

1

NIST Special Database 6
Structured Forms Database 2

D. L. Dimmick and M. D. Garris

National Institute of Standards and Technology
Advanced Systems Division
Image Recognition Group

September 16, 1992

1.0 Introduction

This report describes the second NIST Structured Forms Reference Set database, NIST Special
Database 6 (SD6), containing binary images of synthesized documents. Databases of this magni-
tude are necessary to further the research and development of automated document processing
systems. This database is being distributed as a reference data set to be used by developers of doc-
ument recognition and data capture systems to test and report results on a common corpus of im-
ages digitized from structured forms containing hand-printed data. The structured forms used in
SD6 are twelve different tax forms from the IRS 1040 Package X for the year 1988. These include
Forms 1040, 2106, 2441, 4562, and 6251 together with Schedules A, B, C, D, E, F, and SE. Eight
of these forms contain two pages or form faces making a total of twenty different form faces rep-
resented in the database. NIST Special Database 6 is a sibling to the previously released database,
NIST Special Database 2 (SD2). [1]

SD6 contains 5,595 full page images of completed tax forms. Each image is stored in the bilevel
black and white raster format defined in Section 2.2. The images in SD6 appear to be real forms
prepared by individuals but the images have been automatically derived and synthesized using a
computer and contain no “real” tax data.

2.0 Image Synthesis

The entry field values on these forms have been automatically generated by a computer in order to
make the data available without the danger of distributing privileged tax information. The com-
puter-derived entry field values are synthesized as images from one or more fonts of hand-printed
data explained in Section 3.0. An image of an entry field value is produced by combining images
of each character in the value. An entry field image is then inserted in a selected location within
the corresponding field within a form image. The image data entered in a field in this way has
been translated and rotated by small amounts to simulate variations in hand-print. Multiple exam-
ples of the digital representation of each character are used so that the pattern of the binary pixels
representing each character is not consistently replicated but varies as it would in a sample of real
tax forms. Both the form templates and the character examples are digitized at 12 pixels per milli-
meter binary. Figure 1 displays a synthesized tax form.

2

FIGURE 1. A representative image file of a completed structured form.

3

2.1 Format File

FIGURE 2. The format file for the image shown in Figure 1.

1040_1_6c_H5_V4
1040_1_6c_H1_V5
1040_1_6c_H2_V5
1040_1_6c_H3_V5
1040_1_6c_H4_V5
1040_1_6c_H5_V5
1040_1_6c_H1_V6
1040_1_6c_H2_V6
1040_1_6c_H3_V6
1040_1_6c_H4_V6
1040_1_6c_H5_V6
1040_1_6d 1
1040_1_6e 4
1040_1_7 $48,166 -
1040_1_8a
1040_1_8b
1040_1_9
1040_1_10
1040_1_11
1040_1_12 $21,322 -
1040_1_13
1040_1_14
1040_1_15
1040_1_16a
1040_1_16b
1040_1_17a
1040_1_17b
1040_1_18
1040_1_19
1040_1_20 $0 -
1040_1_21a
1040_1_21b
1040_1_22_H1
1040_1_22_H2
1040_1_23 $69,488 -
1040_1_24
1040_1_25a
1040_1_25b
1040_1_26
1040_1_27 $14,675 -
1040_1_28
1040_1_29_V1
1040_1_29_H1_V2
1040_1_29_H2_V2
1040_1_30 $14,675 -
1040_1_31 $54,813 -

1040_1
1040_1_L_H1_V1
1040_1_L_H2_V1
1040_1_L_H3_V1
1040_1_L_H1_V2 Suffolk U. & Taylor M. Ramsey
1040_1_L_H2_V2 A15 82 5348
1040_1_L_H1_V3 25300 Early Road
1040_1_L_H2_V3 A99 26 9320
1040_1_L_H1_V4 Rockdale, HI 31807
1040_1_L_H1_V5 1
1040_1_L_H2_V5
1040_1_L_H1_V6 1
1040_1_L_H2_V6
1040_1_1 1
1040_1_2
1040_1_3_H1
1040_1_3_H2
1040_1_4_H1
1040_1_4_H2
1040_1_5_H1
1040_1_5_H2
1040_1_6a 1
1040_1_6b_H1 1
1040_1_6b_H2 2
1040_1_6c_H1_V1 Alvin Evans
1040_1_6c_H2_V1
1040_1_6c_H3_V1 A59 06 7960
1040_1_6c_H4_V1 StpSis
1040_1_6c_H5_V1 8
1040_1_6c_H6_V1 1
1040_1_6c_H1_V2 Piedmont Kingman
1040_1_6c_H2_V2
1040_1_6c_H3_V2 A93 28 3784
1040_1_6c_H4_V2 StpBro
1040_1_6c_H5_V2 2
1040_1_6c_H6_V2 1
1040_1_6c_H1_V3
1040_1_6c_H2_V3
1040_1_6c_H3_V3
1040_1_6c_H4_V3
1040_1_6c_H5_V3
1040_1_6c_H6_V3
1040_1_6c_H1_V4
1040_1_6c_H2_V4
1040_1_6c_H3_V4
1040_1_6c_H4_V4

4

The values entered on the forms have been derived by a computer. These entry field values are
stored separately from the image in an ASCII text file referred to as a format file. This format file,
one per completed structured form image, serves as an answer file which can be used to score the
values hypothesized by a recognition system. An example format file is listed in Figure 2. These
text files are the ground truth against which recognition responses may be compared.

The information in Figure 2 has been listed in two adjacent text columns. The first line in this file
contains the identification of the form face in the referenced image. SD6 contains multiple form
faces and therefore can be used for testing the forms identification ability of a document recogni-
tion system. The form type identification can be used to compute a system’s accuracy in correctly
identifying the form face contained in an image. The form faces used in SD6 are contained in Ap-
pendix A and are the same as those used in SD2.

Each successive line in the format file is an entry field identification followed by an entry field
value. The field identification string uniquely identifies which entry field is being referenced on a
structured form. The field identifications used in this database are labeled on the form faces con-
tained in Appendix A and are identical to those used in SD2 except for corrections to labeling er-
rors found in the documentation for SD2. The entry field value may be empty or it may contain a
computer derived value. Typically, any value listed for an entry field references the precise char-
acter information entered into the form image, and empty entry field values model sparsely filled
forms. Exceptions exist for ICON entry fields and Continuation Alpha fields.

Entry fields of type ICON contain non-character information such as box check marks and signa-
tures. The presence of this kind of non-character information in an ICON field is represented with
an entry field value of 1. If no ICON information is present, then the entry field value is left emp-
ty.

Continuation Alpha fields (CA) are used in conjunction with alphanumeric fields (A) to represent
a single alphanumeric response that spans multiple entry fields on a form. One example of a CA
field is contained in the textual response to question 9b on the Schedule A form. Figure 3 displays
a subimage from a Schedule A form containing question 9b.

Three entry fields exist for question 9b, one numeric field and two text fields. The two text fields
located to the left of the numeric field on the form contain a single response, a person’s name and
address. The first text entry field is labeled SchA_9b_V1 and has an entry field type of A. The sec-
ond entry field is labeled SchA_9b_H1_V2 and has an entry field type of CA. All the entry field
types used in this database are listed in Figure 15.

Figure 4 lists the entry field values stored in the form’s format file for the textual response to ques-
tion 9b. The textual response, “Paine X. Teton, 57 Kearny Avenue”, is divided across the two text
entry fields. The entry field SchA_9b_V1 contains “Paine X.” and the entry field SchA_9b_-
H1_V2 contains the remainder of the response “Teton, 57 Kearny Avenue”. As can be seen from
the entry field values in Figure 4, SchA_9b_V1 contains the entire textual response and
SchA_9b_H1_V2 is empty. Also notice that the entry field value for SchA_9b_V1 is separated
across two lines. The portion of the entry field value on the first line represents the characters en-
tered in SchA_9b_V1, while the second line represents the characters entered in SchA_9b_-
H1_V2.

5

FIGURE 3. Example from a schedule A showing text spanning multiple entry fields.

FIGURE 4. The section of the format file containing the information hand-printed in Figure 3.

•

•

•

SchA_8 504

SchA_9a

SchA_9b_V1 Paine X.

Teton, 57 Kearny Avenue

SchA_9b_H1_V2

SchA_9b_H2_V2 0

SchA_10

SchA_11

SchA_12a 566

SchA_12b 226

SchA_13 226

•

•

•

6

The first entry field of a multiple line response is considered the primary entry field containing the
entire response in its value. The value of the primary entry field is separated across multiple lines
consistent with the way the response spans multiple entry fields on the form. The first line in the
primary entry field’s value corresponds to the characters truly entered in its field on the form.
Each subsequent line in the primary entry field’s value corresponds to the characters in each sub-
sequent CA field. The lines in the primary entry field’s value are separated by the unique sequence
of a new-line character followed by a tab character, “\n\t”. Entry field documentation tables, pro-
vided as text files in SD6 and included in Appendix C, contain entry field types so that CA entry
fields can be identified.

The nearest preceding entry field of type A is a CA field’s primary entry field. Using this conven-
tion, CA field values are obtained through referencing the primary entry field’s value, and the val-
ues to the left of CA field identifiers remain empty in the format file. It is possible for a multiple
line response to span less then the total number of entry fields available to contain that response.
CA fields obtain their values sequentially from the primary entry field’s value until all the lines of
the response have been assigned, at which point, subsequent CA field values are left blank.

The exceptional use of CA fields in the format file are the result of historical design decisions. It is
anticipated that their use in future databases will be modified to be consistent with the format of
the other non-ICON entry field types.

2.2 Image File format

Image file formats and effective data compression and decompression are critical to the usefulness
of image archives. Each page of a completed form face was synthesized at 12 dots per millimeter
binary, 2-dimensionally compressed using CCITT Group 4 [2][3], and temporarily archived onto
computer magnetic mass storage. Once all forms were synthesized, the images were mastered and
replicated onto ISO-9660 formatted CD-ROM discs for permanent archiving and distribution.

In this application, a raster image is a digital encoding of light reflected from discrete points on a
scanned form. The 2-dimensional area of the form is divided into discrete locations according to
the resolution of a specified grid. Each cell of this grid is represented by a single bit value 0 or 1
called a pixel; 0 represents a cell predominately white, 1 represents a cell predominately black.
This 2-dimensional sampling grid is then stored as a 1-dimensional vector of pixel values in raster
order, left to right, top to bottom. Successive scan lines (top to bottom) contain the values of a sin-
gle row of pixels from the grid concatenated together.

After digitization, certain attributes of an image are required to be known to correctly interpret the
1-dimensional pixel data as a 2-dimensional image. Examples of such attributes are the pixel
width and pixel height of the image. These attributes can be stored in a machine readable header
prefixed to the raster bit stream. A program, which is used to manipulate the raster data of an im-
age, is able to first read the header and determine the proper interpretation of the data which fol-
lows it. Figure 5 illustrates this file format.

A header format named IHead has been developed for use as an image interchange format. Nu-
merous image formats exist; some are widely supported on small personal computers, others sup-
ported on larger workstations; most are proprietary formats, few are public domain. The IHead
header is an open image format which can be universally implemented across heterogeneous
computer architectures and environments. Both documentation and source code for the IHead for-
mat are publicly available and included with SD6. IHead has been designed with an extensive set

7

of attributes in order to adequately represent both binary and gray level images, to represent imag-
es captured from different scanners and cameras, and to satisfy the image requirements of diversi-
fied applications including, but not limited to, image archival/retrieval, character recognition, and
fingerprint classification.

IHead has been successfully ported and tested on several systems including UNIX workstations
and servers, DOS personal computers, and VMS mainframes. The attribute fields in IHead can be
loaded into main memory in two distinct ways. Since the attributes are represented by the ASCII
character set, the attribute fields may be parsed as null-terminated strings, an input/output format
common in the ‘C’ programming language. IHead can also be read into main memory using
record-oriented input/output. The fixed length of the header is prefixed to the front of the header
as shown in Figure 5. The IHead structure definition as written in the ‘C’ programming language
is listed in Figure 6.

FIGURE 5. An illustration of the IHead raster file format.

Record Length

ASCII Format Image Header

Binary Raster Stream

000000010000010000011111110 . . .

Representing the digital scan across the
page left to right, top to bottom.

‘0’ - Represents a white pixel.
‘1’ - Represents a black pixel.
8 Pixels are packed into a single byte

of memory.

8

FIGURE 6. IHead C language definition.

Figure 7 lists the header values from an IHead file corresponding to the structure members listed
in Figure 6. This header information belongs to the isolated box image displayed in Figure 8. Ref-
erencing the structure members listed in Figure 6, the first attribute field of IHead is the identifica-
tion field, id. This field uniquely identifies the image file, typically by a file name. The
identification field in this example not only contains the image’s file name, but also the reference
string the writer was instructed to print in the box. The reference string is delimited by double
quotes.

/***
 File Name: IHead.h
 Package: NIST Internal Image Header
 Author: Michael D. Garris
 Date: 2/08/90
***/
/* Defines used by the ihead structure */
#define IHDR_SIZE 288 /* len of hdr record (always even bytes) */
#define SHORT_CHARS 8 /* # of ASCII chars to represent a short */
#define BUFSIZE 80 /* default buffer size */
#define DATELEN 26 /* character length of data string */

typedef struct ihead{
 char id[BUFSIZE]; /* identification/comment field */
 char created[DATELEN]; /* date created */
 char width[SHORT_CHARS]; /* pixel width of image */
 char height[SHORT_CHARS]; /* pixel height of image */
 char depth[SHORT_CHARS]; /* bits per pixel */
 char density[SHORT_CHARS]; /* pixels per inch */
 char compress[SHORT_CHARS]; /* compression code */
 char complen[SHORT_CHARS]; /* compressed data length */
 char align[SHORT_CHARS]; /* scanline multiple: 8|16|32 */
 char unitsize[SHORT_CHARS]; /* bit size of image memory units */
 char sigbit; /* 0->sigbit first | 1->sigbit last */
 char byte_order; /* 0->highlow | 1->lowhigh*/
 char pix_offset[SHORT_CHARS]; /* pixel column offset */
 char whitepix[SHORT_CHARS]; /* intensity of white pixel */
 char issigned; /* 0->unsigned data | 1->signed data */
 char rm_cm; /* 0->row maj | 1->column maj */
 char tb_bt; /* 0->top2bottom | 1->bottom2top */
 char lr_rl; /* 0->left2right | 1->right2left */
 char parent[BUFSIZE]; /* parent image file */
 char par_x[SHORT_CHARS]; /* from x pixel in parent */
 char par_y[SHORT_CHARS]; /* from y pixel in parent */
}IHEAD;

9

FIGURE 7. The IHead values for the isolated subimage displayed in Figure 8.

FIGURE 8. An IHead image of an isolated box.

The attribute field, created, is the date on which the image was captured or digitized. The next
three fields hold the image’s pixel width, height, and depth. A binary image has a pixel depth of
1 whereas a gray scale image containing 256 possible shades of gray has a pixel depth of 8. The
attribute field, density, contains the scan resolution of the image; in this case, 300 dots per inch.
The next two fields deal with compression.

In the IHead format, images may be compressed with virtually any algorithm. The IHead header
data is always uncompressed, even if the image data is compressed. This enables header interpre-
tation and manipulation without the overhead of decompression. The compress field is an integer
flag which signifies which compression technique, if any, has been applied to the raster image
data which follows the header. If the compression code is zero, then the image data is not com-
pressed, and the data dimensions: width, height, and depth, are sufficient to load the image into
main memory. However, if the compression code is nonzero, then the complen field must be used
in addition to the image’s pixel dimensions. For example, the image described in Figure 7 has a

IMAGE FILE HEADER
~~~~~~~~~~~~~~~~~
Identity : box_03.pct “0123456789”
Header Size : 288 (bytes)
Date Created : Thu Jan 4 17:34:21 1990
Width : 656 (pixels)
Height : 135 (pixels)
Bits per Pixel : 1
Resolution : 300 (ppi)
Compression : 2 (code)
Compress Length : 874 (bytes)
Scan Alignment : 16 (bits)
Image Data Unit : 16 (bits)
Byte Order : High-Low
MSBit : First
Column Offset : 0 (pixels)
White Pixel : 0
Data Units : Unsigned
Scan Order : Row Major,

 Top to Bottom,
 Left to Right

Parent : hsf_0/f0000_14/f0000_14.pct
X Origin : 192 (pixels)
Y Origin : 732 (pixels)



 

10

compression code of 2. This signifies that CCITT Group 4 compression has been applied to the 
image data prior to file creation. In order to load the compressed image data into main memory, 
the value in complen is used to load the compressed block of data into main memory. Once the 
compressed image data has been loaded into memory, CCITT Group 4 decompression can be 
used to produce an image which has the pixel dimensions consistent with those stored in its head-
er. Using CCITT Group 4 compression and this compression scheme on the images in this data-
base, a compression ratio of 10.1 to 1 was achieved.

The attribute field, align, stores the alignment boundary to which scan lines of pixels are padded. 
Pixel values of binary images are stored 8 pixels (or bits) to a byte. Most images, however, are not 
an even multiple of 8 pixels in width. In order to minimize the overhead of ending a previous scan 
line and beginning the next scan line within the same byte, a number of padded pixels are provid-
ed in order to extend the previous scan line to an even byte boundary. Some digitizers extend this 
padding of pixels out to an even multiple of 8 pixels, other digitizers extend this padding of pixels 
out to an even multiple of 16 pixels. This field stores the image’s pixel alignment value used in 
padding out the ends of raster scan lines.

The next three attribute fields identify binary interchanging issues among heterogeneous comput-
er architectures and displays. The unitsize field specifies how many contiguous pixel values are 
bundled into a single unit by the digitizer. The sigbit field specifies the order in which bits of sig-
nificance are stored within each unit; most significant bit first or least significant bit first. The last 
of these three fields is the byte_order field. If unitsize is a multiple of bytes, then this field speci-
fies the order in which bytes occur within the unit. Given these three attributes, binary incompati-
bilities across computer hardware and binary format assumptions within application software can 
be identified and effectively dealt with.

The pix_offset attribute defines a pixel displacement from the left edge of the raster image data to 
where a particular image’s significant image information begins. The whitepix attribute defines 
the value assigned to the color white. For example, the binary image described in Figure 7 is black 
text on a white background and the value of the white pixels is 0. This field is particularly useful 
to image display routines. The issigned field is required to specify whether the units of an image 
are signed or unsigned. This attribute determines whether an image with a pixel depth of 8 should 
have pixel values interpreted in the range of -128 to +127, or 0 to 255. The orientation of the ras-
ter scan may also vary among different digitizers. The attribute field, rm_cm, specifies whether 
the digitizer captured the image in row-major order or column-major order. Whether the scan 
lines of an image were accumulated from top to bottom, or bottom to top, is specified by the field, 
tb_bt, and whether left to right, or right to left, is specified by the field, rl_lr.

The final attributes in IHead provide a single historical link from the current image to its parent 
image; the one from which the current image was derived or extracted. In Figure 7, the parent 
field contains the full path name to the image from which the image displayed in Figure 8 was ex-
tracted. The par_x and par_y fields contain the origin point (upper left hand corner pixel coordi-
nate) from where the extraction took place from the parent image. These fields provide a historical 
thread through successive generations of images and subimages. The IHead image format con-
tains the minimal amount of ancillary information required to successfully manage binary and 
gray scale images.



 

11

3.0  Hand-Print Fonts

In order to provided a realistic sample of structured forms containing hand-print, it was desirable 
to use digitized hand-print from a large number of writers. For this database, the segmented char-
acter images from the 2,100 writers found in NIST Special Database 3 (SD3) [4] were used. A 
goal in SD6 was to provide the appearance of sole authorship on each form. One approach to this 
problem would be to use characters solely from a single writer when synthesizing a form. The 
characters in SD3 were extracted from the form images found in NIST Special Database 1 (SD1) 
[5]. Each writer printed 13 unique instances of each digit ‘0’ through ‘9’ and only one unique in-
stance of each upper and lower case alphabetic character ‘A’ through ‘Z’. This results in too few 
examples of each character per writer to accurately reflect the variations naturally occurring in 
digitized hand-print. 

An alternate approach was developed to more realistically model hand-print variations. SD3 was 
analyzed and divided into hand-print fonts, groups of hand-printed character images, which were 
determined according to hand-print similarity across multiple writers. Four similarity measures 
were used to group the hand-printed images in SD3. These were pixel height, pixel width, slant 
and pixel density. Pixel height is the number of pixel rows between the highest black pixel and the 
lowest black pixel on a character in its image. Pixel width is the number of pixel columns between 
the left-most black pixel and right-most black pixel on a character in its image. Slant is a comput-
ed quantifier representing the amount of horizontal shearing required to make a character in its 
image vertical. Pixel density is computed by dividing the number of black pixels contained in the 
character image by the result of multiplying pixel height and pixel width.

These measures were used to divide the character images into sixteen independent groups. Four 
similarity values were computed for the images of each class of character, for example all the ze-
ros in SD3, creating four distributions for each class. Median values were calculated from each of 
the resulting distributions. The four similarity values for each character image were compared to 
the median values of the four measurement distributions associated with the character’s class. If 
the similarity value was greater than the corresponding median value, the character image was re-
corded as belonging to bin 1. If the similarity value was less than the corresponding median value, 
the character image was recorded as belonging to bin 0. This resulted in four binary identifiers be-
ing recorded for each character image, one identifier per similarity measure. Combining the four 
identifiers in sequential order, created sixteen unique binary sequences. For this database, all the 
character images having the same unique binary sequence became one of sixteen possible hand-
print fonts. These hand-print fonts were used to synthesize the structured forms in SD6. 

Figures 9 through 12 provide the reader with examples of the range of hand-print found on the 
structured forms in SD6. Figure 9 contains an address synthesized with the hand-print font con-
taining the characters for which all four similarity values were below the median values of their 
respective measurement distributions.



 

12

 

FIGURE 9.  1040 page 1 address block containing characters from a short and narrow hand-print font.

Figure 10 contains the same address information as Figure 9, but in this example the information 
was synthesized using the hand-print font containing the characters for which the similarity val-
ues pertaining to pixel height and pixel width were above the median values of their respective 
measurement distributions, while the similarity values pertaining to slant and pixel density were 
below the median values of their respective measurement distributions. 

FIGURE 10.  1040 page 1 address block containing characters from a tall and wide hand-print font.

Figure 11 contains the address information synthesized using the hand-print font containing the 
characters for which the similarity values pertaining to pixel height, pixel width, and slant were 
above the median values of their respective measurement distributions, while the similarity value 
pertaining to pixel density was below the median value of its measurement distribution. 

FIGURE 11.  1040 page 1 address block containing characters from a tall, wide, and slanted hand-print font.

Figure 12 contains the address information synthesized with the hand-print font containing the 
characters for which all four similarity values were above the median values of their respective 
measurement distributions. 

FIGURE 12. 1040 page 1 address block containing characters from a large and bold hand-print font.



 

13

4.0  Database Content and Organization

NIST Special Database 6 contains 5,595 full page images of completed structured forms and cor-
respondingly contains 5,595 ASCII text format files. SD6 is approximately 630 Megabytes in size 
and is distributed on an ISO-9660 formatted CD-ROM disc. The binary images in the database 
have been 2-dimensionally compressed. Uncompressed SD6 would require approximately 5.95 
Gigabytes of storage. 

4.1  Hierarchy

Figure 13 illustrates the top level directory tree in the database. The directories doc, man, and src, 
contain documentation and utilities necessary to manipulate the image data on the CD discussed 
in Section 5.0. The data directory contains files of images and entry field value format files de-
scribed in Section 2.0. The organization of these files is illustrated in Figure 14. 

FIGURE 13. The top level directory tree in the database.

FIGURE 14. The file organization of the form images and format files contained in NIST Special Database 6.

There are 5,595 full page images of completed forms distributed across 8 subdirectories within 
data. The subdirectories sfrs2_0, sfrs2_1, through sfrs2_8 each contain 100 synthesized tax sub-
missions comprised of a random collection of completed form faces generated by a computer. 

NIST Special Database 6

doc man data

Documentation
Files

Software
Manual
Pages

Form Images
and

Format Files

src

Image
Software
Utilities

data

sfrs2_0 sfrs2_1 sfrs2_2 sfrs2_8

r0000

... ... ... ...

...

... r0099 r0100 ... r0199 r0200 ... r0299 r0800 ... r0899

r0200_00.pct
r0200_00.fmt

r0200_01.pct
r0200_01.fmt

r0200_05.pct
r0200_05.fmt

...

...



 

14

Therefore there are 900 total tax submissions in SD6. Each submission is represented as a directo-
ry. An example of a submission directory r0200 is illustrated in Figure 14. In this example, the di-
rectory sfrs2_2 contains the 100 submission directories r0200 through r0299. The images 
associated with submission 200 are stored in the subdirectory r0200. There are on average 6.22 
form images stored in a submission directory. In Figure 14, r0200 contains 6 synthesized form 
faces stored as the files r0200_00.pct, r0200_01.pct, through r0200_05.pct where the last two 
digits in the file name uniquely index the form images. For each form face image, there is a corre-
sponding format file. The format file for the image r0200_00.pct is r0200_00.fmt, r0200_01.pct 
is r0200_01.fmt, and so on. In this way 5,595 form images are stored on the CD with their 5,595 
corresponding format files accounting for 11,190 individual files in all.

5.0  Source Code For Database Access

In addition to images and format files, SD6 contains documentation and software written in the 
‘C’ programming language and developed on UNIX scientific workstations. Source code for three 
different programs: dumpihdr, ihdr2sun, and sunalign is included within the top level database 
directory src. These programs, their supporting subroutines, and associated file names are de-
scribed below. These routines are provided as an example to software developers of how IHead 
images may be manipulated. Manual pages are included in Appendix B and are located in the top 
level database directory man.

5.1  Compilation

CD-ROM is a read-only storage medium; this requires the files located in the directory src to be 
copied to a read-writable partition prior to compilation. Once these files have been copied, execut-
able binaries can be produced by invoking the UNIX utility make. A command line example fol-
lows.

# make -f makefile.mak

5.2  Dumpihdr <IHead file>

Dumpihdr is a program which reads an image’s IHead data from the given file and formats the 
header data into a report which is printed to standard output. The report shown in Figure 7 was 
generated using this utility. The main routine for dumpihdr is found in the file dumpihdr.c and 
calls the external function readihdr().

Readihdr() is a function responsible for loading an image’s IHead data from a file into main 
memory. This routine allocates, reads, and returns the header information from an open image file 
in an initialized IHead structure. This function is found in the file ihead.c. The IHead structure 
definition is listed in Figure 6 and is found in the file ihead.h.

5.3  Ihdr2sun <IHead file>

Ihdr2sun converts an image from NIST IHead format to Sun rasterfile format. Ihdr2sun loads an 
IHead formatted image from a file into main memory and writes the raster data to a new file ap-
pending the data to a Sun rasterfile header. The main routine for this program is found in the file 
ihdr2sun.c and calls the external function readihdrfile() which is found in the file loadihdr.c.

Readihdrfile() is a procedure responsible for loading an IHead image from a file into main mem-
ory. This routine reads the image’s header data returning an initialized IHead structure by calling 



 

15

readihdr(). In addition, the image’s raster data is returned to the caller uncompressed. The images 
in SD6 have been 2-dimensionally compressed using CCITT Group 4, therefore readihdrfile() 
invokes the external procedure grp4decomp() which decompresses the raster data. Upon comple-
tion, readihdrfile() returns an initialized IHead structure, the uncompressed raster data, and the 
image’s width and height in pixels. Grp4decomp() was developed by the CALS Test Network 
and adapted by NIST for use with this database and is found in the file g4decomp.c.

5.4  Sunalign <Sun rasterfile>

Sunalign is a program which ensures the Sun rasterfile passed has scanlines of length equal to a 
even multiple of 16 bits. It has been found that some Sun rasterfile applications assume scanlines 
which end on an even word boundary. IHead images may contain scanlines which do not conform 
to this assumption. Therefore, it may be necessary to run sunalign on an image which has been 
converted using ihdr2sun. The main routine for this program is found in the file sunalign.c.

6.0  Entry Field Documentation Tables.

The final set of information provided with this database is a collection of tables. These tables con-
tain general information about each entry field found on a structured form. This information can 
be applied by system developers to guide the recognition process of their document processing 
system. These tables specify the data type and context associated with each entry field found on 
the form faces labeled in Appendix A. Formatted copies of these tables are included in Appendix 
C and are found in the directory tables within the top level database directory doc.

Appendix C contains twenty different tables, one for each of the twenty different form faces 
found in SD6. Each line in these tables references an unique entry field from the corresponding 
form face. Entry fields are described by three columns of information. The first column in these 
tables contains entry field identifiers, the second column contains entry field data types, and the 
third column contains each entry field’s associated context. Figures 15 and 16 list the possible en-
try field data types and contexts contained on the structured form faces used in this database.

FIGURE 15.  The set of possible entry field data types.

FIGURE 16. The set of possible entry field contexts.

A, CA

F

I

ICON

Alphanumeric Fields

Floating Point Fields

Integer Fields

Non-Character Fields
(box markings, signatures)

TAG DEFINITION

DATA

NAME

SSN

Generic Data

Names of People

Social Security Numbers

TAG DEFINITION



 

16

References 

[1] D. L. Dimmick, M. D. Garris, and C. L. Wilson, Structured Forms Database, Technical Report 
Special Database 2, SFRS, National Institute of Standards and Technology, December 1991

[2] Department of Defense, “Military Specification - Raster Graphics Representation in Binary 
Format, Requirements for, MIL-R-28002,” 20 Dec 1988.

[3] CCITT, “Facsimile Coding Schemes and Coding Control Functions for Group 4 Facsimile 
Apparatus, Fascicle VII.3 - Rec. T.6,” 1984.

[4] M. D. Garris and R. A. Wilkinson, Handwritten segmented characters database. Technical Re-
port Special Database 3, HWSC, National Institute of Standards and Technology, February 
1992.

[5] C. L. Wilson and M. D. Garris, Handprinted character database, National Institute of Stan-
dards and Technology, Special Database 1, HWDB, April 18, 1990



 

17

Appendix A: Labeled Form Faces



 

18

Appendix B: Manual Pages for Supplied Software



 

19

Appendix C: Entry Field Description Tables


