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ABSTRACT
Manufacturing taxonomies and accompanying metadata of

manufacturing processes have been catalogued in both reference
books and databases on-line. However, such information remains
in a form that is uninformative to the various stages of the prod-
uct life cycle, including the design phase and manufacturing-
related activities. This challenge lies in the varying nature in
how the data is captured and represented. In this paper, we ex-
plore measures for comparing manufacturing data with the goal
of developing a capability-based similarity metric for manufac-
turing processes. To judge the effectiveness of these metrics, we
apply permutations of them to 26 manufacturing process mod-
els, such as blow molding, die casting, and milling, that were
created based on the ASTM E3012-16 standard. Furthermore,
we provide directions towards the development of an aggregate
similarity metric considering multiple capability features. In the
future, this work will contribute to a broad vision of a manufac-
turing process model repository by helping ease decision-making
for engineering design and planning.

1 INTRODUCTION
Digital manufacturing has fundamentally changed the way

in which organizations design, build, and assess products. The
wealth of manufacturing-related data has been exploited in many
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ways, to date. According to a report by McKinsey Global In-
stitute, “manufacturing stores more data than any other sector –
close to 2 exabytes of new data stored in 2010” [1]. However, it
is widely accepted that until now, the manufacturing world is far
from meeting its true potential in the digital age [2]. This wealth
of data unfortunately lacks sufficient context, which is negatively
affecting its realized value. All in all, the manufacturing environ-
ment has become data rich yet information poor.

One challenge for (semi-)automating manufacturing deci-
sion making is properly representing tacit knowledge of man-
ufacturing experts. Currently, manufacturing databases house
general information and do not provide recommendations for
complex decision scenarios. An example of such a decision sce-
nario is finding a manufacturing supplier that meets specifica-
tions for a new design, or in short, supplier discovery. In this
case, the decision maker must balance the capabilities of a sin-
gle supplier across a variety of dimensions, e.g. produced shape,
achievable tolerance and surface roughness. Narrowing down a
particular manufacturing process based on capabilities is often
left to the discretion of the human and their experience. Stud-
ies have shown that the coordination between machine-driven al-
gorithms and human-based intuition improves decision making
processes [3]. Similarly, one goal of this work is to enhance pro-
cess discovery through human-machine coordination.

In this paper, we explore various techniques for defining the
similarity of two manufacturing processes in the context of sup-
plier discovery. The eventual goal of this research is to develop a
general metric that enables faster and easier comparison of man-
ufacturing process capabilities. We can envision that such a met-
ric would complement existing efforts in ontology and linked
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data development to enhance design and manufacturing engi-
neers’ toolboxes to make better decisions. This paper proposes
several metrics for different manufacturing attributes depending
on the nature of the data. Furthermore, we present initial work
towards a unified metric that takes into account multiple manu-
facturing capabilities in a weighted scheme.

The rest of the paper is organized as follows. Sec-
tion 2 discusses relevant work from the perspective of standards,
databases, and similarity metrics. Section 3 describes the script
that was used to parse the data and the metrics that were adapted
and developed to compare the processes. Section 4 presents
results after computing the various metrics using a test dataset
along with its interpretation. Section 5 addresses limitations of
our approach, primarily focused on data-related issues. Section 6
looks at future work for the project and how it can be imple-
mented into a larger initiative to facilitate the manufacturing de-
sign process. The vision of this work is to include the metric
and the related algorithms within a structured database to enable
better query mechanisms for human decision makers.

2 BACKGROUND & MOTIVATION
This section reviews related work with respect to (1) stan-

dardizing information models describing manufacturing systems,
(2) storing information related to capabilities of manufacturing
processes, and (3) developing similarity metrics for such infor-
mation models. Here, we motivate our work for constructing an
automated measure of similarity of manufacturing processes.

2.1 Standardizing manufacturing information models
Primary efforts in standardizing information models that

formally characterize manufacturing processes include IS0
20140 [4] and ASTM E3012-16 [5], both of which focus on envi-
ronmental considerations of manufacturing processes. Both stan-
dards address the need for improving environmental models to
populate life cycle inventories (LCI). In fact, ISO 20140 specifi-
cally states that its proposed reference model directly aligns with
the EcoSpold de facto standard that has been widely adopted for
storing LCI and life cycle assessment (LCA) unit process mod-
els [6]. Though the focus of these two standards lies within
environmental analysis, the reference models should be robust
enough to include traditional performance attributes associated
with manufacturing systems, e.g. cost, quality, and throughput.

One of the motivating factors for implementing a standard
representation for manufacturing information is model storage
and curation. In this light, we proposed an open web-based
repository to promote data consistency and bridge the research
gap between institutions and private sectors [7]. This repository
adopts the ASTM E3012-16 standard and uses the Unit Manufac-
turing Process (UMP) as a formal model for capturing manufac-
turing data [5]. The UMP captures input and output information

as well as various process parameters and can be modeled using
data formatting languages such as eXtensible Markup Language
(XML) or JavaScript Object Notation (JSON).

This paper focuses on the development of a metric to assess
the similarity between such UMP models. We envision that this
work will improve the navigability and usability of the proposed
repository. Next, we review existing database incarnations for
the manufacturing processes, specifically in the context of sup-
plier discovery and process capability-based query.

2.2 Storing process capability information
Currently, there are several databases that store manufactur-

ing information. The CES Selector from Granta Design1, a com-
mercial database designed for material selection, houses general
information on manufacturing processes. Such information in-
cludes broad interval ranges of performance indicators, e.g. cost
and CO2 emissions per amount of material processed. Since the
manufacturing capabilities of an organization are heavily depen-
dent on their acquired manufacturing assets and resources, com-
mercial databases, such as CES Selector, do not provide much
specificity for manufacturing processes. From another perspec-
tive, there are a number of supplier discovery and service match-
ing tools, e.g. Alibaba2, in which it is possible to match process
capability with available resources. However, in these tools’ cur-
rent form, such an effort would require significant costs in time to
translate this information into a usable form. Also, it is possible
that the posted capabilities of individual job shops and manufac-
turers could be over-claimed and not accurate [8].

In response to these challenges, there have been efforts in
providing open and free access to manufacturing process capa-
bility information, such as CustomPart.Net3. Such databases
provide a variety of estimation and manufacturing tools based
on tabular information of material and manufacturing process,
and supplier information. Examples of available tools include a
milling speed and feed calculator, cost estimation for injection
molding, and bend allowance calculator for sheet metal. These
open sources claim widespread use in industry with thousands of
reported estimations per month. In this paper, we use this type
of information about manufacturing processes since the data is
open, available, and seemingly trustworthy judging by its wide
use as well as its use within similar research efforts [9].

2.3 Defining similarity between information models
Measuring the similarity between information models is

nothing new. By definition, the similarity between two ob-
jects is a function of the commonality and the differences they
share [10]. In this paper, we borrow concepts from similarity

1https://www.grantadesign.com/products/ces/
2https://www.alibaba.com/
3http://www.custompartnet.com/
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FIGURE 1. Flowchart specifying steps for the analysis performed. Here, we transform tabular data about manufacturing processes into a standard
representation, abiding by ASTM 3012-16. We then compare each pair of manufacturing processes based on the computed similarity metrics, perform
clustering on the resultant matrix, and generate visualizations as a reporting mechanism to aid in data sense-making.

measures from various applications areas, including biology, in-
formation science, and engineering.

In biomedical research, similarity measures have aided in
the prediction of functions and interactions between different
gene products such as proteins. These measures often utilize
semantic similarity techniques due to an abundance of biomedi-
cal annotations such as the Gene Ontology [11]. In fact, now a
fully adopted method, visual representations of microarray data,
which represents this expression-based similarity, facilitates a
deeper insight and understanding of the data to practitioners [12].

Likewise, incorporating ontologies is a key factor in build-
ing a successful model for representing manufacturing data. One
attempt at creating a digital manufacturing ontology is the Man-
ufacturing Service Description Language (MSDL) [13]. MSDL
captures the abstract concepts and relationships between manu-
facturing services at a process, machine, shop, and supplier level.
Other examples for assessing the similarity between manufactur-
ing processes can be classified as edge-based counting methods.
In these approaches, a taxonomic representation of the process
universe, such as the Allen and Todd taxonomy [14], is used to
determine distance between nodes in a network, e.g. in [15].

Similar approaches have also been used in the conceptual
design phase, wherein only the function-component relationships
are considered [16,17], as well as in detailed design, wherein re-
searchers have used similarity measures to uncover opportunities
from existing designs [18, 19]. Others have focused specifically
on cellular manufacturing, developing a metric for assessing the
similarity of production lines [20]. Another approach used a
graph-based metric to assess the similarity of manufacturing-
based value chains [21].

Due to a lack of abundant annotations in the manufactur-
ing industry, it can be argued that common ontology measures
such as node-based approaches using information content (IC)
and edge-based counting methods cannot be applied to current
manufacturing data [22]. Edge-based methods using manufac-
turing process trees are also unreliable due to the uneven distri-
bution of nodes and the inability to quantify the length between
each parent and child node. In response, in this paper, we pro-
pose a hybrid approach wherein we combine both semantic and

numerical information to develop a similarity metric to assess a
manufacturing process’s capabilities.

3 METHODOLOGY
In this paper, we present work towards a more comprehen-

sive similarity metric for manufacturing processes based on their
capabilities, such as achievable tolerance, surface roughness, and
batch size. One of the primary challenges lies within the fact that
manufacturing-related information housed in databases come in
different forms, such as categorical and numerical expressions.
As shown in Fig. 1, this section details the steps towards the de-
velopment of this metric, including (1) data selection and pro-
cessing, (2) the implementation of several different similarity
calculations based on the data quality and nature of each selected
capability, and (3) the visualization of the computed metrics to
aid in decision making.

3.1 Pre-processing and organizing the data
Choosing the source of data was the first step as accessibil-

ity, representation, and uniformity of data were important factors
to consider for an intuitive similarity measure. CustomPart.Net
was chosen as it is an open-source database that can easily be ac-
cessed online and has an abundance of pre-formatted data. The
database can also easily be expanded by collaborative use from
institutions and private sectors. Access to larger, more specific
amounts of data can enhance the existing similarity measures
while also allowing for new measures to be introduced.

The standard format of a UMP model was used to capture
the chosen dataset. In order to represent a UMP model, XML
was chosen as the best format due to its simplicity to use and
intuitive structure for human and machine reading.

A script was written using MATLAB that constructed indi-
vidual XML files for each process from a conglomerate Excel
spreadsheet. The raw data was captured in multiple formats and
had to be properly sorted. The select features that were speci-
fied numerically occasionally came in ranges. These values were
captured into upper and lower bounds as seen in the surface finish
values in Fig. 2. Manufacturing data is also traditionally captured
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FIGURE 2. Example of a UMP generated wherein data from Custom-
Part.Net was organized via the ASTM E3012-16 standard.

in terms of typical and feasible data, where typical data reflects
how a process is traditionally used, while feasible represents the
physical limitations of the process. These limitations may be
achieved at a sacrifice of efficiency in cost, energy, or production
speed. Categorical data such as the materials were captured into
string arrays for ease of processing later on.

In order to analyze the manufacturing data from any given
database, the data can be entered into an Excel spreadsheet fol-
lowing a specific format, and similar UMP files will be gener-
ated. MATLAB was again chosen to run the remaining data pro-
cessing and analysis. Using object-oriented programming meth-
ods, a simple ”Process” class was created that reflected the for-
mat of the UMP by capturing each feature information into indi-
vidual instance variables of the class.

3.2 Applying similarity metrics to process attributes
The information housed in the manufacturing database can

be grouped into two classifications: numerical and categorical.
Numerical data is expressed as nominal values or a range of
values. Categorical data can be described as a list of attributes
falling into a single classification. The treatments of each type of
information are further explained below.

3.2.1 Numerical data For numerical information,
wherein the values do not deviate by orders of magnitude, we
used the Euclidean distance measure as seen in Eq. 1 and nor-
malized it into a simple similarity function, as shown in Eq. 2.

D(x,y) =

√
n

∑
i=0

(xi− yi)2 (1)

S(x,y) =

√
x2 + y2−

√
(x− y)2√

x2 + y2
= 1− D(x,y)

norm(x,y)
(2)

where D(x,y) denotes the Euclidean distance and S(x,y) denotes
the similarity of one entity, x, with respect to another entity, y.
The element i refers to the number of elements or dimensions
within a category, which was typically just one for this paper.

By applying the norm to Eq. 1, it can be rewritten to yield
a result from 0 to 1, where a 1 signifies a perfect match. It is
important that every metric is normalized onto the same scale
in order to compare different features together in an aggregate
equation. This concept will be explored later in the paper.

S(x,y) = exp[− log(1+ |x+ y|)
k

] (3)

k =
n

∑
i=0

log(|xi− yi|)
n

(4)
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FIGURE 3. Left: example of a square similarity matrix generated. In this case, we are showing the results from a Jacquard index evaluation
comparing categorical sets representing typical shapes that each process can produce. Here, we apply a colormap to indicate the level of similarity
between two manufacturing processes, wherein the darker the blue denoting a higher similarity. Right: results of hierarchical clustering performed on
this similarity matrix. The clusters are illustrated via a dendrogram, where its leaf labels correspond to the rows of the matrix on the right.

TABLE 1. Capability features extracted from CustomPart.Net

# Feature Type Sim. Calc.
1 Shapes Categorical Eq. 5

2 Materials Categorical Eq. 5

3 Surface Finish Numerical Eq. 2

4 Tolerance Numerical Eq. 2

5 Max Wall Thickness Numerical Eq. 2

6 Applications Categorical Eq. 5

7 Batch Size Numerical Eq. 3

- Aggregate Metric Mixed Eq. 7

Equation 3 was developed as a result of the batch size feature
in the manufacturing data which differed on orders of magnitude.
The data ranged from values of 10 to 1,000,000 which made or-
dinary distance measures such as Euclidean distance ineffective.
One method that was attempted was to use the z-score technique
to rescale each value based off of standard deviations. However,
this method proved ineffective due to the the lack of spread in
the data, as most values were captured in magnitudes of 10 rather
than in specific quantities. An exponential function was picked
as the metric of choice as it can scale values regardless of their
magnitude. The exponential of the negative logarithm is a tech-
nique used to normalize the distance to a scale of 0 to 1. In order
to achieve a similarity score of 0 for perfect similarity between
two values, the value inside the logarithm needed to be scaled
by 1. Finally, a weight, k, is used to alleviate the spread of the
values, such that a large k value would yield a higher similar-

ity score when comparing two values such as 10 and 1,000,000.
After testing different k values, the mean of the log of every dif-
ference combination was chosen as seen in Eq. 4.

It should be noted that some attributes, such as batch size,
were expressed as ranges. These intervals were separated into
upper and lower bounds, denoted as UBn and LBn, respectively.
Then, a similarity measure is applied to every combination of
values such as UB1 to UB2, UB1 to LB2, etc. For simplicity, the
largest similarity measure was taken out of the combinations.

3.2.2 Categorical data For categorical information,
the Jaccard Index was adopted as a common measure for com-
paring two sets. As seen in Eq. 5, the similarity between two sets
A and B can be taken as the intersection over the union of A and
B. This is a simple but effective way to measure similarity for the
materials and shapes where the data is evenly distributed among
every process.

J(A,B) =
|A∩B|
|A∪B|

=
|A∩B|

|A|+ |B|− |A∩B|
(5)

Table 1 summarizes the manufacturing capabilities that were ex-
tracted from CustomPart.Net and the respective similarity metric
applied to each. For each features, similarity matrices were com-
puted to represent a total of 325 pairwise comparisons amongst
26 different processes. Next, we explore visualization options for
presenting results from applying the various similarity measures.
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FIGURE 4. Analysis of the effect of expanding the set of typical features with feasible ranges. Here, we consider two of the studied capability
features, shape (top) and material (bottom). Column A shows the results from the hierarchical clustering following the same procedure shown in Fig.
3. Column B illustrates the difference in similarity evaluation when including the feasible range. Note that we do not perform any re-clustering at this
stage. Column C presents the difference between Columns B & A. Column D shows the shows the results from re-clustering based on Column B.

3.3 Visualizing the similarity matrices
Applying prudent visualization to scenarios with rich ana-

lytics allows human decision makers to quickly gain insight into
data. This process of gaining insight through internal cognitive
processes is commonly referred to as sense-making [3]. Here,
we exploit accepted matrix-based visualization to gain deeper
insight into the proposed similarity metrics. The primary visual-
ization features are the clustered similarity matrix codified with
a color scale, and its accompanying dendrogram.

First, we begin with each computed similarity matrix. An
example of one matrix can be seen in Fig. 3 on the left. This
matrix represents the values from the similarity evaluation de-
pending on the metric used, wherein the darker the blue denotes
the higher value of similarity. This is a square matrix, where the
rows and columns represent the same set of processes.

Based on the values in the similarity matrix, we perform hi-
erarchical clustering to identify communities of manufacturing
processes based on sharing similar capabilities. To evaluate the
distances between resultant clusters, we employ the Voor Hees
Algorithm [23], seen in Eq. 6.

d(u,v) = max{dist(u[i],v[ j])} (6)

Based on the computed values from Eq. 6, we then build a den-
drogram, to visualize the distances between the clusters, which
can been seen in Fig. 3 on the right. A longer line translates to
a larger distance between the clusters. If there is a vertical line

adjacent to the leaf labels, this signifies that the processes are
precisely the same based on that specific similarity evaluation.
For example, in Fig. 3, Powder Metallurgy, Centrifugal Casting,
Swaging, and Turning are exactly identical with respect to their
capability of producing a typical set of shapes.

4 RESULTS
This section presents some insights drawn out by analyzing

the similarity matrices representing various capability features.
One of those insights is presented in Fig. 4. Here, we demon-
strate some of the challenges associated with dealing with the
data. The database provides two different ranges for each feature
studied, one that describes the typical range of process capability
and another broader set that characterizes the feasible range.

Figure 4 shows that including the feasible set of attributes
affects the specific feature differently. In this case, we consider
two capability features, shape and material, both of which are
defined sets of strings. Column A presents both similarity ma-
trices clustered solely based on the typical set of attributes (i.e.
possible shapes and materials). We then append the sets with the
additional attributes from each feasible set, as seen in Column
B. Here, we re-calculate the similarity matrix based on the new
sets of capabilities but do not re-order the rows. By investigating
the difference of Column A and Column B, presented through a
simple subtraction process in Column C, we show that, in these
cases, the feasible range affects the process communities differ-
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TABLE 2. Corpus of attributes for shape and material

Shapes–6 total Materials–17 total

Flat; Thin-walled:
Cubic; Thin-walled:
Cylindrical; Thin-
walled: Complex; Solid:
Cylindrical; Solid:
Cubic; Solid: Complex

Alloy Steel; Carbon Steel; Cast
Iron; Stainless Steel; Aluminum;
Copper; Lead; Magnesium;
Nickel; Tin; Titanium; Zinc;
Ceramics; Composites; Thermo-
plastics; Thermosets; Elastomers

ently. This is further enforced by re-clustering the similarity ma-
trix based on the total set of attributes, including both typical and
feasible ranges, seen in Column D.

To explain this difference in sensitivity, let us take Electri-
cal Discharge Machining (EDM) and Electrochemical Machin-
ing (ECM) as an example. With respect to shape, as seen in
Fig. 4A, ECM and EDM share identical sets of typical shapes
with Hot Forging. After appending the original set of possible
shapes with the feasible range, this cluster is expanded as seen in
Fig. 4D. It now includes processes such as Die Casting, Invest-
ment Casting, and Milling. In summary, considering the com-
plete range of feasible shapes, clusters become more inclusive.

If we consider the same processes, EDM and ECM for the
material feature, we find key differences when compared to the
shape feature. As seen in Fig. 4A, EDM is identical to Investment
Casting and ECM is closest to Metal Inj. Molding. However,
after appending with the feasible set and re-clustering (Fig. 4D),
we see that clusters are less inclusive and often exhibit different
characteristics. For example, EDM now represents a unique set
of capabilities and is closest to Sheet Metal Fab., Hot Extrusion,
and Impact Extrusion.

This observation can be explained by investigating the na-
ture of the data. Table 2 lists each corpus of terms for both the
shape and material categories. The materials feature almost 3
times the amount of terms when compared with shapes, i.e. 17
compared to 6. This partly explains why the shape feature has
much more inclusive clusters after including the feasible ranges.
With fewer possible attributes, the shape feature can be expressed
by a reasonable number of possible combinations. Once seeded
with more possibilities, e.g. 17 concepts as in the materials fea-
ture, the clustering behaves differently.

Figure 5 shows other examples of clustered similarity matri-
ces for selected features, only based on typical ranges of capabili-
ties. Similar to above, the nature of the data drastically affects the
“performance” of the hierarchical clustering. For Surface Fin-
ish, which is numerical data wherein similarity was computed
based on Eq. 2, we see a large number of small clusters that ex-
hibit considerable closeness. This is due to the variability in the
data’s numerical range but the metric still seems to successfully
delineate communities within that range. For Batch Size, we see
large clusters due to the the homogeneity of the database infor-

FIGURE 5. Clustering typical surface finish, batch size, applications,
and an aggregate metric considering all features.
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mation. In contrast, for Applications, which represent a corpus of
72 terms specifying engineering applications (e.g. gears, pipes,
and aerospace components), we see few identifiable similar sets
of processes due to the heterogeneity of terms.

The significant takeaway of our analysis is that the corpus of
concepts for each capability feature has a seemingly large impact
on the clustering. This becomes a challenge when developing an
aggregate similarity metric that takes into account all capability
features studied. The last matrix shown in Fig. 5, reflects the sim-
ilarity calculations of every feature combined using an aggregate
measure as seen in Eq. 7, where k is the weight of the feature i.

S(x,y) =

√
n

∑
i=0

ki(Si)2 (7)

Without weighting the features within the overall distance mea-
surement, we can see that the clustering algorithm does not iden-
tify distinct and tight clusters. Instead, we see a number of
“loose” clusters, wherein it is difficult to discern similar pro-
cesses based on the full set of capability features.

Based on these observations, we describe limitations of our
work to motivate future work in the next section. This descrip-
tion will help account for these discrepancies within the data to
specifically address the development of an aggregate similarity
metric for manufacturing processes.

5 LIMITATIONS OF WORK
Limitations of our approach are tightly related to the nature

of the data applied in this paper. Primary issues include (1) data
granularity, (2) the heterogeneity of scales for the numerical data,
(3) lack of understanding of the inter-relationships for various
combinations of capability features, and (4) the scope and con-
text of the data.

As shown in the previous section, the metrics that we ap-
plied to the data perform differently, sometimes poorly, based on
the granularity of the data. When using semantic metrics such
as the Jaccard Index, the distribution of terms and number of
unique terms may lead to insubstantial measurements. The Ap-
plication feature was a clear example of such a scenario. The
dataset used 17 unique material types and 72 different applica-
tion types. Although more data types may appear to benefit the
similarity measure, with only 26 processes, the distribution of
application types to processes was sparse, with many processes
having unique applications. This also leads to issues in syntactic
matching as similar words such as aviation and aerospace will
not be matched even if they are semantically related. Currently,
our method here does not address this issue. We do not treat the
semantic similarity measures any differently based on the num-
ber of terms in a feature’s corpus.

Another challenge is the significant difference in scale for
numerical data, which could affect the aggregate similarity met-

ric. For example, differences between batch size capability in
the dataset differ on orders of magnitude, while differences in
achievable tolerances are not as far apart, yet have critical impor-
tance (in real manufacturing scenarios) even with minor differ-
ences. In our approach, we use traditional feature scaling to curb
these effects. However, this issue seems to pop up in the aggre-
gation of multiple metrics with one another. A smarter approach
to overcoming scale heterogeneity in the data is needed.

In addition, our method does not consider the inter-
dependencies between various combinations of capability fea-
tures. For example, material and shape characteristics of a prod-
uct have significant interplay judging the feasibility of a real
build. Down-selecting from a set of materials influences the fea-
sible range of shapes, and vice versa, even before selecting a set
of available processes. From initial experimentation, the inter-
play of correlated features also have an effect on the generated
clusters of material for a weighted aggregated metric. The impli-
cations of assigning these weights have a seemingly significant
impact on the clustering result. This limitation presents future
research questions as to how to emphasize particular aspects of
manufacturing capabilities to better inform process selection.

Lastly, the developed metrics are constrained based on the
dataset that was used. The data does not model any specific de-
sign case, but rather general design parameters that are purely
process specific. Empirical methods of data collection have been
proven to accurately model and predict important aspects of man-
ufacturing processes such as unit energy consumption [24]. The
addition of such data can significantly enhance our current meth-
ods while also increasing their utility as energy is a major factor
in calculating cost and environmental effect. Features from the
dataset such as the shape also lack the depth to accurately clas-
sify specific products with complex designs. There have been as-
sessments of shape signatures through spacial functions and his-
tograms that could be applied to our metrics [25]. Analyzing the
categorical and numerical comparisons of certain features will
require more data that will require expanding beyond our current
dataset.

6 CONCLUSION AND FUTURE DIRECTIONS
This paper highlights efforts towards the development of a

similarity metric for manufacturing processes. The primary goal
is to aid in decision-making in the context of supplier discovery,
e.g. given a set of design requirements, and define the avail-
able set of processes and viable alternatives based on similar
capability-based characteristics. Here, we review lessons learned
from our experimentation and present future directions to address
the limitations of our work.

A primary research direction is the inclusion of a weight-
ing scheme for individual similarity evaluations of capabili-
ties based on feature inter-dependencies or human preference.
Inter-dependencies of capability features could also be heavily

8 Copyright © 2017 ASME

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/conferences/asmep/93280/ on 07/24/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



domain-specific. For example, requirements for material selec-
tion and tolerance specification vary greatly between consumer
products and aerospace applications.

Furthermore, in this work, we have not validated any of the
identified clusters of manufacturing processes with human judge-
ment and expert experience. Such tacit knowledge can be effi-
ciently captured in description logic and then formally expressed
in ontologies. We have yet to make the connection between
our fully automated approach and some flexibility for human-
operated tuning. One way of validating the clusters is to elicit
expert advice for designing process plans on several simple as-
semblies. These assemblies would have characteristics similar to
the features studied in the paper, including shape, material, and
required tolerances. It remains unknown, however, if it would
be possible to map these expert decisions to the clusters of pro-
cesses in order to decide on a particular set of weights for the
aggregate metric. Considering various efforts in storing such
decisions within knowledge bases, there are some research op-
portunities for developing a more semi-automated technique for
assessing similarity.

Finally, a data-driven metric to holistically evaluate the sim-
ilarity of two manufacturing processes must be generalizable
enough to work across different databases including differences
in the granularity of information. Here, we explore the idea us-
ing very general tabular data from an on-line resource. However,
if the manufacturing information was classified within different
features or seeded with significantly more information, our simi-
larity evaluation, in its current form, would not function properly.
It is critical to develop a similarity measurement technique that
is agnostic of a particular database and promotes flexibility in its
tuning and eventual use.

DISCLAIMER
No approval or endorsement of any commercial product by

NIST is intended or implied. Certain commercial equipment, in-
struments or materials are identified in this report to facilitate
better understanding. Such identification does not imply recom-
mendations or endorsement by NIST nor does it imply the ma-
terials or equipment identified are necessarily the best available
for the purpose.

ACKNOWLEDGMENT
This work was partly funded by the Summer Undergraduate

Research Fellowship (SURF) Program at NIST.

REFERENCES
[1] Manyika, Chui, B. B. D. R. B., 2011. Big data: The next frontier

for innovation, competition, and productivity. Tech. rep., McKin-
sey Global Institute.

[2] Lee, J., Lapira, E., Bagheri, B., and Kao, H.-a., 2013. “Recent
advances and trends in predictive manufacturing systems in big
data environment”. Manufacturing Letters, 1(1), pp. 38–41.

[3] Keim, D., Andrienko, G., Fekete, J.-D., Görg, C., Kohlhammer, J.,
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