
15th Annual Conference on Systems Engineering Research
Disciplinary Convergence: Implications for

 Systems Engineering Research

1

Eds.: Azad M. Madni, Barry Boehm

Daniel A. Erwin, Roger Ghanem; University of Southern California

Marilee J. Wheaton, The Aerospace Corporation

Redondo Beach, CA, March 23-25, 2017

Patterns for modeling operational control

of discrete event logistics systems (DELS)

Timothy Sprocka
a National Institute of Standards and Technology, timothy.sprock@nist.gov

Abstract

Designing smart operational control systems for Discrete Event Logistics Systems (DELS) requires a

standard description of control behaviors executed at the operational management level of DELS control.

In this paper, we propose a set of patterns for modeling the operational control mechanisms, organized by

classes of control questions that all DELS must be able to answer. The pattern for each control question

includes an analysis-agnostic functional definition of the control problem for that question, as well as a

mapping of the decision variable in that problem to a particular function and execution mechanism in the

base system.

Keywords: System Design Methods; Smart Manufacturing; Discrete Event Logistics Systems;

1. Introduction

Discrete Event Logistics Systems (DELS) are a class of dynamic systems that transform discrete flows

through a network of interconnected subsystems [1]. These include systems such as supply chains,

manufacturing systems, transportation networks, warehouses, and health care delivery systems.

Traditionally, each specialized kind of DELS has been regarded as a distinct class of systems requiring its

own dedicated research and development. However, these systems share a common abstraction, i.e.

products flowing through processes being executed by resources configured in a facility (PPRF), and they

appear together in integrated models of the enterprise. For example, production systems might integrate

storage and fulfillment capabilities as well as material handling and transportation systems, and supply

chains might integrate flows between warehouses, transportation systems, and manufacturing or health

care facilities.

The increasing size, integration, and complexity of next-generation smart DELS requires more robust

engineering design methods. Fundamental to more robust design methodologies are explicit system

specifications and more powerful search and decision-support algorithms; see [2] for an example in the

warehousing context. Next-generation smart control systems must integrate more information feedback

from sensors in the plant and from global information systems, as well as accommodate greater automation.

These systems are more software intensive than traditional plant designs, which have focused primarily on

hardware selection and configuration. A standard description of operational control would enable

2

development of a uniform interface to decision tools, supported by interoperable, or plug-and-play, analysis

tools. However, despite progress on modeling the structure and behavior of DELS, a standard

representation of operational control problems for DELS remains a challenge.

This paper presents a set of patterns for modeling the operational control mechanisms for DELS. These

patterns include an analysis-agnostic description of each control problem that is used to connect the

controller's decision problem to the corresponding actuator function and execution mechanism in the base

system. The rest of the paper is organized as follows: Section 2 provides context for modeling operational

control in DELS, Section 2.1 provides an informal introduction to the control problems, and Section 2.2

describes a simple form for defining control patterns. Then Section 2.3 uses the pattern form to capture

each of the functional control mechanisms and provides a reference architecture for assembling control

components. Then Section 2.4 describes a concrete application of the patterns to specifying a smart

manufacturing system. Finally, Section 3 discusses future directions.

2. Modeling Operational Control in DELS

Operational control is the manipulation of flows of tasks and resources through a system in real-time,

or near real-time. Each task requires or authorizes a DELS to use its resources to complete a portion of the

process plan contained in that task. Operational control consists of multiple mechanisms, each including a

function in the controller that prescribes actions to be taken and an actuator in the base system (or plant)

that executes the prescribed action. A model of operational control is part of a broader approach to modeling

DELS that includes a domain specific language, a reusable component library, and a reference architecture

[3,4]. This broader model is organized into three layers: the structure layer that captures flow networks,

process networks, and relationship networks; the behavior layer that describes each DELS using product,

process, resource, and facility (PPRF) concepts; and finally, the control layer, which is the focus of this

paper.

A standard analysis-agnostic representation of each control problem is necessary to bridge the gap

between the system model and analysis models that support design methods and operational decision-

making for the system, including statistical (description), discrete event simulation (prediction), and

mathematical programming (optimization) models. This standard representation of operational control is a

set of patterns in the DELS reference architecture [5]. These patterns for operational control can describe

the control of existing systems, as well as guide design of control for new or modified systems.

2.1. The Operational Control Questions

The operational control layer of the DELS reference architecture is based on a set of control problems

organized by questions posed by the base system to the controller and corresponding answers that

prescribe control actions for the actuators in the base system to execute [4]. Each control question

encapsulates a single function of a controller to manipulate the flows of tasks and resources (note that

controllers may leverage several functions jointly, i.e. answer several questions together as is the case for

scheduling). These control questions are:

1) “Should a task be served?” (admission);

2) If so, then “When should the task be serviced?” (sequencing); and,

3) “By which resource?” (assignment);

4) “Where (to which DELS for what process) should the task be sent after it completes the required

processing at the current DELS?” (routing);

5) “When, and to which state, does the state of a resource need to be changed?” (change in resource

capacity or capability).

3

Figure 1 illustrates the interaction between the base system and controller (control questions and

answers), as well as the control execution mechanisms (actuator components in the base system). For

more discussion on the functional requirements of the controller itself (how it answers the control questions),

see [4,6].

For example, production systems use manufacturing resources to service orders or jobs (a kind of

task), leading to the following control problems:

1) Admission decides whether or not to accept an order from a customer. The decision may evaluate

available production capacity, including raw material inventory on-hand, operator availability, and

the current state of resources.

2) Sequencing orders includes decisions such as prioritization (of some customers’ orders over

others), coordination (of orders outbound to the same customer), batching (similar orders together

for efficient processing or transport), delaying (service of an order until a future period or

backordering), and splitting (an order into smaller lots to be processed over time).

3) Resource assignment refers to many interrelated problems including assigning scare resources to

orders. Manufacturing resources may include labor, critical processing equipment, or material

handling equipment. Orders may also require assignment of auxiliary resources such as tools,

fixtures, and storage locations to enable process execution.

4) Routing physically or virtually directs orders to resource locations in a facility as required by

product’s process plan. The routing decision also accommodates unplanned auxiliary processing

steps such as exception handling, quality inspection, or unexpected buffer storage, as well as

routing optimization for automated guided vehicles (AGVs).

5) Changing the capability or capacity of resources includes replenishment of input material stocks,

maintenance on automated systems, changing set-ups or tooling for machines, or anticipatory

movement and pre-positioning of inventory or vehicles.

Figure 1. This illustrates the control execution mechanisms (the actuators in the base system), the functional architecture of the

controller, and the interaction between the base system and controller (control questions and answers).

4

2.2. A form for defining operational control patterns

Operational control patterns bring together several representations of each control problem to describe

the problem in a standard way. A simple form is used in this paper to define the patterns, derived from a

function-behavior-structure representation [7,8]. The components of the form are:

 Name: Colloquial identifier of the control problem being addressed (the literature uses various

names for the control problems).

 Question: Domain-independent, informal “what should I do?” kind of question that the base system

poses to the controller (the answer to which is an appropriate control action).

 Control Function: Transformation, or mapping, of system objects and their state data to actionable

control decisions. This transformation formalizes the control question and answer, where the

question identifies an applicable control function, and the answers are the control decisions to be

executed by the base system. The transformation specifies the functional interface, or signature,

of conforming analysis models that answer this particular control question.

 Decision Expression: A formulation of the control function in terms of one or more binary decision

variables (0/1) representing the decision, for use in an optimization analysis model. This part of the

pattern describes the control action to be taken when the decision variable has 1 as a value.

 Actuator Function: Expected effect of the actuator in the base system, for use in simulation

models. This is how the control function is carried out by the actuator.

 Actuator: Abstract actuator that is capable of carrying out the actuator function. The actuators in

this paper are selected from common discrete event simulation modeling components.

The actuator function and actuator itself are used to specify the base system model and corresponding

simulation models. The decision variable defines the intent of the optimization model (what question can it

answer) that is used to provide decision support. Typically, the actuator and decision variable are developed

independently without a shared representation of the control mechanism they are both expressing. The

control function provides a common abstraction for these elements to follow, improving interoperability

between simulation and optimization analysis models and between the decision support system and the

base system it is guiding.

2.3. Patterns for modeling operational control of DELS

In Figure 2, the form described in section 2.2 is used to specify how to answer each operational control

question from section 2.1:

1) Admission determines which tasks the controller should admit into the base system. The

corresponding decision variable is a yes/no admission choice for each task. This decision is

implemented by a function that adds an accepted task to the system’s queue. This function is

executed by a gate actuator, which is opened, or closed, according to the variable value.

2) Sequencing determines the order, or partial order, that admitted tasks will be serviced by the

system. The corresponding decision variables determine the index (position) of each task in the

queue. The ordering is implemented by a function that sorts the tasks by an index determined by

the decision problem and is executed by the queue where tasks are waiting for service. The task

at the head of queue is serviced next.

3) Assignment matches tasks to resources, or partitions the tasks into resource-specific subsets,

based on resource capabilities. The decision variable matches tasks to resources, which is

implemented by a function that places the task, either virtually or physically, into the assigned

resource’s queue. Depending on the modeling paradigm, the assignment can be executed by a

switch that directs the flow of the task to the resource, which is common in resource-oriented

5

modeling, or it can be executed by seizing the resource from a pool.

4) To route a task for completion of its process plan, the current DELS (or the task itself) must

determine where to send the task after the current DELS has completed the requested processes.

Specifically, the routing decision identifies the next process required by the task’s process plan

(nextProcess) and selects a suitable DELS to perform that process (targetDELS). The actuator

function is the composition of two functions: f is responsible for evaluating the task’s process plan

to determine the next required process (nextProcess), while g is responsible for finding a DELS

(targetDELS) that is capable of executing the next required process for the task, via, e.g., by

directory lookup or call for proposal. These two functions are not necessarily executed in any

particular order; i.e. DELS can be solicited to perform each potential process before resolving

alternative paths in the process plan or resolve the alternatives then find suitable DELS. This

 Admission Sequencing

Question “Should the task be served?” “When (in what order) should the tasks be
served?”

Control
Function

𝐴𝑑𝑚𝑖𝑡:Task → 𝔹 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒:Task → ℕ

Decision
Expression

𝑥𝑖 = 1,
 if task 𝑖 is admitted to the system

𝑥𝑖𝑘 = 1,
if task 𝑖 is serviced 𝑘𝑡ℎ

Actuator
Function

Admit(Task) ∶=
{System. TaskSet} ∪ Task

Sequence(TaskSet) ∶=
 sort(TaskSet, Index) = TaskSet′

Actuator Abstract Gate Abstract Queue

 Assignment Routing

Question “Which resource should serve the task?” “Where (to which DELS for what process)
should the task be sent after this DELS?”

Control
Function

𝐴𝑠𝑠𝑖𝑔𝑛: TaskSet × ResourceSet → 𝔹|𝑇|×|𝑅| 𝑅𝑜𝑢𝑡𝑒: Task.ProcessPlan →
Process × DELS

Decision
Expression

𝑥𝑖𝑚 = 1, if task 𝑖 is assigned to resource 𝑚 𝑥𝑂𝐷 = 1,
if the task is output to DELS 𝐷 for process 𝑂

Actuator
Function

Assign(Task, Resource) ∶=
 {Resource. TaskSet} ∪ Task

nextProcess = 𝑓(Task.processPlan)

targetDELS = 𝑔(nextProcess)
𝑅𝑜𝑢𝑡𝑒(Task) = 𝑔 ∘ 𝑓 ∨ 𝑓 ∘ 𝑔

Actuator Abstract Switch or Resource Seize Abstract Switch

 Change Capability State Change Capacity State

Question “Should the capability state of a resource
be changed?”

“Should the capacity state of a
resource be changed?”

Control
Function

𝐶ℎ𝑎𝑛𝑔𝑒𝑆𝑡𝑎𝑡𝑒: Resource.State → newState 𝐶ℎ𝑎𝑛𝑔𝑒𝑆𝑡𝑎𝑡𝑒: Resource.State → newState

Decision
Expression

Xij
m = 1, if resource 𝑚 is changed from

 state 𝑖 to state j

Xij
m = 1, if resource 𝑚 is changed from

 state 𝑖 to state j
Actuator
Function

𝑐ℎ𝑎𝑛𝑔𝑒𝑆𝑒𝑟𝑣𝑖𝑐𝑒(Process) ∶=

Resource.CurrentService → Process
𝑐ℎ𝑎𝑛𝑔𝑒𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛(Location) ∶=

Resource.CurrentLocation → Location

𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦(Quantity) ∶=
Resource.CapacityMeasure + Quantity

𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦(Quantity) ∶=
Resource.CapacityMeasure − Quantity

Actuator Abstract `Non-Preemptive Resource Setup’
Task

Abstract `Change Resource Pool Size’ Task

Figure 2. The patterns for operational control specification in DELS

6

function is executed by an abstract switch that outputs the task to a particular flow interface, which

is connected to the selected target DELS.

5) Deciding to change the capability or capacity of a particular resource uses an abstraction of state

to unify the models for answering this control question. The decision variable determines whether

to transition resource m from state i to state j, where state is an abstraction for capability or capacity.

The pattern for capability states describes the function, process, or service that a discrete state

resource can execute at a particular time or a geographic location, i.e. serving tasks at a particular

location. The pattern of capacity states describes the amount of work that can be assigned to a

particular resource. The functions that change capability and capacity are abstractly modeled as

set-up (changeService) and replenishment behaviors (increaseCapacity), respectively. Both

behaviors are executed by generating an overhead task, which is accepted, scheduled, and

executed by some other resource, such as an operator, maintenance resource, or procurement

system.

The abstract actuators corresponding to control questions in Figure 2 are model library components for

constructing system models. Figure 3 uses these components to formalize the process illustrated in Figure

1. Each component enables the DELS to control the flow of tasks and resources through the system. In

Figure 3, a new task enters through the inTask port of the DELS and is handled by the admissionGateway,

a gate type resource that decides whether to admit the task or not. The admitTask port (small rectangle on

the border of the admissionGateway) interfaces with the controller, which provides the gate with a yes or

no (Boolean) decision for each task. The admitted task then flows (filled triangle) into the queue containing

the system’s taskSet. The sequenceIndex port interfaces with the controller, which provides the queue with

a sequence for the tasks stored in the queue. In this model, resources may be seized from a local

resourceSet that is owned by the DELS, or may be requested and seized from outside the system through

the ioDELSResource interface. The resourceAssignment port interfaces with the controller, which provides

the set of resources that are assigned to serve the task. Once necessary resources have been acquired,

the task and resource flow through the remaining internal control processes and actuators as follows:

 The task and resources flow to the Process node.

 After processing is complete, the reusable resources are released (releaseResources) back to the

system’s central resourceSet or out of the system through the ioResource port (flow not depicted).

 The task then enters an outbound queue (completedTaskSet) that stores completed tasks waiting

to form move batches or the next DELS to be available.

 Finally, the task departs the completed task queue, is routed by the switch (routing) to its next

DELS, and departs through the appropriate outTask port. The nextNode port interfaces with

controller, which provides the target DELS (which output port) for the task to be routed.

7

2.4. Applying the Patterns – Towards a Smart Manufacturing System Use Case

Designing operational control for DELS includes configuring operational control logic and selecting

concrete actuators in the base system that execute the prescribed control actions. The patterns in section

2.3 describe operational control problems independently of DELS domains, enabling them to apply to all

domains and improve interoperability of base system models with analysis models supporting control

decisions, such as optimization. Analysis models are often constructed at a high-level of abstraction, but

designing a system to execute control decisions requires selecting specific equipment to carry out the

function of the abstract actuator (embodiment design). Some examples of concrete actuators for a smart

manufacturing system are:

1) The admission gate might be a robotic arm that retrieves the physical workpiece, work in process,

and other input resources associated with a task, from an AGV or pneumatic pusher that moves

tasks from a centralized conveyor onto the system’s local conveyor.

2) Sequencing, and its associated abstract queue for storing tasks waiting for service, might be done

by a range of technologies with varying capabilities for executing complex control behaviors. For

example, some non-automated storage solutions might only be capable of simple control

behaviors; for example, a gravity-fed conveyor might only be capable of enforcing a First In First

Out (FIFO) discipline. Some technologies may not be capable of enforcing any sequencing

discipline at all; for example, a simple storage rack requires the operator, possibly with the aid of

pick lights, to execute the desired sequencing discipline. Simple storage technologies might be

augmented with an automated technology, such as a robotic arm capable of picking items from

slots, to create a combined system that operates like an automated storage and retrieval systems

(ASRS).

3) Assignment of concrete resources to each task depends on whether the task is being brought to

the resource or if the resource is being seized and brought to the task. Many systems use both

mechanisms. In the case of stationary equipment, such as in a work cell, the assignment

mechanism might direct a task into the equipment’s queue via pneumatic switch on a conveyor.

For resources in a central pool of available discrete units, e.g., input materials, fixtures, or tools,

the assignment actuator might be implemented as a robotic arm or AGV that removes the resource

from a central buffer and transports it to the work station.

Figure 3. This shows how abstract actuators can be assembled to control the flow of a task through the system.

8

4) Routing tasks from the system often complements admission control and might rely on technologies

similar to those that bring tasks into the system. However, in material handling systems where an

AGV (or non-automated worker) deliver the task, the routing behavior must first summon an AGV

to the system. Then a robotic arm, or similar mechanism to the admission actuator, can place the

task onto the AGV.

5) Change state decisions generate an overhead task for the system, to perform set-up or

maintenance, reposition a tool or vehicle, order additional inventory, etc. These overhead tasks are

assigned, scheduled, and executed by their respective systems, e.g. maintenance, material

handling, or procurement, which follow the same control pattern described in section 2.3.

3. Conclusions and Future Work

To facilitate design and analysis of dynamic, intelligent operational control methods for next-generation

DELS, this research identifies a set of control problems, posed as questions to a controller, and patterns

for defining the functional, behavioral, and structural aspects of these problems. The patterns use functional

descriptions of operational control to connect the base system (plant) model with decision support models,

such as optimization and simulation.

The standard description of operational control that is captured by the patterns in this paper supports

the development of interoperable, or plug-and-play, analysis tools to answer the control questions. This

unifying abstraction of operational control also enables a uniform architecture for each kind of controller,

which is especially important for a flexible control architecture and transitioning from traditional centralized,

hierarchical control to adaptive, decentralized or holonic architectures [9]. This vision contrasts with each

DELS having a different controller architecture depending on its responsibilities, requirements, and the

broader control hierarchy selected.

A future goal is formalizing the definitions of operational control for DELS that are documented here

informally using patterns. The objective is to formalize the control questions into a canonical set that

rigorously partitions the set of all DELS control problems into equivalence classes with a formal equivalence

relation (~) based on the functional mapping and associated interface definition. Additional formalization is

also required for the mapping between the functional definition and the analysis components.

Future extensions to the control patterns are expected to include concrete system modeling objects as

a model library of components, an interface definition for optimization methods, and representative

simulation modeling components. Additional reference implementation patterns will be developed that

describe integration of simulation components with operational control methods (optimization). The goal is

to verify and validate control in simulation and port the logic to a real system, as is common in other

engineered systems.

Acknowledgements

The author thanks Conrad Bock for his helpful conversations and comments.

Commercial equipment and materials might be identified to adequately specify certain procedures. In

no case does such identification imply recommendation or endorsement by the U.S. National Institute of

Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the

best available for the purpose.

References

1. Mönch, L., Lendermann, P., McGinnis, L.F. and Schirrmann, A., 2011. A survey of challenges in modelling and decision-making

for discrete event logistics systems. Computers in Industry, 62(6), pp.557-567.

9

2. McGinnis, L. and Sprock, T., 2016. Toward an engineering discipline of warehouse design. 14th International Material Handling

Research Colloquium.

3. Thiers, G., 2014. A model-based systems engineering methodology to make engineering analysis of discrete-event logistics

systems more cost-accessible. Ph.D thesis, Georgia Institute of Technology, Atlanta, GA.

https://smartech.gatech.edu/handle/1853/52259

4. Sprock, T., 2016. A metamodel of operational control for discrete event logistics systems. Georgia Institute of Technology. Ph.D

thesis, Georgia Institute of Technology, Atlanta, GA. https://smartech.gatech.edu/handle/1853/54946

5. Cloutier, R.J. and Verma, D., 2007. Applying the concept of patterns to systems architecture. Systems engineering, 10(2),

pp.138-154.

6. Sprock, T. and McGinnis, L.F., 2015. A Conceptual Model for Operational Control in Smart Manufacturing Systems. IFAC-

PapersOnLine, 48(3), pp.1865-1869.

7. Gero, J.S., 1990. Design prototypes: a knowledge representation schema for design. AI magazine, 11(4), p.26.

8. Umeda, Y., Takeda, H., Tomiyama, T. and Yoshikawa, H., 1990. Function, behaviour, and structure. Applications of artificial

intelligence in engineering V,1, pp.177-194.

9. Dilts, D.M., Boyd, N.P. and Whorms, H.H., 1991. The evolution of control architectures for automated manufacturing systems.

Journal of manufacturing systems, 10(1), pp.79-93.

https://smartech.gatech.edu/handle/1853/54946

