field had its own evaluation (e.g., speech recognition).

Following this paradigm shift, EDR began to serve as the
basis for multiple evaluations by the National Institute for
Standards and Technology (NIST), most notably in Informa-
tion Retrieval, as evaluated in the Text REtrieval Conference
[8]. This gave rise to several discipline-wide evaluations with
well-defined tasks, data, metrics, and measurement methods
(see, e.g., [3] for a more in-depth discussion). Most notably,
EDR has successfully spurred research progress in automatic
speaker recognition research [9], [10], machine translation
[11], and optical character recognition [12].

The associated development of benchmarks has yielded the
application of an evaluation methodology to different types
of inputs for a given technology. For example, Word Error



Rate (WER) has been applied to evaluate effectiveness of
speech recognition output for varying levels of “informality”
(i.e., different genres) of speech inputs [7].2 However, the
application was always “speech transcription” and the metric
was always WER. If the application domain were not speech,
would this same evaluation paradigm be applicable?

Certainly within the fields of natural language processing
and document processing, there are other problems to which
WER has been applied: machine translation (often modified to
take into account meaning such as Human-targeted Translation
Error Rate (HTER) [13]) and optical character recognition
(often applied in conjunction with character error rate [14]).
This is a good start—but what about generalizing to non-
language data, such as non-language medical or financial data?

We adopt the view that generalizations of approaches and
measures are often possible across disciplines upon closer
inspection. For example, in many fields, experts are focused
on predicting a series of ordered consequences. When an input
sequence is mapped into an output sequence for this type of
prediction task—regardless of the field—a metric akin to WER
could be adapted for a particular problem and, moreover, the
underlying technology that implements a given solution might
itself be shared across fields. In such cases, the way that the
technology is both implemented and evaluated would benefit
from cross-disciplinary sharing.

Another clear case of a large-scale data science evaluation
that supports EDR is Kaggle (https://www.kaggle.com/)—a
forum for hosting Data Science Competitions that consists of a
wide range of “challenges” in multiple domains [15]. Although
EDR is central to the design of these periodic evaluations, the
missing aspect is that of generalizability: each competition is
run (mostly) independently, with little or no synergy across
the different problem areas, tasks, and and also no shared
methodologies (unless by accident). Kaggle does include a
means for employing metrics across domains, which is an
important step toward generalizability; our aim is to further
enrich the notion of EDR through cross-domain sharing of
algorithms for analogous tasks.

The CLEF Initiative (Conference and Labs of the Evaluation
Forum, formerly known as Cross-Language Evaluation Forum)
[16] is yet another example of a large-scale evaluation that is
aligned with EDR. The main mission of CLEF is to promote
research, innovation, and development of information access
systems with an emphasis on multilingual and multimodal
information with various levels of structure. CLEF has had
a very significant scholarly impact, as evidenced by the emer-
gence of research directions that otherwise would not have
been possible and also by measures of the scholarly impact of
the research fostered by benchmarking activities within CLEF.

The overarching field of study for participants in CLEF
is information retrieval, but the application areas are often
broad, encompassing numerous disciplines. As a forum that
supports “Evaluation Campaigns” CLEF has paved the way

2In addition to level of informality, speech evaluation includes other
speech-specific dimensions such as the language, noise, microphone type, and
environment, each increasing the difficulty of the same challenge over time.

for providing a basis for multi-disciplinary sharing that might
be leveraged for an enriched notion of EDR as described
in this paper. Concrete steps toward bringing about sharing
of techniques and metrics—such as those discussed in the
next section—might improve progress on CLEF problems both
within and across evaluation campaigns.

Several other evaluation-related concepts and paradigms are
related to EDR and, thus, would potentially benefit from mul-
tidisciplinary participation and enriched EDR. For example,
Developmental Evaluation (DE) [17] leverages evaluation to
support development and to focus on long-term, continuous
improvement. This domain-independent methodology applies
to many fields. Relatedly, in software engineering, the concept
of a benchmark—a common framework for people within a
discipline to discuss and compare solutions—can provide EDR
benefits. Sim et al. [18] argue that benchmarking advances
research by providing a setting where researchers can focus
their attention on key problems. Sharing of benchmarking
approaches across disciplines provides another opportunity to
generalize evaluation methodologies in ways that may lead to
EDR enrichment. One such framework is the use of common
data sets to compare systems and algorithms. SPEC [19]
and the UCI Machine learning repository [20] are two such
collections of data sets.

The next section discusses concrete steps toward general-
izability of concepts and paradigms related to evaluation and
further develops the notion of enriched EDR.

III. AN ENRICHED NOTION OF EVALUATION-DRIVEN
RESEARCH FOR DATA SCIENCE

Prior work [3] conceives of EDR for data science as
a notion that is divided up into four steps that are more
programmatic than foundational in nature: planning tasks and
research objectives for evaluation; design of data and experi-
ments; performance assessment; and provision of a forum to
discuss evaluation outcomes. These steps are crucial to the
development of a framework within which to practice EDR,
but they do not translate directly into the fundamentals of how
to implement various aspects pertaining to EDR. For example,
these programmatic steps remain agnostic with respect to how
one studies different problems, tasks, and domains in data
science in a way that leverages evaluation methodologies that
might potentially span multiple disciplines.

Enriched EDR is achieved when a solution in an existing
field is applied successfully in a new field for which such
a solution had not been previously imagined. As alluded to
above, data science crucially spans a diverse set of disciplines
and domains [21]. Leveraging the breadth of disciplines inves-
tigated by data scientists provides the basis for strengthening
EDR to the advantage of each of the individual fields.

To date, EDR has driven progress with an evaluation cycle
that is repeated at regular intervals and, as technology im-
proves, the research objectives are made more challenging on
each subsequent cycle. Within data science, this repeated cycle
has the potential for further enrichment through the ability to



TABLE II
REPRESENTATIVE SET OF DOMAIN-SPECIFIC TASKS FOR FOUR DOMAINS (TRAFFIC, HEALTHCARE, FINANCE, AND SPORTS)

ACROSS THREE DATA-SCIENCE PROBLEMS: ANOMALY DETECTION, PREDICTION, AND ALIGNMENT

Problem
Anomaly Detection Prediction Alignment

Traffic Cleaning up gaps and inconsistencies in
lane detector data

Determining upcoming traffic speed using
flow volume and percentage occupancy

Relating traffic events in reports to traffic
video segments containing those events

Healthcare Detecting outliers for discovery of fraud-
ulent claims

Predicting patients’ next-day care needs
from electronic patient records

Correlating patient data for patients across
multiple medical databases

D
om

ai
n

Finance Detecting potential change in direction
and momentum of market

Identifying potential stock market events
from sentiments in social media

Aligning past news reports with previous
stock market events

Sports Detection of anomalies in athletic perfor-
mance data (e.g., injuries, doping)

Predicting successful athletic strategies
(i.e., when to pull out and/or substitute a
player in a team sport)

Identifying athletes across multiple perfor-
mances (i.e., games or competitions)

leverage tasks, methodologies, and metrics across fields that
might at first glance appear to be too distinct for such sharing.

IV. DISCUSSING A SOLID FOUNDATION FOR EDR

This section highlights the potential for transferring knowl-
edge of approaches, solutions, measures, and evaluation
paradigms across those diverse disciplines, domains, problems,
and tasks. Throughout this discussion, the goal is to determine
what it would take to establish a solid foundation for enriched
EDR and to provide data scientists easy access to methodolo-
gies, solutions, and metrics from multiple fields. The aim is
to enable the discovery of new ways to use these that were
not previously anticipated, thus enabling forward progress on
longstanding research problems across multiple fields.

Each of the questions presented in Table I will be addressed
in turn, below. We adopt the view that addressing the issues in-
herent in such questions provides a foundation for an enriched
notion of EDR that spans a range of diverse fields.

A. Classes of Problems: What kinds of measurable problems,
techniques, and algorithms generalize across domains?

Identifying the classes of measurable problems, techniques,
and algorithms that generalize across data-science domains is
crucial for an enriched notion of EDR. In the work of [22],
classes of problems in data science are outlined, with four
example case studies that span these classes. The disciplinary
foundation for these four studies is the same: language pro-
cessing (topic modeling, emotion-word mining, and informal
language analysis). The primary problem of interest in this
work is classification of vocabulary usage in news and blog
data.

There are, however, a number of problems in data science
that span a diverse range of fields and that serve as the basis
of EDR. Consider the following set of data-science problems,
and their application to a representative set of domains, as
shown in Table II:3

• Anomaly Detection: identification of items or events that
do not conform to an expected pattern

3Additional classes of problems might be considered for examination of
methodologies and EDR across domains [3]. For brevity and illustrational
clarity, only four are presented here.

• Prediction: estimation of variables of interest at future
times

• Alignment: correlation of different instances of the same
object

Although these three problems are generalizable across
domains, the specific contexts for each of these problems
varies across diverse fields—as illustrated by the range of
different tasks under each of the problem headings in Table II.
The next section discusses the nature of such tasks, after which
we argue that—despite domain-specific contexts surrounding
these tasks—there are domain-independent solutions and met-
rics for data-science problems that enable generalizability, thus
enriching EDR.

B. Tasks: What is an appropriate series of tasks for which
data researchers in different fields may want to test their
approaches, either at the task-component level or at a higher
end-to-end level?

It is a significant undertaking to find an appropriate series of
tasks for which data researchers in different fields may want
to test their approaches. Among other challenges, to make
progress in EDR, the tasks that are selected for an evaluation
must be both technically challenging and a significant step
beyond current state of the art.

A comparison of solutions is a central component of all
tracks in a community-wide evaluation, and such comparisons
often serve as the basis of support for future research. A
wide evaluation may be used to determine whether there exist
solutions that were not widely known in a given discipline at
the time a problem was posed—or it may bring about new
solutions that otherwise never had been considered. Scoping
out the space of possible solutions (whether pre-existing or
proposed anew) is critical for moving forward in ways that
enable the development of approaches that are revolutionary,
not evolutionary.

To support this endeavor, it is critical to ensure a low
enough “barrier to admission” so that the range of tasks
selected for evaluation are addressable by researchers across
disciplines (hence diverse solutions), while bringing together a
broader, international community of data-science researchers.
This allows different approaches to be compared and the
leveraging of cross-domain synergies.



TABLE III
POSSIBLE DOMAIN-INDEPENDENT METHODS AND METRICS TO DATA-SCIENCE PROBLEMS. NOTE THAT THE METRICS FOR PREDICTION ASSUME A

CONTEXT WHERE A CONTINUOUS VALUE (AND NOT A PROBABILITY) ARE BEING PREDICTED.

Problems Methods Metrics
Anomaly Detection Timeseries outlier detection, Statistical deviation detection Accuracy, precision, recall, F1-Score, ROC or DET area,

decision cost function, and average precision
Prediction Multiple regression, Random forests of regression trees Mean absolute error, Mean squared error, Root mean squared

error, R2 (a correlation metric).
Alignment Substring matching, hidden markov models Same metrics as for anomaly detection.

A series of tasks for which data researchers in different
fields can build solutions that are evaluated—both at the
component level and at the end-to-end level—is important
for taking EDR to the next level beyond existing approaches
to evaluation. Some examples of domain-specific tasks are
enumerated under each three problems shown in Table II.

What is interesting to note is that, despite the domain
specificity of tasks, the solutions fall under the heading of
much broader categories of problems in data science. As
such, specific tasks such as “identifying errors” and “detect-
ing change in direction” fall under the general problem of
Anomaly Detection, “predicting care needs” and “identifying
future stock market events” fall under the general problem of
Prediction, and “relating traffic events (in reports and video)”
and “identifying athletes across performances” fall under the
general problem of Alignment. Thus, it is expected that
similar—or possibly the same—methods and metrics would
be applicable for each of these generalized problems, even in
cases where the specific tasks seem to be entirely different
at first glance. (This point will be discussed further in the
“Methods and Metrics” section below.)

Additionally, different tasks need to be combined and evalu-
ated in a workflow in order to better evaluate the consequences
of error in one task on another. For instance, different tasks
are pipelined, as one example, as five stages in the “Big
Data pipeline” [23] described in Jagadish et al. [23]: data
acquisition; information extraction and cleaning; data integra-
tion, aggregation, and representation; modeling and analysis.
By choosing tasks that complete a workflow, such as the
pipeline above, individual component-level evaluations can be
combined to better evaluate the data analytic process as a
whole.

C. Methods and Metrics: What kinds of methods and metrics
generalize to problems across domains? How effective is the
generalization and what can be done to make algorithms and
methods more domain-independent?

One goal of this application of EDR to data science is to de-
velop enhanced methods and metrics that are general-purpose
and can be applied to different data analytic components in a
variety of domains. However, given the details of the different
domains, this can be challenging.

Consider the range of domain-specific tasks associated with
each of the three problems presented earlier in Table II. Some
possible domain-independent methods and metrics for these
tasks are summarized in Table III.

Even if the notion of anomaly is clearly specified for a given
domain (which may not be the case), the methods associated
with this notion may differ based on the context. In many
cases (such as in the traffic case), anomalies are viewed as
potential errors to be cleaned, yet in other cases (such as in
the healthcare domain), an anomaly is considered an important
point of interest; indeed, it might be the key to detecting
critical information such as fraudulent claims. As such, the
methods associated with anomaly detection differ depending
on the use case, and the metrics would reward methods in
different ways.

However, despite such distinctions, EDR is likely to be
enriched by anomaly-detection techniques that work well in
one domain and are successfully applied in another domain—
even if the results are handled differently by downstream
processes. When methods in one domain are “borrowed” for
another domain, various forms of adaptation may be needed
for maximum efficacy. For instance, in the traffic case the data
might be viewed as time-series data where the local (timewise)
points might be leveraged to assist in cleaning (Basu and
Meckesheimer [24] provide one such algorithm), whereas in
the healthcare case time-locality may not be available or
relevant. Adaptation of existing techniques—or combinations
of cross-field techniques—may yield a solution for both dis-
ciplines that might not otherwise have been considered.

As for generalization of metrics to problems across domains,
consider the case of Prediction from Table II. If a continuous
answer is needed, e.g., “determining upcoming traffic speed,”
there are a variety of metrics including mean absolute error ,
mean squared error, root mean squared error, and correlation
metrics, such as R2. If a discrete value is required for a
prediction task, e.g., “predicting successful athletic strategies,”
there are also a variety of metrics that would be applicable
across domains, including accuracy, precision, recall, F1-score,
Receiver Operating Characteristic (ROC) or Detection Error
Tradeoff (DET) curve, and average precision. Although it is
often the case that certain metrics are traditionally used within
certain disciplines or domains, there is no reason to expect that
such metrics would not be applicable to multiple disciplines or
domains—thus yielding insights that enable research progress
in individual disciplines.

Caruana and Niculescu-Mizil [25] showed that supervised
learning algorithms may vary heavily depending on the metric
used, and it is often not clear which metric is most relevant
for the specific domain. Even if a metric is general-purpose,
the contexts in which it matters may not be. One approach



to designing a general-purpose metric that can be applied
in a variety of domains is to simulate (through different
datasets) how the score of each metric varies in different
situations. Another approach is to pick metrics that have
desirable properties, such as symmetry. Xiong and Li [26]
performed a study on various clustering metrics to illustrate
different properties of those metrics and to single out metrics
that may exhibit desirable properties in a variety of scenarios
and datasets.

The idea of understanding contexts where certain methods
score lower according to certain metrics is a part of EDR;
likewise, the idea of understanding the strengths, limitations,
and properties of metrics is a key component of EDR.
Evaluations that apply different metrics to compare different
methods provide insight into general-purpose methods and
metrics, allowing comparisons to be made with respect to the
generalizability of the metric to different contexts.

D. Ground Truth: Are there ground-truth considerations com-
mon to different areas of data science? Are there effective
techniques to handle the lack of ground truth in different
domains, both for solving problems and for evaluating methods
and metrics?

The ability to obtain and use ground truth is fundamental
to measuring the effectiveness of research, both within and
across domains. Although the existence of ground truth is an
inescapable part of almost any data-science endeavor, identi-
fying it may require a significant effort and is often fraught
with challenges and limitations, regardless of the domain.

At the source of many recurring problems associated with
data-science evaluation—regardless of domain—is the absence
of the “right” data against which to evaluate.4 For example,
there may be no way to collect the data in the first place, or
the data collected may not be varied enough to represent the
range of cases that actually arise, or the data collected “after
the fact” may be unrealistic in some way that is a mismatch
with the actual situation. More concretely, the following are
the difficulties that are likely to occur in many different areas
of data science:

• The “answer” to the problem could be unknown, i.e.,
ground truth is completely missing. This could be because
humans cannot know the answer—the information does
not exist (e.g., predicting a system output that will compel
a user to take a particular action). Alternatively, if the
information does theoretically exist, it may by design
or otherwise never be recorded (e.g., grouping bitcoin
wallets). Having no “answer” for comparison of system
outputs means no comparative analysis of accuracy can
be made. In such cases, determining whether a system
actually addresses the problem it set out to solve becomes
a significant challenge. However, should the problem fall
into a well defined category of data science, mapping
the system to another domain may give an estimation

4In this paper, Ground Truth is referred to in the context of the evaluation
(i.e. “test”) side, but it is worth noting that methods that address the lack of,
or limited, Ground Truth may also significantly aid training purposes.

of how well the system addresses the given problem. For
example, if ground truth is unavailable to evaluate patient
matching algorithms (matching different occurrences of
the same patient across data sources, e.g. hospitals, GPs,
labs etc., where there can be many data-entry mistakes),
researchers may try to evaluate the same algorithm in the
domain of athlete matching, where information is less
sensitive and therefore more available.5

• Ground truth does exist but may have significant limita-
tions (e.g., only 1% of the data are labeled). This could be
for multiple reasons, often due to the expense of gathering
ground truth, whether in terms of resources, machine
time, or person hours. Evaluating on limited ground truth
introduces biases that hinder the ability of researchers to
correctly assess the accuracy of their systems. For exam-
ple, in a classification problem, or some classes could be
missing, the spread of classes could be unrepresentative
of the main dataset. Techniques to limit these biases have
been developed. For example, Katariya et al.’s [27] work
on active evaluation of classifiers across multiple domains
estimates accuracy by utilizing a (usually human) labeler
to construct a small (adaptive) labeled set, which is then
used as limited ground truth.

• Ground truth does exist but is either partial or unreliable.
In the case of partial ground truth, the answers may
be available only under specific conditions or they may
represent only part of the relevant information. In the case
of unreliable ground truth, the answers may be associated
with low-confidence output, e.g., results obtained from
crowd-sourcing approaches such as “turking”.6 Being
able to use partial or unreliable answers is sometimes the
only way to evaluate systems for a given problem, given
the lack of complete and/or accurate “answers.” Previous
NIST evaluations (e.g., [8]) apply accuracy measures that
accommodate the lack of full truth data, often employing
mediated adjudication approaches (e.g., pooling relevance
assessments of participants in the evaluation to approxi-
mate recall).

Therefore with respect to ground truth, we make two
claims: (1) The more standardized the tasks, measurement
methods, and metrics, the easier it is to adapt techniques across
problems (see the above example in the case of absent ground
truth); (2) Techniques that are developed in one domain to
address incompleteness of ground truth can be adapted to other
domains.

E. Data Uncertainty: What approaches to handling gaps and
inconsistencies in data are applicable to multiple domains?

Uncertainty arises in every domain. It comes from mea-
surement error and noise that add variance and, possibly,

5Of course, mapping a problem to a different domain gives rise to its own
set of problems (e.g., there may be a different distribution of errors for athlete
matching than for patient matching), and this may impact effectiveness of
systems as well.

6Using frameworks like Amazon Mechanical Turk [28], researchers can
outsource the labeling of their data. This method is often considered unreliable
as workers are paid by the amount of data labeled and are anonymous.



TABLE IV
EVALUATION METHODOLOGY: DOMAIN-INDEPENDENT METRICS TO BE APPLIED IN THE PILOT EVALUATION (FALL 2016)

Data Science Problem (Task) Measures of Success (Metric)
CleaningDet and Alignment Decision Cost Function (DCF ) representing a linear combination of the miss and false alarm rates at a threshold τ .

The overall performance metric is the minimum DCF value obtained considering all τ : minτ (DCF (τ)), where
DCF (τ) = cmiss ∗ Ptarget ∗ |misses(τ)|

|target trials| + cfa ∗ (1− Ptarget) ∗ |false alarms(τ)|
|non-target trials|

CleaningCor Mean Absolute Error (MAE), where n is the number of trials, and for each trial i: v̂i is the estimated data value
and vi is the correct data value. The overall performance metric is: MAE = 1

n

∑n
i=1 |v̂i − vi|

Prediction Root Mean Squared Error (RMSE), where E is the set of event types, n is the number of trials, and for each trial i,
êi is the predicted count of events of type e and ei is the true count of events of that type. The overall performance
metric is the average of each trial’s RMSE: 1

n

∑n
i=1RMSE(i), where RMSE(i) =

√
1
|E|

∑
e∈E (êi − ei)2

bias to the measured value. To understand the nature of
uncertainty in a more general context, consider, for example,
multiple measurements of an object by hand with a ruler: it is
expected that slightly different lengths would be obtained for
each measurement. The resulting distribution of measurement
values provides a representation of the uncertainty.

Despite uncertainty’s impact on measurement, it is common
to ignore uncertainty at one or more stages of the data-to-
decision pipeline. In the worst case, uncertainty cascades,
causing the output to have no positive bearing on the decision.

Such concerns can be addressed by overcoming several
challenges associated with the handling of uncertainty, namely
how to represent it, how to communicate it, how to measure
it, and how to calibrate its measurement—all at both the
component and pipeline levels. We adopt the view that a cross-
field analysis supports the development of methodologies for
measurement and handling of uncertainty across all domains.

Advances in measuring uncertainty in computer simulations
has impacted meteorology [29], medicine [30], and many
other domains [31]. Similarly, progress in handling uncertainty
in, for example, clustering could impact every domain in
which challenges naturally modeled as clustering problems
arise, such as image segmentation (where image pixels are
grouped by the object the represent) and entity resolution
(where mentions of entities in text are grouped by the real-life
entity to which they refer).

Thus the potential impact of progress in handling uncer-
tainty in data science is exceptionally broad and its importance
will continue to rise as system performance improves to the
point where uncertainty is large relative to the performance
error7 and as data science is more commonly used to discover
knowledge and make decisions of great consequence.

F. Community Cooperation: Is it possible to foster cross-field
cooperation for sharing of solutions?

Even in the days of TIPSTER [6], evaluation frameworks
and their accompanying infrastructure were designed to foster
collaboration and progress. However, such programs were
focused on problems within one discipline (speech recognition
in the case of TIPSTER), in contrast to the data science arena,
which is expected to bring together vastly different disciplines.

7which, incidentally, is when one might most want to use a system and to
understand the uncertainty of a given output.

Moreover, in many of the early, single-discipline evaluations
(such as machine translation [11]), the goal was to find
solutions that achieved as close to human performance as
possible. It could be argued that this goal is entirely supplanted
by a very different one in the field of data science, which is
to surpass human performance (as data sizes are often far
too large for humans to achieve the same degree of speed or
to manage the cognitive load and fatigue that lead to human
error) while not reinventing the wheel (as the solution to a
data-science problem in one field may have already been found
in another). Both goals are difficult to achieve, but they are
quite different. For the latter, it is clear that a more concerted
effort is needed to encourage cross-fertilization, with novel
paradigms that foster collaboration in some very new ways.

Data science problems can be viewed through a much
broader lens than that of many prior evaluations. To ensure
that researchers in one field have access to knowledge about
problems and solutions in another field, it is important that
the evaluation methodology itself be designed to span multiple
domains. In so doing, problems may, in fact, be shared across
entirely independent tracks within a data-science evaluation
series, and the evaluation framework thus enables accessibility
to solutions and metrics that span multiple domains.

At first it may seem difficult—or impossible—for such a
large of researchers who study such a vast array of disciplines
(such as those from Table II) to come together in a way
that enables transfer of knowledge of approaches, solutions,
measures, and evaluation paradigms. However, it has become
clear that this is absolutely essential with large data sets across
many domains, and the potential for sharing common solutions
to managing such large sets.

Researchers are willing, more now than ever before, to
openly discuss their successes and failures in the context of
data-science evaluation. As community-wide evaluation fora
(e.g., NIST, Kaggle, and CLEF) and multi-week research
workshops (e.g., Frederick Jelinek Memorial Workshops on
Speech, Language and Computer Vision [32]) have become
increasingly grounded in multi-disciplinary problems, oppor-
tunities have emerged to leverage the openness and community
spirit that is necessary for an enriched notion of EDR. This
type of enrichment was elusive in the early days of EDR,
when researchers and companies were expected to compete for
status or top ratings—academics climbing the tenure ladder,
researchers battling it out for recognition through awards and



funding, and commercial entities holding their “secret sauce”
under lock and key.

While some of these competitive aspects are still present
nowadays, many communities of researchers are now will-
ing to share ideas, approaches, and lessons learned—and to
collaborate in ways that yield better results than would be
achieved individually. The time is ripe to take advantage of
this forward motion and apply this collaborative spirit not just
within research communities, but across them. The field of
data science is uniquely positioned, with its inherent multi-
disciplinarity, to provide the basis for an enriched EDR at a
macro level that has not previously been attained.

A concrete example of an evaluation methodology that can
enhance both within- and across-discipline cooperation is the
provision of a solid evaluation infrastructure for Evaluation-
as-a-Service (EaaS) [33], which allows participants to submit
systems (through a software container) directly to the evaluator
who runs the systems on the evaluator’s computing resources
and (sometimes hidden) data. Although EaaS sometimes pre-
vents data sharing, it broadens the range of disciplines within
which problems can be studied by enabling evaluations even
in contexts where the data are sensitive, private, or cannot be
shared for other reasons. This paradigm is a direct contrast to
those where participants run their methods on their computing
resources and then submit results to the evaluator for scoring.
A strong case can be made for EaaS as an evaluation method-
ology that scales to the size and complexity of data found in
many fields of data science (e.g., medical data sets). Such an
approach is an initial step toward the notion of enriched EDR
presented in this paper.

G. Diversity of Solutions: Can cross-field synergies yield
diverse solutions within a given field?

For any field, independent solutions may yield rather large
gains when combined, if the independent solutions are based
on approaches that are diverse enough to yield significant com-
plementarity. Researchers who espouse “hybrid approaches”
rely heavily on very distinct sub-approaches such that the com-
bination yields the highest performance gains. Many examples
are seen in the field of language, where statistical approaches
are combined with symbolic approaches [34] or in tasks related
to autonomy and coactive design where automatic techniques
are combined with human-in-the-loop guidance [35].

Data science is inherently diverse due to the degree of mul-
tidisciplinarity. The solutions expected from data-science re-
searchers are likely to be applicable across different domains—
yet be distinct enough to be complementary, such that com-
binations of approaches may be generated and tested within
the evaluation paradigm described in this paper. For example,
dynamic programming algorithms used for efficient alignment
of data sequences have potential to be applied to alignment
tasks in both the traffic and healthcare domains.

An even more compelling result—leading to enriched
EDR—is one where an algorithm from one field is combined
with that of another field to yield improvements over either one
alone. For example, hidden markov models, which have been

used in conjunction with dynamic programming for alignment
problems in biological and healthcare domains for years (e.g.,
protein sequence alignment [36]), might be used in conjunction
with dynamic programming in the traffic domain to improve
performance of systems that align traffic video segments to
traffic incident reports.

An important enabler of diversity and cross-field synergies
(and thus diverse solutions) is global accessibility of evaluation
resources and infrastructure. One approach that successfully
involves geographically diverse participants is that of Kaggle
[15], for which participants invest hundreds of hours in ex-
ploring the potential solution space, as mentioned above in
Section II. Kaggle competitions include a large number of
well-developed tutorials that have been designed to lower the
barrier to admission, and solutions to Kaggle competitions are
compared within specific problems.

The degree to which cross-domain synergies are leveraged
for solutions across different data-science problems (e.g.,
development of alignment techniques for problems in both
finance and sports) is expected to be higher within an evalua-
tion framework that supports a unified effort that covers many
different areas of data science simultaneously. Toward that end,
we have conducted a case study based on an upcoming pilot
evaluation of traffic incident detection and prediction. The goal
is to solidify a framework that is designed to support enriched
EDR for multi-track data-science evaluation in future years.

V. A CASE STUDY: NIST’S EXPERIENCE WITH TRAFFIC
INCIDENT DETECTION AND PREDICTION

In formulating the problems to be addressed for the upcom-
ing (Fall 2016) Pilot evaluation, the NIST team has adhered to
the guiding principle underlying the Data Science Evaluation
series that the tasks to be evaluated would span multiple fields,
such that researchers would be able to test their approaches
across different evaluation tracks (domains)—thus giving rise
to an enriched EDR and accelerated research progress.

The initial tasks designed for this Pilot Evaluation fall
within the realm of the three data-science problems below,
with specific application to the traffic domain as an example
of each case.

1) Cleaning. Detecting and correcting errors in traffic lane
detector data flow values.

2) Alignment. Matching traffic events with traffic video
segments containing those events.

3) Prediction. Inferring the number and types of traffic in-
cidents in an upcoming time interval based on historical
data.

A fourth data-science problem related to prediction is also
included in the Pilot evaluation but not highlighted in this
paper is forecasting, which produces a timeseries for the
predicted values. Like the other three, this task has an anal-
ogous standing in other domains such as patient matching in
healthcare records, financial trending, and sports.

For this case study, we successfully arrived at an evaluation
methodology that included measures of success. We apply
this methodology for the Pilot evaluation using the specific



metrics and tasks shown in Table IV to the traffic domain,
where each metric in the table is the metric used to measure
a system’s performance on the specific data analytic task.
For example, misses and false alarms (for CleaningDet and
Prediction) are defined in terms of traffic events, data values
(for CleaningCor) are defined in terms of traffic flow, and
event types (for Alignment) are defined in terms of a range of
different types of traffic incidents.

Note that the detection task associated with Cleaning—a
variant of the “Anomaly Detection” problem—is evaluated by
the same metric that is used for Alignment (the Decision Cost
Function). However, there is a second task associated with
Cleaning, correction, that is evaluated by an entirely different
metric: Mean Absolute Error (MAE). Prediction is evaluated
using yet another metric, Root Mean Squared Error (RMSE).

We further note that there are subtle differences between the
metric for the detection task (for the Cleaning problem) and the
metric for the Alignment task. The inclusion of the parameters
cmiss, cfa, and Ptarget allow the metric to be customized so
that it is applicable to a variety of scenarios. For the traffic
use case, the parameter values selected for this decision cost
function are based on two different scenarios: for detection,
cmiss = 1, cfa = 1, and Ptarget = 0.0312; for alignment,
cs = 1, cfa = 100, and Ptarget = 0.5.

This within-domain parameterizability provides a level of
flexibility for the specification of metrics that also enables
applicability across domains, in support of enriched EDR.
For example, the evaluation of anomaly detection in financial
trending would be analogous to that of the detection task
for data cleaning in the traffic domain, where misses and
false alarms in the Decision Cost Function would be re-
mapped from the typical traffic events (such as an accident)
to financial events (such as a major change in stock price).
Similarly, patient matching in the healthcare domain could be
viewed as an Alignment task, where the problem of correlating
patient data for patients across multiple medical databases
is treated analogously to matching traffic events with traffic
video segments containing those events; the same Decision
Cost Function metric used in the traffic domain would then be
applicable to the healthcare domain for this problem.

Data uncertainty received limited attention in the pilot,
though arose in the form of noise and error present in the traffic
sensors. These were handled by deleting obviously errorful
measurement values, and otherwise treating the sensor output
as accurate. In this sense, the cleaning task is focused on
uncertain data. Incorporating uncertainty into system output
for NIST to measure is a likely focus of future work in data
uncertainty.

Challenges with respect to ground truth in the pilot were
addressed by carefully designing tasks, “removing data“, and
through selective annotation. It is worth noting that this is an
evaluation problem, not entirely dissimilar to the problem of
unsupervised (or semi-supervised or active) learning.

The pilot evaluation will prototype the EaaS concept de-
scribed earlier [33] by testing the concept of accepting systems
as submissions. Although not previously referred to as EaaS,

prior NIST evaluations (including the Fingerprint Vendor
Test Evaluation) have utilized this framework of accepting
algorithms as submissions and running them internally to
evaluate them. The DSE pilot includes this in-house running
and evaluation of algorithms—an approach that brings the
experiment to the data (rather than the other way around) and
that enables additional evaluation features including system
performance benchmarking.

Finally, it is already the case that cross-field cooperation has
played a central role in the development of the data-science
evaluation series, with an enriched EDR at the heart of its
design. In the very first workshop on this new evaluation series
[37], attendees expressed interest in forming new tracks. Two
proposals were presented in the areas of plant identification
and predictive security analytics. It is expected that there will
be 2–3 new tracks within the next year, on problems analogous
to those shown in Table II, and that research will progress
effectively and efficiently due to the sharing of algorithms and
their combinations.

VI. CONCLUSION

We have argued that an enriched notion of Evaluation-
Driven Research (EDR) supports methodologies and effective
solutions to data-science problems across multiple fields. We
have provided a methodology and evaluation design within
which progress in data-science research is enabled through
access to techniques that are applicable to, and valuable for,
problems in different disciplines.

This paper espouses the view that, to ensure success of this
enriched EDR paradigm, it is important to examine challenges
associated with cross-field generalizations, and to invest effort
and time in adapting work that has already been done by
researchers in different fields.

We have grounded our conclusions and insights in a brief
preliminary study as a part of a new Data Science Research
Program (DSRP). We have defined a set of goals within
this program that enables the building and strengthening of
different areas of evaluation within data science. As a part
of this program, we have built a new Data Science Evaluation
(DSE) series in which the principles spelled out in this position
paper are currently being leveraged for a multi-track evaluation
series with broad coverage of problems in diverse fields.

Most notably, we have made the case that, through cross-
field generalizations of tasks, measurement methods, and met-
rics: (1) solutions in existing fields may be applied successfully
in a field for which such solutions had not been previously
imagined; (2) techniques that are developed in one domain
for understanding and representing uncertainty and addressing
ground-truth considerations can be applied to another domain
for which such techniques have not yet been discovered; and
(3) cross-domain synergies may be leveraged in an evaluation
framework that supports a unified effort that covers many
different areas of data science simultaneously.

DISCLAIMER

These results are not to be construed or represented as
endorsements of any participants system, methods, or com-



mercial product, or as official findings on the part of NIST or
the U.S. Government.

Certain commercial equipment, instruments, software, or
materials are identified in this paper in order to specify the
experimental procedure adequately. Such identification is not
intended to imply recommendation or endorsement by NIST,
nor is it intended to imply that the equipment, instruments,
software or materials are necessarily the best available for the
purpose.
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