

1

NIST Special Database 2
Structured Forms Database

D. L. Dimmick, M. D. Garris, and C. L. Wilson

National Institute of Standards and Technology
Advanced Systems Division
Image Recognition Group

December 1, 1991

1.0 Introduction

This report describes the NIST Structured Forms Reference Set database, NIST Special Database
2, containing binary images of synthesized documents. Databases of this magnitude are necessary
to further the research and development of automated document processing systems. This data-
base is being distributed as a reference data set to be used by developers of document recognition
and data capture systems to test and report results on a common corpus of images derived from
structured forms containing machine printed data. The structured forms used in this database are
12 different tax forms from the IRS 1040 Package X for the year 1988. These include Forms
1040, 2106, 2441, 4562, and 6251 together with Schedules A, B, C, D, E, F, and SE. Eight of
these forms contain two pages or form faces making a total of 20 different form faces represented
in the database.

The database contains 5,590 full page images of completed tax forms. Each image is stored in the
bilevel black and white raster format defined in Section 2.2. The images in this database appear to
be real forms prepared by individuals but the images have been automatically derived and synthe-
sized using a computer.

2.0 Image Synthesis

The entry field values on these forms have been automatically generated by a computer in order to
make the data available without the danger of distributing privileged tax information. The com-
puter derived entry field values are synthesized as images from one or more fonts of machine
printed data. An image of an entry field value is produced by combining images of each character
in the value. An entry field image is then inserted in a selected location within the corresponding
field within a form image. The image data entered in a field in this way has been translated and ro-
tated by small amounts to simulate effects of imperfect printing and imperfect alignment of a form
in the printing device. Multiple examples of the digital representation of each character are used
so that the pattern of the binary pixels representing each character is not consistently replicated
but varies as it would in a sample of real tax forms. Both the form templates and the character ex-
amples are digitized at 300 pixels per inch binary. Figure 1 displays a synthesized tax form.

2

FIGURE 1. A representative image file of a completed form in NIST Special Database 2.

3

2.1 Answer File Formats

FIGURE 2. The answer file for the image shown in Figure 1.

1040_1_6c_H5_V4
1040_1_6c_H1_V5
1040_1_6c_H2_V5
1040_1_6c_H3_V5
1040_1_6c_H4_V5
1040_1_6c_H5_V5
1040_1_6c_H1_V6
1040_1_6c_H2_V6
1040_1_6c_H3_V6
1040_1_6c_H4_V6
1040_1_6c_H5_V6
1040_1_6d _ICON_
1040_1_6e 9
1040_1_7 48166 00
1040_1_8a
1040_1_8b
1040_1_9
1040_1_10
1040_1_11
1040_1_12 21322 85
1040_1_13
1040_1_14
1040_1_15
1040_1_16a
1040_1_16b
1040_1_17a
1040_1_17b
1040_1_18
1040_1_19
1040_1_20 0 00
1040_1_21a
1040_1_21b
1040_1_22_H1
1040_1_22_H2
1040_1_23 69488 85
1040_1_24
1040_1_25a
1040_1_25b
1040_1_26
1040_1_27 14675 08
1040_1_28
1040_1_29_V1
1040_1_29_H1_V2
1040_1_29_H2_V2
1040_1_30 14675 08
1040_1_31 54813 77

1040_1
1040_1_L_H1_V1
1040_1_L_H2_V1
1040_1_L_H3_V1
1040_1_L_H1_V2 Suffolk U. & Taylor M. Ramsey
1040_1_L_H2_V2 A15 82 5348
1040_1_L_H1_V3 25300 Early Road
1040_1_L_H2_V3 A99 26 9320
1040_1_L_H1_V4 Rockdale, HI 31807
1040_1_L_H1_V5 _ICON_
1040_1_L_H2_V5
1040_1_L_H1_V6 _ICON_
1040_1_L_H2_V6
1040_1_1 _ICON_
1040_1_2
1040_1_3_H1
1040_1_3_H2
1040_1_4_H1
1040_1_4_H2
1040_1_5_H1
1040_1_5_H2
1040_1_6a_H1 _ICON_
1040_1_6b_H1 _ICON_
1040_1_6b_H2 2
1040_1_6c_H1_V1 Alvin Evans
1040_1_6c_H2_V1
1040_1_6c_H3_V1 A59 06 7960
1040_1_6c_H4_V1 StpSis
1040_1_6c_H5_V1 8
1040_1_6c_H6_V1 7
1040_1_6c_H1_V2 Piedmont Kingman
1040_1_6c_H2_V2
1040_1_6c_H3_V2 A93 28 3784
1040_1_6c_H4_V2 StpBro
1040_1_6c_H5_V2 2
1040_1_6c_H6_V2
1040_1_6c_H1_V3
1040_1_6c_H2_V3
1040_1_6c_H3_V3
1040_1_6c_H4_V3
1040_1_6c_H5_V3
1040_1_6c_H6_V3
1040_1_6c_H1_V4
1040_1_6c_H2_V4
1040_1_6c_H3_V4
1040_1_6c_H4_V4

4

The values entered on the forms have been derived by a computer. These entry field values are
stored separately from the image in an ASCII text file. This text file, one per completed structured
form image, serves as an answer file which can be used to score the values hypothesized by a rec-
ognition system. An example of one of the answer files in the database is listed in Figure 2. These
text files are the ground truth against which recognition responses may be compared.

The information in Figure 2 has been listed in two adjacent text columns. The first line in this file
contains the identification of the form face in the referenced image. NIST Special Database 2 con-
tains multiple form faces and therefore can be used for testing the forms identification ability of a
document recognition system. The form type identification can be used to compute a system’s ac-
curacy in correctly identifying the form face contained in an image.

Each successive line in the answer file is an entry field identification and entry field value pair.
The field identification string uniquely identifies which entry field is being referenced on a struc-
tured form. The field identifications used in this database are labeled on the form faces contained
in Appendix A. The entry field value may be empty or it may contain a computer derived value.
Empty entry field values model sparsely filled forms. An entry field value containing the token
string “_ICON_” represents the existence of non-character information. Examples of this type of
information includes box check marks and signatures. Any other value listed for an entry field ref-
erences the precise character information entered into the form image.

2.2 Image File format

Image file formats and effective data compression and decompression are critical to the usefulness
of image archives. Each page of a completed form face was synthesized at 300 dots per inch bina-
ry, 2-dimensionally compressed using CCITT Group 4, and temporarily archived onto computer
magnetic mass storage. Once all forms were synthesized, the images were mastered and replicat-
ed onto ISO-9660 formatted CD-ROM discs for permanent archiving and distribution.

In this application, a raster image is a digital encoding of light reflected from discrete points on a
scanned form. The 2-dimensional area of the form is divided into discrete locations according to
the resolution of a specified grid. Each cell of this grid is represented by a single bit value 0 or 1
called a pixel; 0 represents a cell predominately white, 1 represents a cell predominately black.
This 2-dimensional sampling grid is then stored as a 1-dimensional vector of pixel values in raster
order, left to right, top to bottom. Successive scan lines (top to bottom), contain the values of a
single row of pixels from the grid concatenated together.

After digitization, certain attributes of an image are required to be known to correctly interpret the
1-dimensional pixel data as a 2-dimensional image. Examples of such attributes are the pixel
width and pixel height of the image. These attributes can be stored in a machine readable header
prefixed to the raster bit stream. A program which is used to manipulate the raster data of an im-
age, is able to first read the header and determine the proper interpretation of the data which fol-
lows it. Figure 3 illustrates this file format.

A header format named IHead has been developed for use as an image interchange format. Nu-
merous image formats exist; some are widely supported on small personal computers, others sup-
ported on larger workstations; most are proprietary formats, few are public domain. The IHead
header is an open image format which can be universally implemented across heterogeneous
computer architectures and environments. Both documentation and source code for the IHead for-
mat are publicly available and included with this database. IHead has been designed with an ex-

5

tensive set of attributes in order to adequately represent both binary and gray level images, to
represent images captured from different scanners and cameras, and to satisfy the image require-
ments of diversified applications including, but not limited to, image archival/retrieval, character
recognition, and fingerprint classification.

IHead has been successfully ported and tested on several systems including UNIX workstations
and servers, DOS personal computers, and VMS mainframes. The attribute fields in IHead can be
loaded into main memory in two distinct ways. Since the attributes are represented by the ASCII
character set, the attribute fields may be parsed as null-terminated strings, an input/output format
common in the ‘C’ programming language. IHead can also be read into main memory using
record-oriented input/output. The fixed length of the header is prefixed to the front of the header
as shown in Figure 3. The IHead structure definition as written in the ‘C’ programming language
is listed in Figure 4.

FIGURE 3. An illustration of the IHead raster file format.

Record Length

ASCII Format Image Header

Binary Raster Stream

000000010000010000011111110 . . .

Representing the digital scan across the
page left to right, top to bottom.

‘0’ - Represents a white pixel.
‘1’ - Represents a black pixel.
8 Pixels are packed into a single byte

of memory.

6

FIGURE 4. IHead C language definition.

Figure 5 lists the header values from an IHead file corresponding to the structure members listed
in Figure 4. This header information belongs to the isolated box image displayed in Figure 6. Ref-
erencing the structure members listed in Figure 4, the first attribute field of IHead is the identifica-
tion field, id. This field uniquely identifies the image file, typically by a file name. The
identification field in this example not only contains the image’s file name, but also the reference
string the writer was instructed to print in the box. The reference string is delimited by double
quotes.

/***
 File Name: IHead.h
 Package: NIST Internal Image Header
 Author: Michael D. Garris
 Date: 2/08/90
***/
/* Defines used by the ihead structure */
#define IHDR_SIZE 288 /* len of hdr record (always even bytes) */
#define SHORT_CHARS 8 /* # of ASCII chars to represent a short */
#define BUFSIZE 80 /* default buffer size */
#define DATELEN 26 /* character length of data string */

typedef struct ihead{
 char id[BUFSIZE]; /* identification/comment field */
 char created[DATELEN]; /* date created */
 char width[SHORT_CHARS]; /* pixel width of image */
 char height[SHORT_CHARS]; /* pixel height of image */
 char depth[SHORT_CHARS]; /* bits per pixel */
 char density[SHORT_CHARS]; /* pixels per inch */
 char compress[SHORT_CHARS]; /* compression code */
 char complen[SHORT_CHARS]; /* compressed data length */
 char align[SHORT_CHARS]; /* scanline multiple: 8|16|32 */
 char unitsize[SHORT_CHARS]; /* bit size of image memory units */
 char sigbit; /* 0->sigbit first | 1->sigbit last */
 char byte_order; /* 0->highlow | 1->lowhigh*/
 char pix_offset[SHORT_CHARS]; /* pixel column offset */
 char whitepix[SHORT_CHARS]; /* intensity of white pixel */
 char issigned; /* 0->unsigned data | 1->signed data */
 char rm_cm; /* 0->row maj | 1->column maj */
 char tb_bt; /* 0->top2bottom | 1->bottom2top */
 char lr_rl; /* 0->left2right | 1->right2left */
 char parent[BUFSIZE]; /* parent image file */
 char par_x[SHORT_CHARS]; /* from x pixel in parent */
 char par_y[SHORT_CHARS]; /* from y pixel in parent */
}IHEAD;

7

FIGURE 5. The IHead values for the isolated subimage displayed in Figure 6.

FIGURE 6. An IHead image of an isolated box.

The attribute field, created, is the date on which the image was captured or digitized. The next
three fields hold the image’s pixel width, height, and depth. A binary image has a pixel depth of
1 whereas a gray scale image containing 256 possible shades of gray has a pixel depth of 8. The
attribute field, density, contains the scan resolution of the image; in this case, 300 dots per inch.
The next two fields deal with compression.

In the IHead format, images may be compressed with virtually any algorithm. The IHead is al-
ways uncompressed, even if the image data is compressed. This enables header interpretation and
manipulation without the overhead of decompression. The compress field is an integer flag which
signifies which compression technique, if any, has been applied to the raster image data which fol-
lows the header. If the compression code is zero, then the image data is not compressed, and the
data dimensions: width, height, and depth, are sufficient to load the image into main memory.
However, if the compression code is nonzero, then the complen field must be used in addition to

IMAGE FILE HEADER
~~~~~~~~~~~~~~~~~
Identity : box_03.pct “0123456789”
Header Size : 288 (bytes)
Date Created : Thu Jan 4 17:34:21 1990
Width : 656 (pixels)
Height : 135 (pixels)
Bits per Pixel : 1
Resolution : 300 (ppi)
Compression : 2 (code)
Compress Length : 874 (bytes)
Scan Alignment : 16 (bits)
Image Data Unit : 16 (bits)
Byte Order : High-Low
MSBit : First
Column Offset : 0 (pixels)
White Pixel : 0
Data Units : Unsigned
Scan Order : Row Major,

 Top to Bottom,
 Left to Right

Parent : hsf_0/f0000_14/f0000_14.pct
X Origin : 192 (pixels)
Y Origin : 732 (pixels)



 

8

the image’s pixel dimensions. For example, the image described in Figure 5 has a compression 
code of 2. This signifies that CCITT Group 4 compression has been applied to the image data pri-
or to file creation. In order to load the compressed image data into main memory, the value in 
complen is used to load the compressed block of data into main memory. Once the compressed 
image data has been loaded into memory, CCITT Group 4 decompression can be used to produce 
an image which has the pixel dimensions consistent with those stored in its header. Using CCITT 
Group 4 compression and this compression scheme on the images in this database, a compression 
ratio of 10 to 1 was achieved.

The attribute field, align, stores the alignment boundary to which scan lines of pixels are padded. 
Pixel values of binary images are stored 8 pixels (or bits) to a byte. Most images, however, are not 
an even multiple of 8 pixels in width. In order to minimize the overhead of ending a previous scan 
line and beginning the next scan line within the same byte, a number of padded pixels are provid-
ed in order to extend the previous scan line to an even byte boundary. Some digitizers extend this 
padding of pixels out to an even multiple of 8 pixels, other digitizers extend this padding of pixels 
out to an even multiple of 16 pixels. This field stores the image’s pixel alignment value used in 
padding out the ends of raster scan lines.

The next three attribute fields identify binary interchanging issues among heterogeneous comput-
er architectures and displays. The unitsize field specifies how many contiguous pixel values are 
bundled into a single unit by the digitizer. The sigbit field specifies the order in which bits of sig-
nificance are stored within each unit; most significant bit first or least significant bit first. The last 
of these three fields is the byte_order field. If unitsize is a multiple of bytes, then this field speci-
fies the order in which bytes occur within the unit. Given these three attributes, binary incompati-
bilities across computer hardware and binary format assumptions within application software can 
be identified and effectively dealt with.

The pix_offset attribute defines a pixel displacement from the left edge of the raster image data to 
where a particular image’s significant image information begins. The whitepix attribute defines 
the value assigned to the color white. For example, the binary image described in Figure 5 is black 
text on a white background and the value of the white pixels is 0. This field is particularly useful 
to image display routines. The issigned field is required to specify whether the units of an image 
are signed or unsigned. This attribute determines whether an image with a pixel depth of 8 should 
have pixel values interpreted in the range of -128 to +127, or 0 to 255. The orientation of the ras-
ter scan may also vary among different digitizers. The attribute field, rm_cm, specifies whether 
the digitizer captured the image in row-major order or column-major order. Whether the scan 
lines of an image were accumulated from top to bottom, or bottom to top, is specified by the field, 
tb_bt, and whether left to right, or right to left, is specified by the field, rl_lr.

The final attributes in IHead provide a single historical link from the current image to its parent 
image; the one from which the current image was derived or extracted. In Figure 5, the parent 
field contains the full path name to the image from which the image displayed in Figure 6 was ex-
tracted. The par_x and par_y fields contain the origin point (upper left hand corner pixel coordi-
nate) from where the extraction took place from the parent image. These fields provide a historical 
thread through successive generations of images and subimages. The IHead image format con-
tains the minimal amount of ancillary information required to successfully manage binary and 
gray scale images.



 

9

3.0  Data Base Content and Organization

NIST Special Database 2 contains 5,590 full page images of completed structured forms and cor-
respondingly contains 5,590 ASCII text answer files. The database is approximately 610 Mega-
bytes in size and is distributed on an ISO-9660 formatted CD-ROM disc. The binary images in the 
database have been 2-dimensionally compressed. Uncompressed the database would require 5.9 
Gigabytes of storage. 

3.1  Hierarchy

 Figure 7 illustrates the top level directory tree in the database. The directories doc, man, and src, 
contain documentation and utilities necessary to manipulate the image data on the CD discussed 
in Section 4. The data directory contains files of images and entry field value answer files de-
scribed in Section 2.0. The organization of these files is illustrated in Figure 8. 

FIGURE 7. The top level directory tree in the database.

FIGURE 8. The file organization of the form images and answer files contained in NIST Special Database 2.

There are 5,590 full page images of completed forms distributed across 8 subdirectories within 
data. The subdirectories sfrs_0, sfrs_1, through sfrs_8 each contain 100 synthesized tax submis-
sions comprised of a random collection of completed form faces generated by a computer. There-

NIST Special Database 2

doc man data

Documentation
Files

Software
Manual
Pages

Form Images
and

Answer Files

src

Image
Software
Utilities

data

sfrs_0 sfrs_1 sfrs_2 sfrs_8

r0000

... ... ... ...

...

... r0099 r0100 ... r0199 r0200 ... r0299 r0800 ... r0899

r0200_00.pct
r0200_00.fmt

r0200_01.pct
r0200_01.fmt

r0200_08.pct
r0200_08.fmt

...

...



 

10

fore there are 900 total tax submissions in this database. Each submission is represented as a 
directory. An example of a submission directory r0200 is illustrated in Figure 8. In this example, 
the directory sfrs_2 contains the 100 submission directories r0200 through r0299. The images as-
sociated with submission 200 are stored in the subdirectory r0200. There are on average 6.2 form 
images stored in a submission directory. In Figure 8, r0200 contains 9 synthesized form faces 
stored as the files r0200_00.pct, r0200_01.pct, through r0200_08.pct where the last two digits in 
the file name uniquely index the form images. For each form face image, there is a corresponding 
answer file. The answer file for the image r0200_00.pct is r0200_00.fmt, r0200_01.pct is 
r0200_01.fmt, and so on. In this way 5,590 form images are stored on the CD with their 5,590 
corresponding answer files accounting for 11,180 individual files in all.

4.0  Source Code For Data Base Access

In addition to images and answer files, the database contains documentation and software written 
in the ‘C’ programming language. Source code for 3 different programs: dumpihdr, ihdr2sun, 
and sunalign is included within the top level database directory src. These programs, their sup-
porting subroutines, and associated file names are described below. These routines are provided as 
an example to software developers of how IHead images may be manipulated. Manual pages are 
included in Appendix B and are located in the top level database directory man.

4.1  Compilation

CD-ROM is a read-only storage medium; this requires the files located in the directory src to be 
copied to a read-writable partition prior to compilation. Once these files have been copied, execut-
able binaries can be produced by invoking the UNIX utility make. A command line example fol-
lows.

# make -f makefile.mak

4.2  Dumpihdr <IHead file>

Dumpihdr is a program which reads an image’s IHead data from the given file and formats the 
header data into a report which is printed to standard output. The report shown in Figure 5 was 
generated using this utility. The main routine for dumpihdr is found in the file dumpihdr.c and 
calls the external function readihdr().

Readihdr() is a function responsible for loading an image’s IHead data from a file into main 
memory. This routine allocates, reads, and returns the header information from an open image file 
in an initialized IHead structure. This function is found in the file ihead.c. The IHead structure 
definition is listed in Figure 4 and is found in the file ihead.h.

4.3  Ihdr2sun <IHead file>

Ihdr2sun converts an image from NIST IHead format to Sun rasterfile format. Ihdr2sun loads an 
IHead formatted image from a file into main memory and writes the raster data to a new file ap-
pending the data to a Sun rasterfile header. The main routine for this program is found in the file 
ihdr2sun.c and calls the external function readihdrfile() which is found in the file loadihdr.c.

Readihdrfile() is a procedure responsible for loading an IHead image from a file into main mem-
ory. This routine reads the image’s header data returning an initialized IHead structure by calling 
readihdr(). In addition, the image’s raster data is returned to the caller uncompressed. The images 



 

11

in this database have been 2-dimensionally compressed using CCITT Group 4, therefore readih-
drfile() invokes the external procedure grp4decomp() which decompresses the raster data. Upon 
completion, readihdrfile() returns an initialized IHead structure, the uncompressed raster data, 
and the image’s width and height in pixels. Grp4decomp() was developed by the CALS Test Net-
work and adapted by NIST for use with this database and is found in the file g4decomp.c [1,2].

4.4  Sunalign <Sun rasterfile>

Sunalign is a program which ensures the Sun rasterfile passed has scanlines of length equal to a 
even multiple of 16 bits. It has been found that some Sun rasterfile applications assume scanlines 
which end on an even word boundary. IHead images may contain scanlines which do not conform 
to this assumption. Therefore, it may be necessary to run sunalign on an image which has been 
converted using ihdr2sun. The main routine for this program is found in the file sunalign.c.

5.0  Entry Field Documentation Tables.

The final set of information provided with this database is a collection of tables. These tables con-
tain general knowledge about each entry field found on a structured form. This knowledge can be 
applied by system developers to guide the recognition process of their document processing sys-
tem. These tables specify the data type and context associated with each entry field found on the 
form faces labeled in Appendix A. Formatted copies of these tables are included in Appendix C 
and are found in the directory tables within the top level database directory doc.

Appendix C contains 20 different tables, 1 for each of the 20 different form faces found in this da-
tabase. Each line in these tables references an unique entry field from the corresponding form 
face. Entry fields are described by three columns of information. The first column in these tables 
contains entry field identifiers, the second column contains entry field data types, and the third 
column contains each entry field’s associated context. Figures 9 and 10 list the possible entry field 
data types and contexts contained on the structured form faces used in this database.

FIGURE 9.  The set of possible entry field data types.

FIGURE 10. The set of possible entry field contexts.

A, CA

F, FF, FP, FPER, FU

I

ICON

Alphanumeric Fields

Floating Point Fields

Integer Fields

Non-Character Fields
(box markings, signatures)

TAG DEFINITION

DATA

NAME

SSN

Generic Data

Names of People

Social Security Numbers

TAG DEFINITION



 

12

References

[1] Department of Defense, “Military Specification - Raster Graphics Representation in Binary 

Format, Requirements for, MIL-R-28002,” 20 Dec 1988.

[2] CCITT, “Facsimile Coding Schemes and Coding Control Functions for Group 4 Facsimile 

Apparatus, Fascicle VII.3 - Rec. T.6,” 1984.



 

13

Appendix A: Labeled Form Faces



 

14

Appendix B: Manual Pages for Supplied Software



 

15

Appendix C: Example Tables


