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In short-range interacting systems, the speed at which entanglement can be established between two
separated points is limited by a constant Lieb-Robinson velocity. Long-range interacting systems are
capable of faster entanglement generation, but the degree of the speedup possible is an open question. In
this Letter, we present a protocol capable of transferring a quantum state across a distance L in d
dimensions using long-range interactions with a strength bounded by 1=rα. If α < d, the state transfer time
is asymptotically independent of L; if α ¼ d, the time scales logarithmically with the distance L; if
d < α < dþ 1, the transfer occurs in a time proportional to Lα−d; and if α ≥ dþ 1, it occurs in a time
proportional to L. We then use this protocol to upper bound the time required to create a state specified by a
multiscale entanglement renormalization ansatz (MERA) tensor network and show that if the linear size of
the MERA state is L, then it can be created in a time that scales with L identically to the state transfer up to
logarithmic corrections. This protocol realizes an exponential speedup in cases of α ¼ d, which could be
useful in creating large entangled states for dipole-dipole (1=r3) interactions in three dimensions.
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Entanglement generation in a quantum system is limited,
even in a nonrelativistic setting, by the available inter-
actions. In a lattice system with short-range interactions,
Lieb and Robinson showed that there exists a linear light
cone defined by a speed proportional to both the interaction
range and strength [1]. Suppose two operators A and B
are supported on single sites separated by a distance r.
Then the Lieb-Robinson bound states that, after time t,
∥½AðtÞ; B&∥ ≤ c∥A∥∥B∥evt−r, where c is a constant, v is
another constant known as the Lieb-Robinson velocity,
and ∥·∥ represents the operator norm. If a system initially
in a product state begins evolving under a short-range
Hamiltonian, correlations decrease exponentially outside of
the causal cone defined by r ¼ vt [2–4]. However, in
physical systems including polar molecules [5–7], Rydberg
atoms [8,9], or trapped ions [10,11], the interactions fall off
with distance r as a power law 1=rα. For these interactions,
generalizations of the Lieb-Robinson bound are known, but
they may not be tight [12–14]. In addition, for sufficiently
long-ranged interactions, the causal region may even
encompass infinite space at a finite time, signaling a
breakdown of emergent locality [15–18].
These bounds on entanglement have direct implications

for quantum information processing. Even if time-dependent
control is allowed [19,20], the Lieb-Robinson bound limits
the speed at which important states for quantum information
and metrology can be prepared [21–25]. In this Letter, we
consider the task of using long-range interactions to speed

up quantum state transfer, Greenberger-Horne-Zeilinger
(GHZ) state preparation, and multiscale entanglement
renormalization ansatz (MERA) construction.
State transfer is a process by which an unknown quantum

state on one site in a lattice is transferred to another site
which is limited by the Lieb-Robinson bound [26–29]. A
discussion of possible experimental realizations can be
found in Refs. [30–32], and in Ref. [33] a case with long-
range interactions is considered. In this Letter, we propose a
state transfer protocol which makes use of long-range
interactions to transfer a state a distance L on a d-
dimensional lattice in a time proportional to L0 ðα < dÞ,
logL (α ¼ d), Lα−d ðd < α ≤ dþ 1Þ, or L ðα ≥ dÞ. As an
intermediate step of the protocol presented, a GHZ-like
state is created, a process also limited by the Lieb-Robinson
bound [19]. For polar molecules, Rydberg atoms, or other
dipole-dipole interactions in three dimensions, the protocol
yields an exponential speedup in the rate of entanglement
generation.
As we will discuss, one powerful application of a fast

state transfer protocol using long-ranged interactions would
be the realization of a circuit described by a MERA
[34–36]. MERAs are particularly useful ways to represent
entangled states [37–39], such as the ground states of the
toric or Haah codes, topological insulators, and quantum
Hall states [40–43]. Using dipole-dipole interactions in 3D,
our protocol constructs the MERA state exponentially
faster than using nearest-neighbor interactions.
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State transfer.—Our state transfer protocol first creates a
many-body entangled state including the intended starting
and final qubits. We do so by applying a controlled X
rotation between pairs of qubits ði; jÞ using a Hamiltonian

Hij ¼ hijðj0ih0ji ⊗ Ij þ j1ih1ji ⊗ XjÞ: ð1Þ

Here hij is the interaction strength, which may not be
identical for all pairs of qubits. In Supplemental Material
[44], we examine a case where the sign of hij is variable,
but for now we take hij > 0. Ij and Xj are the identity and
Pauli X operator acting on qubit j, respectively. When the
Hamiltonian in Eq. (1) is applied for a time t ¼ π=ð2hijÞ, it
realizes a controlled-NOT (CNOT) gate between qubits i and
j (up to an unimportant phase). In Eq. (1), i is the control
qubit for the CNOT, while j is the target qubit. When applied
to a control qubit in an arbitrary state and a target qubit in
the state j0i, the CNOT gate results in a two-qubit state
encoding the original qubit:

CNOTðaj0iþ bj1iÞj0i ¼ aj00iþ bj11i: ð2Þ

By continuing this process, we can create a many-body
entangled state of N qubits aj0i⊗N þ bj1i⊗N encoding the
same state as the initial qubit. The original state can be
transferred onto the target qubit by reversing the entangling
process and leaving the destination qubit as the final control
qubit. IfHij were a nearest-neighbor Hamiltonian, then this
procedure would allow us to transfer a qubit state a distance
L in OðLαÞ operations, providing a linear scaling which
saturates the Lieb-Robinson bound.
By using Hamiltonians with long-range interactions, we

can achieve a sublinear state transfer time. We suppose that
hij ¼ 1=rαij, where rij is the distance between the qubits i
and j [54]. Our protocol (Fig. 1) starts by acting on all
qubits in the lattice with a single control qubit storing the
initial state. Once the CNOT operation completes on a qubit,

it can be switched from a target to a control and then used to
speed up the CNOTs which are still continuing on other
qubits. If a single qubit is targeted by many control qubits,
then the CNOT operation on that qubit can be completed
faster. (Multiple Hij will mutually commute as long as the
sets of target qubits and control qubits are disjoint.) If qubit
j is targeted by many qubits indexed by i, the time required
to complete the CNOT becomes

t ¼ π
2
P

ihij
¼ π

2
P

ir
−α
ij

: ð3Þ

(By using dimensionless couplings hij ¼ 1=rαij, we are
implicitly giving times in units of the inverse nearest-
neighbor coupling strength.) In addition to the progressive
inclusion of more control qubits, each subsequent qubit has
already been rotated by some angle, reducing the remaining
time required to complete the operation.
As an example, consider beginning with a system of

three qubits arranged in a line:

jψðt ¼ 0Þi ¼ ðaj0iþ bj1iÞj00i: ð4Þ

Simultaneously applying H12 and H13 for a time t1 ¼ π=2,
the state becomes

jψðt1Þi ¼ aj000i − ibj11i
!
cos

π
2αþ1

j0i − i sin
π

2αþ1
j1i

"
:

ð5Þ

At this point, the second qubit is made a control, so that the
acting Hamiltonians are H13 and H23. By continuing the
evolution under these Hamiltonians for an additional time

t2 ¼
π
2 −

π
2·2α

1þ 1
2α

¼ rotation remaining
sum of interactions

; ð6Þ

the system will end in the final state

jψðt1 þ t2Þi ¼ aj000i − bj111i: ð7Þ

The entire procedure can be reversed, interchanging the
roles of qubits 1 and 3, to transfer the original state:

jψ ½2ðt1 þ t2Þ&i ¼ j00iðaj0iþ bj1iÞ: ð8Þ

We now consider the case of many qubits. First, we
specify that we aim to construct a GHZ state across a
hypercube whose diagonal spans a distance L

ffiffiffi
d

p
. The

points on either end of the diagonal are the original and
destination sites for state transfer (see Fig. 2). Because the
state transfer time using the protocol in Fig. 1 is difficult to
compute, we use a slightly slower protocol that allows us to
easily estimate the transfer time both analytically and
numerically. Rather than change a qubit into a control as
soon as its evolution completes, we instead halt a qubit’s
evolution when its rotation finishes. Once we have enough
qubits to form a full hypercube of controls, we expand the

(a) (b)

FIG. 1. Our state transfer protocol using long-range inter-
actions. We want to move a qubit state from the upper-left site
(outlined in solid blue) to the lower-right one (outlined in dashed
red). After a time t1 (a), the nearest-neighbor qubits have shifted
from a target to a control (purple region) and continue acting on
all other qubits, thereby adding an additional qubit to the set of
controls after a further time t2, as shown in (b). After t2, each
qubit has rotated further (shown by darker shading). The growth
continues until the original qubit has effectively performed a
CNOT on all qubits in the lattice shown.
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control set and continue evolution. This scheme is illus-
trated in Fig. 2, and we expect it to perform similarly (in
terms of the scaling of transfer time) to the scheme in Fig. 1.
Let q ¼ 1; 2;…; L denote each subsequent expansion of
the hypercube, so that after time t ¼ t1 þ t2 ' ' ' þ tq we can
form a complete control hypercube of edge length q. The
times tq are determined by the condition that each qubit
must accumulate a total phase of π=2:

Xq

p¼1

Hðp; qÞtp ¼ π
2
: ð9Þ

Here Hðp; qÞ is defined to be the summation of all
Hamiltonian strengths hij for which the control i is in
the hypercube with corners ð0; 0; 0;…Þ and ðp − 1; p − 1;
p − 1;…Þ and the target j is at the site ðq; q; q;…Þ at
the corner of a larger hypercube containing the first, as
illustrated in Fig. 2. The qubit j is the slowest-evolving
qubit on its layer, so its evolution determines the time
required to expand the cube in this scheme.
At this point, we will begin looking for bounds on the

times tq. Our first bound arises by noting that for all p,
tp > tpþ1. This is because, for each p, the quantityHðp; pÞ
is strictly larger than Hðp − 1; p − 1Þ—the qubit at
ðp; p;…; pÞ has more qubits acting on it than its counter-
part in the previous step. We use tp > tpþ1 to rewrite the
phase condition on times in Eq. (9):

π
2
≥ tq

Xq

p¼1

Hðp; qÞ: ð10Þ

We now construct two complementary bounds for
Hðp; qÞ. In some cases (small α), Hðp; qÞ will receive
appreciable contributions from the entire hypercube of
control qubits. In this case, we can obtain a lower bound by
pretending that all control qubits are at the same point a
distance q

ffiffiffi
d

p
away, the maximum possible. However, for

large α, the interaction is dominated by nearby qubits,
whose contributions are independent of q. For instance, in
Hðq; qÞ there is always one qubit at the nearest vertex of the

hypercube whose contribution does not depend on q. These
two bounds can be combined to yield

Hðp; qÞ ≥ max (pd=ðq
ffiffiffi
d

p
Þα; δpq=dα=2): ð11Þ

After substituting Eq. (11) into Eq. (10), the sum can be
performed. If we discard all constants depending only on d
or α, the result is a bound on the scaling of tq:

tq ≤ min ðqα−ðdþ1Þ; 1Þ: ð12Þ

To obtain the scaling of the entire state transfer process, a
sum over tq is made up to q ¼ L. For α < d, tq falls off
faster than q−1, so the sum converges to a constant for
asymptotic q. The convergence signals that a state can be
transferred any desired distance in a constant time. For
α ¼ d, tq ¼ q−1, so the sum scales logarithmically in L. For
d < α < dþ 1, we obtain a polynomial scaling Lα−d.
Finally, for α ≥ dþ 1, the constant lower bound on tq
dominates, and the state transfer takes a time proportional
to L, just as it does for short-range interacting systems.
These scalings are illustrated in Fig. 3 along with the
exponents of polynomial fits to the numerical solutions of
Eq. (9). Direct use of the long-range interaction between
the initial and target qubits would require a time OðLαÞ to
transfer a state. Note that our Hamiltonians always obey the
condition that jhijj ≤ r−αij , as assumed in previous work on
speed limits in long-range interacting systems such
as Ref. [14].
Constructing a MERA.—We now demonstrate that our

state transfer protocol allows for fast construction of
a MERA.
In this context, we will interpret a MERA as a quantum

circuit for qubits which acts on successively larger length
scales, as shown in Fig. 4, to produce an entangled state
from a product state. More general constructions are
possible (e.g., with qudits). Our protocol will also apply
to a branching MERA [57], provided that after a constant
number of layers the circuit disentangles a constant fraction

(a) (b)

FIG. 2. (a) The suboptimal protocol used for our bounds,
with the same color scheme as Fig. 1. After the pth time step,
a ðpþ 1Þ × ðpþ 1Þ hypercube of qubits acts as a control. The
purple arrow representsHð2; 3Þ, as it connects a 2 × 2 square to a
qubit at coordinates (3,3). (b) After time t1 þ t2, another set of
qubits has been converted from targets to controls. The purple
arrow now represents Hð3; 3Þ.

FIG. 3. Numerical results of solving Eq. (9) at different α in
d ¼ 2. We calculate

P
q≤Ltq and fit to Lβ for L between 900 and

1000; the best-fit exponent is plotted here. The solid line shows
the β derived from Eq. (12). At α ¼ d (open circle), the numerics
are consistent with the expected logarithmic scaling; the fact that
the bound is not saturated at α ¼ 3 is due to finite L and should
vanish in the L → ∞ limit.
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of the remaining qubits to j0i, which we need to use to
perform our state transfer protocol.
A MERA consists of two alternating types of unitary

operations and is easiest to understand in reverse (starting at
the bottom of the circuit). The first type of unitary, called a
disentangler, removes entanglement at the current length
scale. The next operation, an isometry, maps a group of ϕ
sites into a single site, leaving the other qubits in the state
j0i. These operations can be repeated, except that now all
unitary gates need to be performed over a distance ϕ times
larger than previously.
MERA produces a circuit with depth logϕ L, but this

apparent logarithmic scaling masks an actual time cost due
to the continuously increasing length scale. However, we
can replace a long-range two-qubit unitary with a state
transfer followed by a short-range unitary. The structure of
a MERA circuit guarantees that the j0i states required to
perform a state transfer will be present between any two
qubits when we need to perform a unitary on them.
Suppose that tτ is the maximum time required to perform

a two-qubit gate across a distance lτ at the τth step of the
MERA circuit. We can perform all the MERA operations at
a given step in parallel, so a single layer of the MERA
simply requires time 2tτ for the disentanglers and then
isometries. The time to perform the entire MERA circuit
will then be bounded (up to a constant factor) by

tMERA ≲
XS−1

τ¼0

tτ: ð13Þ

Here S ¼ logϕ L. Our state transfer procedure allows for
tτ ¼ 2ttransfer. The time required to perform the final two-
qubit gate does not affect the scaling and so is omitted. We
can then bound ttransfer by considering the length scale at
each step, lτ ¼ ϕτ. If α ¼ d, ttransfer scales as logϕ lτ (as in
our state transfer bound but with a constant multiple
changing the base of the logarithm), and tMERA will be
bounded by ∼ðlogϕ LÞ2 by considering the largest term in
Eq. (13) multiplied by the number of terms. For α ≠ d,

ttransfer scales polynomially in lτ with exponent β,
tMERA ≲P

lβ
τ . For α < d, β ¼ 0 and the sum is propor-

tional to logϕ L. For α > d, β ¼ max ðα − d; 1Þ. We use
lτ ¼ ϕτ and carry out the geometric sum to obtain
tMERA ≲ Lβ. Thus, we have

α α< d α¼ d d< α≤ dþ 1 α>dþ 1

tMERA logϕL log2ϕL Lα−d L
:

ð14Þ

Outlook.—We have demonstrated fast state transfer and
MERA construction protocols using long-range inter-
actions. Our protocol’s exponential speedup for α ¼ d
nearly saturates the bound in Ref. [12], which gives a
logarithmic light cone for α > d. However, we have not
shown that our method is the fastest state transfer protocol
possible. Such a result would require demonstrating a
general Lieb-Robinson-type bound which we would then
saturate. Instead, our protocol limits future Lieb-Robinson
bounds for long-range systems. The state transfer protocol
we have presented establishes that no finite causal region is
possible for α < d, since a constant amount of time suffices
to establish any desired correlation at arbitrary distances. In
previous work, causal regions were seen in systems with
d=2 < α ≤ d as long as the initial state was not entangled
[15]. Like our work, Ref. [15] also uses multiple qubits
with long-range interactions to reduce the state transfer
time. We have shown that such causal regions do not
persist, in general, although it is possible that this violation
requires the use of time-dependent Hamiltonians as
opposed to the time-independent Hamiltonians in Ref. [15].
For the intermediate value d < α < dþ 1, our protocol

shows that no linear light cone can be drawn, although a
polynomial bound may be possible. These results should be
compared to Ref. [14], which established a polynomial
light cone only for α > 2D that becomes linear only in
the limit of α → ∞. Our protocol’s linear scaling when α ≥
dþ 1 suggests that the tightest possible Lieb-Robinson
bound may also possess a critical α with a similar property.
Resolving this question could reveal important facts
about the nature of correlations in long-range interacting
systems.
An experimental realization of our protocol could offer

significant technological advantages in, for instance, entan-
glement-enhanced metrology. In Supplemental Material
[44], we show how dipole-dipole interactions in three
dimensions can be used to implement a variant of our
protocolwith a focus onRydberg atoms.Using this protocol,
qubits can be entangled exponentially faster than using
short-range interactions. In the future, we hope to reduce the
local control required to achieve sublinear scaling.

We thank G. Evenbly and N. Yao for discussions. This
work was supported by the AFOSR, ARO MURI, ARL
CDQI, NSF QIS, ARO, and NSF PFC at JQI. Z. E. is
supported in part by the ARCS Foundation.

FIG. 4. Sketch of a MERA circuit, with the disentanglers
(purple, circle-capped) and isometries (green, square-capped).
All qubits begin in the state j0i, indicated by a dashed line. At
each length scale, entanglement is created or removed to create a
many-body entangled state from a product state after log2 L steps.
Our protocol can be extended to higher dimensions and more
complicated tensor structures.
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