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ABSTRACT 
Various techniques are used to diagnose problems 

throughout all levels of the organization within the 

manufacturing industry. Often times, this root cause analysis is 

ad-hoc with no standard representation for artifacts or 

terminology (i.e., no standard representation for terms used in 

techniques such as fishbone diagrams, 5 why’s, etc.). Once a 

problem is diagnosed and alleviated, the results are discarded or 

stored locally as paper/digital text documents. When the same or 

similar problem reoccurs with different employees or in a 

different factory, the whole process has to be repeated without 

taking advantage of knowledge gained from previous problem(s) 

and corresponding solution(s). When discussing the diagnosis, 

personnel may miscommunicate over terms used in the root 

cause analysis leading to wasted time and errors. This paper 

presents a framework for a knowledge-based manufacturing 

diagnosis system that aims to alleviate these 

miscommunications. By learning from diagnosis methods used 

in manufacturing and in the medical community, this paper 

proposes a framework which integrates and formalizes root 

cause analysis by categorizing faults and failures that span 

multiple organizational levels. The proposed framework aims to 

enable manufacturing operations by leveraging machine learning 

and semantic technologies for the manufacturing system 

diagnosis. A use case for the manufacture of a bottle opener 

demonstrates the framework.   

INTRODUCTION 
Root cause analysis is used in many industries to find the 

causes of different faults in a system to provide corrective and 

preventative action (CAPA) plans to alleviate those faults [1-5]. 

Traditionally, root cause analysis methods in the manufacturing 
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industry do not present themselves for formal retrieval of 

information from past studies: it is a one-off practice [1,6-7]. 

Often, crucial elements of the problem solving process are paper-

borne techniques, which do not lend themselves to automated 

storage and retrieval.  The Quality Information Framework (QIF) 

is beginning to formalize cause and effect retrieval, however it is 

still free-form text-based, with no formal schema defined [8].  

This paper presents a framework for a knowledge-based system 

for root cause analysis. The knowledge-based method provides a 

more formal structure for manufacturing system diagnosis. By 

synthesizing different approaches from engineering and the 

medical community, this framework allows for more accurate 

communication, discovery, and reuse of manufacturing 

diagnosis and corrective and preventative action plans. By 

providing more structure and learning from the data, 

manufacturers can reduce the number of misdiagnoses and 

decrease time to investigate issues.  

Currently, the medical industry has a more formal diagnosis 

procedure than in the manufacturing industry with more research 

into knowledge-based methods [9-10]. Symptom checker 

websites, such as ‘symcat.com’ and ‘symptoms.webmd.com,’ 

allow users to input symptoms and output corresponding 

diseases listed with the probability of occurrence. The goal of 

this framework is to apply techniques learned from these 

symptom checker and medical diagnosis systems to provide a 

manufacturing diagnosis system.   

There are four main concepts of medical diagnosis in the 

medical community [10-11]:  

 Problem assessment is an evaluation of the patient to 

assess the current condition, 
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 Signs and symptoms are a sensation or change in 

health function experienced by a patient,   

 Diseases are a physiological or psychological 

dysfunction,  

 Interventions are an action or series of actions 

undertaken to respond to the problem.    

The process of medical problem assessment includes 

“Assessing Problem” by “Examining Signs and Symptoms” to 

“Diagnose Diseases” and “Intervene.” By linking terms from the 

medical community to the principles of Six Sigma, one can see 

both the “Assessing Problem” phase and “Examine Signs and 

Symptoms” are similar to the step “Measure” in Six Sigma, 

where the performance of the process or system is measured. 

“Analyze” in Six Sigma is comparable to the “Diagnose 

Diseases” step because this is the process of discovering the root 

cause of poor performance and “Improve” in Six Sigma is 

analogous to the “Intervene” phase since this step is where the 

root causes are addressed. This paper mainly focuses on the 

diagnostic aspect (Measure and Analyze) and future work will 

discuss corrective and preventative action options in length.  

While there is no single formal approach for performing root 

cause analysis throughout all aspects of a factory, there are a 

variety of techniques currently utilized at different points in the 

diagnosis process and at various levels of the organization [1,12-

16]. For example, root cause analysis is used to diagnose 

problems of machine failures to help investigate the cause of 

breakdowns. Alternatively, different techniques can be used at a 

system level to discover causes of low throughput on a 

manufacturing line. However, often times once these methods 

are assessed, this information is not structured in such a way for 

reuse. The framework presented in this paper addresses that 

issue.   

Six Sigma is a customer-focused, well-defined, problem- 

solving methodology supported by a handful of structured 

methods and statistical techniques to reduce variability, defects, 

and eliminate waste from processes. Six Sigma consists of two 

main approaches: DMAIC (Define, Measure, Analyze, Improve, 

Control) and DFSS (Design-For-Six-Sigma) [12]. In DMAIC, 

during the “Define” phase, the problem, improvement activity, 

project goals, are defined. “Measure” consists of measuring the 

process performance, while “Analyze” is determining the root 

cause of the poor performance. The “Improve” phase consists of 

addressing and eliminating the root causes and the “Control” 

phase is where the process is controlled to eliminate errors in the 

future.  

While DMAIC is commonly used for improving existing 

processes, DFSS is currently used for product development, and 

is not widely applied to process design and analysis. 

A number of case studies targeting improvement of existing 

processes using Six Sigma have been published. Gijo et al. used 

the DMAIC approach with the beta correction technique in an 

automotive part manufacturing company to increase the first 

pass yield from 94.86 % to 99.48 %, leading to an approximate 

annual savings of $87000 [13]. The approach involved a 

brainstorming session using Ishikawa fishbone diagrams to 

identify potential root causes followed by data collection and 

analysis through a number of statistical analysis methods such as 

regression analysis, hypothesis testing and Taguchi methods, to 

validate root causes. A beta correction technique was applied to 

the process in the control phase for monitoring. 

Sharma et al. applied DMAIC to reduce the standard 

deviation of stub-end hole dimensions during a boring operation 

in a crankshaft manufacturing process [14]. The dimensional 

data was collected and analyzed using statistical process control 

charts (SPC), Ishikawa diagrams, failure modes effect analysis 

(FMEA) and analysis of variance (ANOVA). Evaluation and 

hierarchical ordering of potential root causes was based on 

calculated Risk-Priority-Number (RPN). RPN is a quantitative 

assessment of risk assigned to a process, usually used in Failure 

Modes Effect Analysis (FMEA) and is calculated as a product of 

occurrence, severity and detection [10]. Upon application of a 

validated solution, the process capability index was improved 56 

% and the process performance capability index was improved 

353 %. 

Kaushik et al. made an attempt to justify the useful role of 

Six Sigma for small and medium manufacturers (SMEs) by 

documenting the application of a DMAIC approach to a small 

scale bicycle chain manufacturer with high rejection rate of cycle 

chain bushings [15]. Potential root causes were identified with 

the help of Ishikawa fishbone diagrams and were validated using 

two-sample t-tests. A design of experiments was conducted in the 

improvement phase involving validated root causes, to identify 

optimal values for the process parameters. Incorporation of 

results into the existing process led to a savings of $288000 and 

a decreased Defects-Per-Million-Opportunities (DPMO) level of 

0.02. SPC charts were used to monitor the improved process. 

Shreeranga et al. employed a DMAIC approach to reduce 

the number of rejections and rework of automobile leaf springs 

produced in a small scale foundry [16]. The root causes for 

rejection and rework were identified through data analysis and 

the process parameters were optimized to reduce the overall 

rejection from 48.33 % to 0.79 % leading to savings of $8000 

per year. This was validated through use of gage repeatability 

and reproducibility (gage R and R) followed by Ishikawa 

fishbone diagrams to identify root causes and the Taguchi 

method for optimizing process parameters linked to root causes. 

De et al. developed an ontology-based root cause analysis 

model (RCA) for reducing warranty failure cost [1]. The model 

utilized information from the Design Failure Mode and Effect 

analysis (DFMEA), Process Failure Mode and Effect analysis 

(PFMEA), and corrective action report (CAR) databases to 

create a Bayesian network which generates all possible failure 

root causes along with their probabilities of occurrence.  

While many studies in root cause analysis for the 

manufacturing domain exist, currently a formal procedure for 

capturing this knowledge for reuse does not exist. This paper 

proposes such a procedure with a knowledge-based framework 

for manufacturing diagnosis. The case study presented uses 



 3  

Copyright © 2017 by ASME 

simulated events data as an input into the system, however the 

proposed framework is not limited by this constraint. It is 

possible to use sensor data, maintenance requests, event lists, etc. 

as input into the diagnosis system.  

The rest of the paper is structured as follows. Section 2 is 

the nomenclature section, while Section 3 presents the proposed 

framework for the knowledge-based manufacturing diagnosis 

system. This includes a discussion of the manufacturing 

diagnosis ontology and the framework architecture. A use case 

for the manufacture of a bottle opener is studied in Section 4 to 

demonstrate the framework. Lastly, conclusions and future work 

are discussed in Section 5.  

NOMENCLATURE 
The nomenclature section is broken up into two subsections, 

one for the general text of the paper, and one specifically for the 

use case example.  

 

General Nomenclature 
 
ANOVA   Analysis of Variance 

CAR   Corrective Action Report 

CAPA   Corrective And Preventative Action 

DFSS   Design for Six Sigma 

DFMEA   Design Failure Mode and Effect Analysis  

DMAIC   Define-Measure-Analyze-Improve-Control 

FMEA   Failure Modes Effect Analysis 

PFMEA   Process Failure Mode and Effect Analysis  

QIF   Quality Information Framework 

RCA   Root Cause Analysis  

SME   Small and Medium Manufacturer  

SPC   Statistical Process Control  

 

Use Case Nomenclature 
 
For example, LTH FM_B stands for Low Throughput for Front 

Machining of Body.  

 

FM   Front of Bottle Opener Machining Process 

LTH   Low Throughput 

HDT   High Downtime  

HOOS   High Out-of-Specification Parts 

HSR    High Scrap Rate 

HRR   High Rework Rate 

ON   Operator Negligence 

WJC    Water Jet Cutting Process 

WMAT   Wrong Material Property 

WMS   Wrong Machine Setting  

_B    Machining of Body of Bottle Opener 

Figure 1: User Interaction with the Manufacturing Knowledge-Based Diagnosis Framework 
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MANUFACTURING DIAGNOSIS FRAMEWORK  
This section presents the system analysis artifacts that 

populate the proposed knowledge-based diagnosis system. First, 

a sequence diagram in Figure 1 illustrates an example of how a 

user may interact with the diagnosis system.  

In the figure, a user inputs effect(s) (e.g. symptoms) that are 

observed, which are compared against a thesaurus of previously 

used terms. Once these effect(s) are selected, potential causes 

(e.g. diseases) are retrieved from the diagnosis knowledge base 

with probabilities of occurrence. When a root cause is selected, 

the probability of the diagnosis in the knowledge base is updated 

using machine learning. The system presents and updates 

probabilities of a related corrective and preventative action 

associated with the diagnosis in the same way.  Several 

functional components enable the diagnosis system that 

addresses the requirements outlined in the introduction section. 

One key component is the ontology, which allows the diagnosis 

knowledge to be represented. The next subsection describes the 

core concepts of the ontology. 

 

Manufacturing Diagnosis Ontology  
The purpose of the concepts in the manufacturing diagnosis 

ontology is to enable a declarative representation of Failure 

Mode and Effect Analysis (FMEA), Root Cause Analysis, and 

Symptom-Diagnosis-Treatment types of information. Figure 2 

illustrates five key abstractions of the ontology:  Problem, 

Diagnosis, Corrective and Preventative Action (CAPA), Effect, 

and Cause.  In manufacturing, often times failure mode and 

effect (or cause and effect) are chains of the same concept and 

consequently the proposed manufacturing diagnosis ontology 

abstracts them as Problem. In a diagnosis-knowledge assertion, 

the Problem can play a role of a Cause (failure mode) or Effect 

(the failure). For example, “Out of Specification Part”, 

“Excessive Tool Wear”, and “Wrong Process Parameter” can all 

be viewed as the Problem, but the “Excessive Tool Wear” can 

play both Cause and Effect roles in the following diagnosis 

relations, Diagnosis(Effect: “Out of Specification Part”, Cause: 

“Excessive Tool Wear”), Diagnosis(Effect: “Excessive Tool 

Wear”, Cause: “Wrong Process Parameters). 

      Figure 2 shows the relationships between these core 

concepts using a Unified Modeling Language (UML) class 

diagram [17]. The Diagnosis concept is a piece of knowledge 

that characterizes the Cause and the Effect relationships (and 

therefore they are association classes). An instance of Diagnosis 

can link between multiple occurrences of Cause and Effect; 

however, they will be interpreted to have conjunctive 

relationships.  In other words, an assertion of Diagnosis 

knowledge with multiple occurrences of Cause and multiple 

occurrences of Effect means that those causes altogether result in 

those effects altogether. For example, the intention of an 

assertion, Diagnosis (Effect (“Low Throughput”), Cause 

(“Frequent Breakdown”, “High Mean Time To Repair”)), is to 

say that if both the “Frequent Breakdown” and “High Mean 

Time To Repair” occur together, the result is “Low Throughput,” 

and implies that both should be addressed together.   

Each Diagnosis also has a relationship with CAPA, which is 

a method or solution to remedy the situation represented by the 

Diagnosis. In traditional FMEA analysis, CAPA may be viewed 

as associated with Cause. In the manufacturing diagnosis 

ontology, CAPA has a direct relationship with Diagnosis. Each 

Diagnosis assertion may have one or more associated 

occurrences of CAPA that are also interpreted as conjunctive 

relationships. In other words, all those specified corrective and 

preventative actions are necessary to capture the diagnosis and 

that an alternative corrective and preventative action of the same 

cause and effect would be captured in another instance of 

Diagnosis. 

A corrective and preventative action may be reused in 

multiple diagnoses. They can also be aggregated to create a 

higher level corrective and preventative action, called a CAPA 

Plan. The ontology intentionally does not provide a construct to 

capture a sequence of corrective and preventative actions 

because the knowledge base does not intend to capture an 

executable process. If it becomes necessary to capture a sequence 

of corrective and preventative actions, the higher level corrective 

and preventative action plan can specify a description of the 

necessary sequence. The chain of the cause-effect relationships 

is however captured implicitly through the diagnosis assertions. 

Other functional components support the instantiation and 

usage of the ontology. In the next subsection, the overall 

functional architecture is presented outlining other functional 

components, and how they work with the ontology and interact 

with a user. 

 

Design of a Functional Architecture  
Figure 3 illustrates the functional components in the 

framework. The dotted lines represent the information flows 

between components. The solid lines represent a functional flow 

or a trigger, i.e., the component at the beginning utilizes the 

component at the end of the arrow. The functional flow may also 

include an information flow. The Thesaurus of Symptoms 

database stores alternative terms (i.e., labels) for symptoms. This 

addresses the issue of different terms being used in different 

organizations or factories for the same items and improves 

Figure 2: Manufacturing Diagnosis Ontology 
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knowledge retrieval. The Thesaurus is expected to be evolving. 

A user drives its creation and maintenance through the Thesaurus 

Management component. It may provide additional functions 

such as corpus analysis and a governance process to help a user 

extract terms and harmonize them across organizations.  

The Diagnosis Ontology database stores the concepts 

described in the previous subsection. Additional concepts may 

be needed to help formally describe the diagnosis and 

organize/classify the diagnoses. For example, for the same cause 

and effect different corrective and preventative actions may be 

needed depending on the environment (e.g., type of equipment, 

high humidity or low humidity day, to what kind of product it 

applies.)  Formally capturing environmental conditions may help 

a user better identify a specific corrective and preventative 

action. Concepts such as Ishikawa 6M [11-12], [14-15], and ISA-

95 functional hierarchy [18] or the ISA-88 [19] physical model 

may be used to classify the diagnoses. This hierarchy consists of 

five levels: enterprise, site, area, work center, and work unit. The 

enterprise level determines what products will be manufactured, 

at which manufacturing site, and how much will be 

manufactured. The site level is the physical location determined 

by the enterprise. It can consist of areas, production lines, 

production cells, and production units. An area contains the work 

centers, which consist of process cells, production units, 

production lines, and storage zones. Lastly, the work centers and 

work units are the equipment used to manufacture the product.  

The CAPA Database stores details about a corrective and 

preventative action as described in the ontology and may include 

information beyond the associated method such as use case 

examples, related documents, and software or hardware tools. A 

user drives the creation and maintenance of such information 

through the CAPA Database Management component.  

The Thesaurus of Symptoms, Diagnosis Ontology, and 

CAPA Database are utilized by a user of the Diagnosis 

Knowledge Management module to create the diagnosis 

knowledge, which is maintained in the Diagnosis Knowledge 

Base. A user may create diagnosis knowledge directly based on 

his/her prior knowledge. On the other hand, the management 

component can provide functionality to help glean the diagnosis 

knowledge from a Manufacturing Operation Management 

(MOM) Database [18]. The MOM level of a manufacturing 

facility includes the site, area, work center, and work unit as 

listed in the hierarchy earlier. This level contains resources such 

as personnel, equipment, and materials, as well as other 

documents that are required for completing work. Such 

information may be available through transaction types, such as 

Corrective and Preventive Actions, Maintenance Orders, or 

Items Non-Conformance. When a user creates a new piece of 

diagnosis knowledge, he/she may have a need to add or change 

the details of a symptom or a corrective and preventative action 

and trigger the functions in the Thesaurus Management or the 

CAPA Database Management component, respectively. 

The Machine Learning module interacts with the Diagnosis 

Knowledge Management component to update the probabilities 

of occurrence within the network of diagnosis knowledge.  

The end user of the framework interacts with the Knowledge 

Query and Retrieval module to search and enter problem(s) 

he/she has encountered and navigate through the network of 

relevant diagnosis knowledge to find the probable causes based 

on a probability learned by the Machine Learning module. If a 

Figure 3: Functional Architecture 
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user agrees with a particular diagnosis, it may trigger the 

Machine Learning module to update the probabilities within the 

network as well. If a user believes that a new diagnosis needs to 

be added or an existing one needs to be updated, he/she can 

invoke the Diagnosis Knowledge Management component to 

add or change the diagnosis knowledge. The Knowledge Query 

and Retrieval module helps a user navigate from the cause to the 

corrective and preventative action in a similar way. 

In the next section, we present a use case that illustrates how 

the framework may be used for manufacturing diagnosis. 

USE CASE EXAMPLE  
To demonstrate the diagnosis framework, a use case 

involving the manufacturing of a bottle opener, the “Lion’s Jaw,” 

was developed. The Lion’s Jaw bottle opener is illustrated in 

Figure 4.  

The bottle opener was produced in the Factory for Advanced 

Manufacturing Education (FAME) lab, at the department of 

Industrial and Manufacturing Engineering, The Pennsylvania 

State University. In this effort, the manufacturing diagnosis 

framework was leveraged in concert with a high-fidelity 

simulation model for identification of common root causes 

related to the production plan and quality deviations encountered 

during manufacturing of the Lion’s Jaw product. The Lion’s Jaw 

manufacturing flow consists of a number of machining and 

secondary finishing processes. The manufacturing flow of the 

Lion’s Jaw bottle opener is based on the job shop process model 

and has a number of diverse processes, typically found in an 

SME.  

 

Manufacturing Flow for the Lion’s Jaw 
The Lion’s Jaw is an assembly of 2 distinct components: 

Body and Handle, each having its own manufacturing cycle. 

Figure 5 illustrates the overall manufacturing flow cycle for the 

body and handle. The manufacturing cycle for both the 

aluminum handle and steel body begin with the blanks produced 

by water jet cutting from a plate. The process for producing the 

body starts from machining of the front side and front pocket 

features on the blanks. Downstream, machining of the back side 

is performed to create another pocket. Further downstream, the 

machined bodies are bead blasted to produce a matte finish. Four 

of the bead blasted bodies are then held in a fixture for Wire 

EDM. In this process, the crucial geometry required for opening 

the bottles is produced. Finally, two bodies are held in a fixture 

for engraving the Lion’s face.   

The manufacturing cycle for the aluminum handles is 

similar to that of the body. Two aluminum handle blanks 

produced using water jet cutting are held in the special photo-

adhesive fixture for front side machining. Next, the two semi-

processed handles are placed in a soft jaw fixture for back side 

machining. Machined handles are then anodized to impart 

specific color.  (Blue is commonly used). Finally, the anodized 

handles are then held in a soft jaw fixture for engraving.  

The last stage of this process involves assembling a body 

with two handles using specialized glue to hold the handles in 

place. 

 

 

Simulation Model of Lion’s Jaw Manufacturing Line  
 A simulation model for the manufacturing of the Lion's Jaw 

Bottle Opener was built in Simio, a simulation, production 

planning and scheduling software. Each process was modelled 

as a work station with process parameters such as processing 

Figure 4: Lion’s Jaw Bottle Opener 

Figure 5: Lion’s Jaw Bottle Opener: Manufacturing Process Flow 
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times, down times, batch sizes, etc. obtained using actual cycle 

time studies and process planning data, in an effort to mimic the 

real world production process. ISO 22400 key performance 

indicators (KPIs) are used for monitoring the operations at level 

3 of the ISA-95 framework, i.e., manufacturing execution 

systems level [20-21].  The simulation model was built to 

compute and produce some of the KPIs such as rework ratio, 

scrap ratio, throughput, utilization, availability, etc. as per the 

ISO 22400 standard for each sub-process in the Lion's Jaw 

manufacturing cycle. These KPIs could be then used to identify 

certain problems in the manufacturing cycle such as high rework, 

high throughput, high WIP etc. The frequencies of occurrences 

(probabilities) of different problems or causes, including the 

system and process level causes, were recorded along with their 

observed effects. For example, during the simulation run, 

whenever the throughput dropped below the specified threshold 

for low throughput, a “low throughput” effect is said to have 

occurred.   

The possible causes were determined through discussions 

with the machine operators and observations of the system. The 

states of the possible causes (i.e., whether the causes were 

occurring (state=true) or not (state=false)) were simulated to 

trigger the low throughput event as well as the number of times 

each cause was responsible for the effect. A binary approach was 

used to classify all continuous variables (causes and effect) to 

true/false by discretization (e.g., an effect of high out-of-

specification parts (HOOS) occurred when the ratio of out-of-

specification parts to good parts exceeded a threshold of 0.4 for 

all processes). However, the system is not limited to binary 

states. The problems are also classified according to the ISA-95 

equipment level where they occurred. 

Some of the problems that were modeled in the simulation 

are low throughput, high cycle time and high work-in-process 

(WIP) at the overall manufacturing system (area level); and low 

machine throughput, scrap rate, out-of-specification parts rate, 

rework rate, operator negligence, high machine downtime, and 

wrong machine settings (equipment level) at each production 

line and at each machine. 

 

Training the Bayesian Network  
The Bayesian representation of part of the Lion’s jaw 

manufacturing process (Front Machining process of Body) is 

shown in Figure 6 below for the low throughput (LTH FM_B) 

effect and its possible causes, e.g. high out-of-specification parts, 

as well as possible sub-causes like high rework rate and high 

scrap rate. The inputs to the network are probability tables for 

each node as seen in Figure 6. These probabilities were obtained 

from the Simio simulation model. A Bayesian network was 

selected because it models the cause-effect (causal) relationship 

between nodes which increases the accuracy of the system. 

Figure 6: Bayesian Network for Lion’s Jaw Bottle Opener Manufacturing 
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Future work will investigate other machine learning techniques 

and their applicability to the manufacturing diagnosis 

framework. The output of the Bayesian network is the 

probability of a root cause if a particular effect was observed. For 

example, the probability of WMS FM_B being the root cause 

given that we observed effect LTH FM_B, or ON FM_B being 

the root cause given that we observed effect LTH FM_B. 

 

Demonstrating the Diagnosis Framework  
To demonstrate the framework, a user inputs the effects 

(symptoms) he/she is observing. The system will suggest similar 

effects based on what is stored in the thesaurus. In this case the 

user inputs “Low Throughput – Front Machining Body.” Once 

an effect is selected from the thesaurus, the system will present 

possible root causes and the probability of occurrence. The 

results from the Bayesian network in Figure 6 are presented in 

Table 1. 

 

If the user inputs low throughput (LTH FM_B, the 

framework outputs that it is caused by high down time (HDT 

FM_B) of the machine 67% of the time and wrong material 

property (WMAT FM_B) 33% of the time. If high rework rate 

(HRR FM_B) is observed, it is due to wrong material property 

(WMAT FM_B) with a probability of 0.85 and operator 

negligence (ON FM_B) with a probability of 0.15.  

Once a user investigates the cause(s) and properly diagnoses 

the problem, the system will update the probabilities for future 

diagnosis. A user will then be provided with a list of possible 

corrective and preventative actions, which will be illustrated in 

future work.  

By using this framework, a user can save time and effort in 

investigating problems on the manufacturing floor. In this case 

study, when the manufacturer observes a problem (for example 

“low throughput”), he/she can very quickly observe that this is 

most often caused by high down time. This can allow the 

manufacturer to first investigate this issue since it is most likely 

to be the cause of the problem. Once the root cause of the 

problem is determined, the probabilities are updated. Future 

work will also incorporate other decision variables, such as the 

time to investigate the problem and the cost to alleviate the issue. 

This gives the manufacturer more flexibility if they want to first 

investigate the problem with the lowest cost or the problem that 

takes the least amount of time to diagnose. Multi-criteria 

decision making techniques will be investigated to aid in this 

process.  

CONCLUSIONS AND FUTURE WORK  
This paper introduces a framework for formal, systematic 

manufacturing diagnosis of problems arising in manufacturing 

systems. A functional architecture is presented that consists of 

many different components. The manufacturing diagnosis 

ontology enables a declarative representation of root cause 

analysis to capture cause and effect relationships. A thesaurus of 

common terms is used to alleviate the miscommunication 

problem across organizations. The machine learning module 

provides predictions of diagnoses based on previous 

experiences. Lastly, the knowledge base stores this knowledge 

for reuse. A use case example is conducted to demonstrate the 

framework with the manufacturing of a bottle opener.  

Currently, the data for the system is collected through 

observations of experts (in this case machine operators), 

however in the future this research will study how to solicit input 

from both users and existing databases of maintenance issues. 

While the use case presented here is for one manufacturing line, 

it is important to understand how this system will scale to larger 

lines, plants, and multiple facilities. Future work will study the 

use of crowdsourcing to expand the knowledge for sharing 

privately among different facilities within the same enterprise or 

publicly across enterprises. It is necessary to analyze what 

information is necessary to allow for accurate diagnosis among 

different facilities. The ontology will be expanded to 

accommodate the requirement for multiple factories.  

Another area of study is the use of this tool for prognosis. 

This tool is presented for diagnostic purposes (to find the root 

cause once a problem is already occurring), however future work 

will study the applicability to better predict problems before they 

occur. On top of this, the use of this tool in real time (e.g. using 

sensor data to trigger the manufacturing diagnosis framework 

instead of user input) will be studied to allow for quicker 

diagnosis. The machine learning module will be updated to deal 

with on-line data. 

DISCLAIMER  
The use of any products in this paper does not imply 

recommendation or endorsement by the National Institute of 

Standards and Technology, nor does it imply that the products 

are necessarily the best available for the purpose.  
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