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Abstract: Cloud computing provides several benefits to organizations such as increased 

flexibility, scalability and reduced cost. However, it provides several challenges for digital 

forensics and criminal investigation. Some of these challenges are the dependence of 

forensically valuable data on the deployment model, multiple virtual machines running on 

a single physical machine and multiple tenancies of clients. In this paper, we show what 

evidence from the cloud would be useful to construct the attack scenario by using a Prolog 

logic based forensic analysis tool. We propose to implement and design a forensic enabled 

cloud, which includes installing forensic tools in the cloud environment and logging all the 

activities from both the application layer and lower layers. Such an implementation can 

provide evidence for a Prolog based forensic tool, which can automate correlating the 

evidence from both the clients and the cloud service provider to construct attack steps and 

therefore re-create the attack scenarios on the cloud. 
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1. Introduction 

Digital forensics is the application of science to identify, collect, examine, and 

analyze data while preserving information integrity and maintaining a strict chain of 

custody for the data during post incident examinations [1]. Being a component of digital 

forensics, network forensics analyzes network traffic in order to gather information from 

intrusion detection systems or logs to constitute legal evidence [2]. Considered as an 

emerging branch of network forensics, cloud forensics involves post-incident analysis of 

systems with distributed processing, multi-tenancy, virtualization and mobility of 

computations, which poses more challenges in identifying and preserving digital evidence, 

including [3]: 

1. Dependence of forensically valuable data on the deployment model and methods. For 

example, customers of software as a service (SaaS) may have little or no control of the 

physical locations of their data. 

2. Large volume in content and proprietary formats of data logs. 

3. The diversity and the number of simultaneously operating virtual machines instances of 

a single physical machine isolated using virtualization. This takes extra efforts in 

segregating resources without breaching user confidentiality. In addition, weak 

registries in clouds make it easy for attackers to hide their traces. 

4. Instances of servers running on virtual machines in the cloud monitored by hypervisors 

lack of warnings, procedures and tools for forensic investigation. 

Although much research has progressed in digital forensics, the methods used in 

traditional digital forensics are inadequate for forensic investigation in clouds that have 
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been designed without much efforts dedicated for evidence retention and integrity. 

Recently, National Institute of Standards and Technology (NIST) and other researchers 

have published papers in cloud governance, security and risk assessment [4], and proposed 

implementing forensic-enabled clouds. For example, Dykstra et al. proposed implementing 

cloud to collect forensic data from operating system level underneath the virtual machines 

[2]. Zawod et al. provided complete, trustworthy, and forensic-enabled cloud architecture 

to collect logs for forensic analysis [3]. However, these implementations only focus on 

evidence acquaintance on Infrastructure-as-a-Service (IaaS) cloud deployment model. 

None of the work has discussed implementing forensic-enabled clouds that cover all 

deployment models. In this paper, we show what evidence can be used to construct 

corresponding attack scenarios in the cloud, and discuss how we may implement and 

automate the forensic analysis in the cloud using some example attacks with the objective 

of creating a deployment model. 

The rest of the paper is organized as follows. Section 2 describes related work. 

Section 3 shows our experimental attacks in the cloud, and how we identify the evidence 

from the cloud to construct attack scenario by using a Prolog based tool. Section 4 shows 

how to use system call sequence to construct attack steps when other evidence is 

unavailable. We conclude the paper by discussing how we may implement and automate 

the forensic analysis in the cloud as our future work in Section 5. 

2. Background and Related Work 

We present the background and research related to digital and cloud forensics in 

this section. 

2.1 Digital Forensics 
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Digital forensics uses scientifically accepted methods to collect, validate and 

preserve digital evidence derived from digital sources for the purpose of reconstruction of 

events found to be criminal or helping to anticipate unauthorized actions shown to be 

disruptive to planned operations [5]. Digital forensic investigators seek attack evidence 

from computers and networks. Typically, imaging tools are used to extract a computer’s 

physical memory or disk sectors to a file, and then the investigators feed the file into data 

analysis tools to perform live or dead analysis. For network evidence, forensic 

investigators analyze network traffic and gather information from intrusion detection 

systems or logs to constitute legal evidence. 

2.2 Cloud Forensics 

NIST defined cloud model [6] uses three service deployment models: Software as a 

Service (SaaS), Platform as a Service (PaaS) and Infrastructure as a Service (IaaS). SaaS 

allows consumers to use the provider’s applications running on a cloud infrastructure. PaaS 

allows consumers to deploy on the cloud consumer-created or acquired applications using 

programming languages, libraries, services and tools supported by the provider. IaaS 

provides consumers with the capability of provisioning processing, storage, networks, and 

other fundamental computing resources where the consumer is able to deploy and run 

arbitrary software including operating systems and applications. 

According to Ruan et al., cloud forensics is a subset of network forensics [3] that 

follows the main phases of network forensics with techniques tailored to cloud computing 

environments. For example, data acquisition is different in SaaS and IaaS, because the 

investigator will have to solely depend on cloud service provider in SaaS. With IaaS, the 

investigator can acquire the virtual machine image from customers. 
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2.3 Related Work 

According to many researchers, data acquisition is a main issue in cloud forensics. 

Many methods have been proposed to collect evidence from clouds, which include remote 

data acquisition, management plane, live forensics and snapshot analysis [7]. Dykstra et al. 

successfully retrieved volatile and nonvolatile data from Amazon EC2 cloud's active user 

instance platform using forensic tools such as Guidance EnCase and Access Data FTK [8]. 

However, those tools do not validate data integrity. Researchers recommended and 

developed some toolkits to collect related logs from cloud infrastructure while assuring 

their integrity. Assuming the cloud provider is trustworthy, Dykstra et al. developed the 

FROST toolkit that can be integrated to OpenStack [9] to collect logs from the operating 

system level supporting the virtual machines [10]. Zawod et al. designed complete, 

trustworthy, and forensic-enabled cloud architecture for log collection to address this trust 

issue [11]. Hay et al. proposed live digital forensics analysis on clouds using virtual 

introspection, a process by which the state of a virtual machine (VM) is observed from 

either the hypervisor (VMM) or from some other virtual machine and presented a suite of 

virtual introspection tools developed for Xen (VIX tools) [12]. However, live forensic 

tools have not been incorporated and provided as a commercial service by the cloud 

service providers. Snapshot technologies enable customers to freeze a specific state of VM 

[13]. The snapshot images can be restored by loading them to a target VM for analysis, 

gaining information on the running state of a virtual machine that is supported by 

hypervisor vendors, including Xen, VMWare, ESX, Hyper-V, and cloud providers that 

support snapshot features. 

In addition, many tools like Encase, the Sleuth Kit, SNORT, WireShark can collect 
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digital evidence from computers and networks. In order to reduce the investigators’ time 

and effort in constructing attack steps, researchers proposed using rules to automate 

correlating evidence by finding the causality between items of evidence [14, 15]. Liu et al. 

integrated the tool with two databases, including a vulnerability database and an anti-

forensic database, to ascertain the admissibility of evidence and explain missing evidence 

due to attackers’ using anti-forensics [15]. These rule based forensic analysis frameworks 

have been proposed for network forensics, but have not been tested in a cloud environment. 

3. Using Alerts and Logs to Construct Attack Scenario 

In this section, we describe experimental attacks we launched on OpenStack [9] to 

identity evidence that can be used for cloud forensic analysis. 

3.1 Experimental Environment Setup 

OpenStack is a collection of python-based software projects that manage access to 

pooled storage, computing and network resources that reside in one or multiple machines 

of a cloud. This collection has six core projects: Neutron (Networking), Nova (Compute), 

Glance (Image Management), Swift (Object Storage), Cinder (Block Storage) and 

Keystone (Authorization and Authentication) [9]. OpenStack can be used to deploy three 

service models--SaaS, PaaS and IaaS, but is mostly deployed as IaaS. 

“DevStack” is a series of extensible scripts that can invoke an OpenStack 

environment using the latest versions of the software. We deployed OpenStack “Juno” 

version as IaaS cloud on a single computer (with IP address 172.16.168.100) by running 

“Devstack” on an Ubuntu 14.04 Desktop. Authenticated users can access OpenStack 

services using the IP address 172.16.168.100 on their browser to access the control 

dashboard Horizon as shown in Figure 1. 
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Figure 1. OpenStack web user interface--Horizon 

We deployed two virtual machines (also called running instances), a webserver 

(named “WebServer” associated with IP address 172.16.168.226) and a fileserver (named 

“FileServer” associated with IP address 172.16.168.229) under the authenticated user 

“Admin” in our OpenStack cloud. In the “WebServer”, we deployed an Apache webserver 

and a MySQL database, allowing users to query their data using the webserver. 

Authenticated users can access the “FileServer” by remotely using “ssh”. In order to 

launch an attack, we also installed Kali (the penetration testing and ethical hacking Linux 

distribution tool [16]) in the same network (with IP address 172.16.168.173). 

3.2 Example Attacks 

We launched three attacks, a SQL injection attack, a DDoS attack, and a DoS 

attack towards the two VMs in our IaaS cloud. 
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Figure 2. Resizing “FileServer” 

Our SQL injection attack exploits un-sanitized user inputs (CWE89) in the 

“WebServer”. Our DDoS attack known as "TCP connection flood" used “nping” in Kali to 

flood the “FileServer” in order to prevent legitimate requests. While SQL injection and 

DDoS attacks can happen to any network including a cloud that has corresponding 

vulnerability, only IaaS privileged users can resize and delete a VM by launching DoS 

attacks that exploit the vulnerability “CVE-2015-3241”. According to NIST’s NVD, the 

vulnerability “CVE-2015-3241” that is in OpenStack Compute (Nova) versions 2015.1 

through 2015.1.1, 2014.2.3 allows authenticated users to cause denial of services by 

resizing and then deleting an instance (VM). The process of resizing and deleting an 

instance in this way is also called instance migration. With “CVE-2015-3241”, the 

migration process does not terminate when an instance is deleted, so an authenticated user 

could bypass user quota enforcement to deplete all available disk space by repeatedly 

performing instance migration. Figure 2 shows the process of our resizing the file server 

from “ds512M” to “ds1G”, where we can see the instances’ availability zone is “nova”.   

We continued to resize and delete instances until Nova was so depleted that it could not 

accept any new instance. 

3.3 Identifying Evidence to Reconstruct Attack Scenarios 
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In order to obtain evidence for forensic analysis, we configured the webserver and 

the SQL database in “WebServer” to log access and query history. We also installed Snort 

in “WebServer” and “FileServer” VMs and deployed WireShark in the host Ubuntu OS to 

monitor the network traffic. Snort was able to capture the SQL injection attack and 

generated alerts with appropriate rules. Also, WireShark was able to capture packets that 

formed the DDoS attack. Figure 3 lists some SNORT alerts and MySQL query log of the 

SQL injection attack, which shows the attack was done by using “ or ‘1’=‘1’ ” to bypass 

the SQL query condition check. The snapshot of packets captured by WireShark is listed in 

Figure 4, where we can see Kali Linux at 172.16.168.173 sent out numerous SYN packets 

to “FileServer” at 172.16.168.229, and the “FileServer” sent numerous SYN-ACK packets 

back to Kali Linux. 

[**] SQL Injection Attempt --1=1 [**] 
08/16-14:37:27.818279 172.16.168.173:1715 -> 172.16.168.226:80 
TCP TTL:128 TOS:0x0 ID:380 IpLen:20 DgmLen:48 DF 
******S* Seq: 0xDEDBEABF Ack: 0x0 Win: 0xFFFF TcpLen: 28 
TCP Options (4) => MSS: 1460 NOP NOP SackOK 

160813 14:37:29 40 Connect 
... 
40 QuerySET GLOBAL general_log = 'ON' 40 Queryselect * from profiles where 
name='Alice' AND password='alice' or '1'='1' 
Gen_log 2: 130813 14:39:56 
… 

Figure 3. The SNORT alert and the MySQL database log 

Figure 4: A Snippet of packets caught by WireShark 
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/*The initial attack status and final attack status*/ 
attackerLocated(internet). 
attackGoal(serviceDown(fileServer,user)). 
attackGoal(execCode(database,user)). 

/* The network topology and computer configuration*/ 
/* “_” means any port */ 
hacl(internet, webServer, tcp, 80). 
hacl(internet, fileServer, tcp, _). 
directAccess(webServer,database,modify,user). 

/* The evidence found in webServer */ 
vulExists(webServer, 'SQLInjection', httpd). 
vulProperty('SQLInjection', remoteExploit, privEscalation). 
networkServiceInfo(webServer , httpd, tcp , 80 , user). 

/* The evidence captured by WireShark*/ 
vulExists(fileServer,'DDoS', httpd). 
vulProperty('DDoS', remoteExploit, privEscalation). 
networkServiceInfo(fileServer, httpd, tcp, _, user). 

Figure 5. Prolog predicates for SQL injection and DDoS attack evidence 

We used our Prolog based tool presented in [15] to automate the process of 

correlating items of evidence to generate attack scenarios. To do so, we converted the 

above evidence and the cloud configuration to corresponding Prolog predicates as the input 

file in Figure 5. Our Prolog based tool uses rules to correlate these items of evidence 

represented by Prolog predicates to construct attack paths. The constructed attack paths are 

shown in Figure 6, and the notation of all nodes is listed in Table 1. In this graph model, an 

attack status obtained from the attacked system is represented by a diamond. All computer 

configuration, network topology and software vulnerabilities used to launch an attack are 

represented by boxes and a rule used to correlate attack status before and after an attack 

step is represented by an ellipse [15]. The software vulnerability exploited to launch an 

attack is obtained by forensic investigators’ judgment on the evidence collected from the 

attacked system. Two attack paths are shown in Figure 6. The left path 
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(8→6→5→4→3→2→1) represents the SQL injection attack that used the web server 

vulnerability to maliciously obtain the information from the MySQL database. The right 

path (8→15→14→13→12) represents the DDoS attack to bring down the “FileServer”. 

Figure 6. The attack path constructed for SQL injection and DDoS attacks 

SNORT and WireShark failed in capturing our DoS attack on the “FileServer” that 

exploited the “CVE-2015-3241” vulnerability on OpenStack Nova service. Because 

OpenStack service application programming interface (API) logs provide information 

about users’ operations on the running instances, we used the OpenStack service API logs 

as evidence. Figure 7 lists a snippet of Nova API logs that are related to our instance 

migration of the DoS attack, where the commands in bold font show the instance 
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“bd1dac18-1ce2-44b5-93ee-967fec640ff3” representing the “FileServer” VM (as shown in 

Table 2, which is obtained by running “nova list” in the Ubuntu host system.) has been 

resized using commands “mv” (move) and “mkdir” (create new directory) operated by the 

user “admin”. We aggregated the related Nova API calls as evidence to form the input file 

with the corresponding attack status and the system configuration (Figure 8). By running 

our Prolog based tool [15] on the input file, we obtained the attack scenario as shown in 

Figure 9 with the notation of all nodes in Table 3. The figure shows the attack path that 

used the control dashboard “Horizon” exploiting the “CVE-2015-3241” vulnerability. 

Table 1. Notation of all nodes in Figure 6 

Node Number Notation of the Node 
1 execCode(database,user) 
2 THROUGH 7 (Attack by compromised computer) 
3 execCode(webServer,user) 
4 THROUGH 3 (remote exploit of a server program) 
5 netAccess(webServer,tcp,80) 
6 THROUGH 9 (direct network access) 
7 hacl(internet,webServer,tcp,80) 
8 attackerLocated(internet) 
9 networkServiceInfo(webServer,httpd,tcp,80,user) 

10 vulExists(webServer,'SQLInjection',httpd,remoteExploit,privEscalation) 
11 directAccess(webServer,database,modify,user) 
12 execCode(fileServer,user) 
13 THROUGH 3 (remote exploit of a server program) 
14 netAccess(fileServer,tcp,_) 
15 THROUGH 9 (direct network access) 
16 hacl(internet,fileServer,tcp,_) 
17 networkServiceInfo(fileServer,httpd,tcp,_,user) 
18 vulExists(fileServer,'DDoS',httpd,remoteExploit,privEscalation) 

2016-09-18 07:52:00.237 DEBUG oslo_concurrency.processutils [req-f79c7911-04ed-4a0c-adbe-
0ae0a487c0f7 admin admin] Running cmd (subprocess): mv 
/opt/stack/data/nova/instances/bd1dac18-1c 
e2-44b5-93ee-967fec640ff3 /opt/stack/data/nova/instances/bd1dac18-1ce2-44b5-93ee-
967fec640ff3_resize from (pid=41737) execute /usr/local/lib/python2.7/dist-
packages/oslo_concurrency/processutils.py:344 
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2016-09-18 07:52:00.253 DEBUG oslo_concurrency.processutils [req-f79c7911-04ed-4a0c-adbe-
0ae0a487c0f7 admin admin] CMD "mv /opt/stack/data/nova/instances/bd1dac18-1ce2-44b5-
93ee-967fec640ff3 /opt/stack/data/nova/instances/bd1dac18-1ce2-44b5-93ee-
967fec640ff3_resize" returned: 0 in 0.016s from (pid=41737) execute /usr/local/lib/python2.7/dist-
packages/oslo_concurrency/processutils.py:374 

2016-09-18 07:52:00.254 DEBUG oslo_concurrency.processutils [req-f79c7911-04ed-4a0c-adbe-
0ae0a487c0f7 admin admin] Running cmd (subprocess): mkdir –p 
/opt/stack/data/nova/instances/bd1dac18-1ce2-44b5-93ee-967fec640ff3 from (pid=41737) 
execute /usr/local/lib/python2.7/dist-packages/oslo_concurrency/processutils.py:344 

2016-09-18 07:52:00.271 DEBUG oslo_concurrency.processutils [req-f79c7911-04ed-4a0c-adbe-
0ae0a487c0f7 admin admin] CMD "mkdir –p /opt/stack/data/nova/instances/bd1dac18-1ce2-
44b5-93ee-967fec640ff3" returned: 0 in 0.017s from (pid=41737) execute 
/usr/local/lib/python2.7/dist-packages/oslo_concurrency/processutils.py:374 

Figure 7. Nova API Call Logs 

Table 2. The VM instance IDs, names and IPs 

ID Name … Networks 

bd1dac18-1ce2-44b5-93ee-967fec640ff3 FileServer private=10.0.0.13, 172.16.168.229 

c01d5e66-c20d-4544-867b-d3e2b70bfc60 WebServer private=10.0.0.5, 172.16.168.226 

/* the initial and final attack status*/ 
attackerLocated(controlDashboard). 
attackGoal(execCode(nova,admin)). 

/* the fileserver VM could be reached from control dashboard*/ 
hacl(controlDashboard, fileServer, http, _). 

/* the evidence of attack using ‘CVE-2015-3241’ that uses RESTful service*/ 
vulExists(nova,'CVE-2015-3241', 'REST'). 
vulProperty('CVE-2015-3241', remoteExploit, privEscalation). 
networkServiceInfo(nova, 'REST', http, _, admin). 

Figure 8. The input file for attack using “CVE-2015-3241” 

Figure 6 and Figure 9 cannot be grouped together, because attackers were in 

different locations. In addition, in Figure 9, the attack happened in the cloud compute 

service instead of a VM, although the attacker launched the attack from a VM. This is 

because all VMs share the same compute service in our cloud. 
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Figure 9. The attack path constructed for the DoS attack 

Table 3. The notation of all nodes in Figure 9 

Node Number Notation of the Node 
1 execCode(nova,admin) 
2 THROUGH 3 (remote exploit of a server program) 
3 netAccess(nova,http,_) 
4 THROUGH 9 (direct network access) 
5 hacl(controlDashboard,nova,http,_) 
6 attackerLocated(controlDashboard) 
7 networkServiceInfo(nova,'REST',http,_,admin) 
8 vulExists(nova,'CVE-2015-3241','REST',remoteExploit,privEscalation) 

4. Using System Call Invocations for Evidence Analysis 

Because system calls allow user level processes to request kernel level services 

including access to storage operations, memory or network access, and process 

management, system calls sequence is often used for intrusion detection and forensics [17]. 

When evidence or expert knowledge is unavailable to recognize the interaction between 

user level processes to kernel level services as a known attack, forensic investigators 

analyze the system calls to ascertain program behavior. According to [18], it is rare or 
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unlikely to have an attack path, in which every attack step is a zero-day attack. As such, 

we use system calls to construct the missing attack steps only when other evidence is not 

available. 

There are several popular mechanisms to trace the system calls in a cloud based 

VM: (1) use “ptrace” command to set up system call interception and modification by 

modifying a software application, (2) use “strace” command to log system calls and signals, 

(3) use auditing facilities within the kernel, (4) modify the system call table and write 

system call wrappers to log the corresponding system calls, (5) intercept the system call 

within the hypervisor [19]. Because OpenStack supports different hypervisors, including 

Xen, QEMU, KVM, LXC, Hyper-V and UML, there is no a generic solution to intercept 

the system call within the hypervisor. Thus, we use methods 2 and 4 to log relevant system 

calls.  

Sep 25 00:15:49 FileServer sshd[829]: Server listening on 0.0.0.0 port 22. 
Sep 25 00:15:49 FileServer sshd[829]: Server listening on :: port 22. 
Sep 25 00:28:15 FileServer sshd[1162]: Accepted password for coco from 172.16.168.173 port 
44842 ssh2 
Sep 25 00:28:16 FileServer sshd[1162]: pam_unix(sshd:session): session opened for user coco by 
(uid=0) 

Figure 10. The authentication log for sshd 

Now we show how to use system call sequences to construct an attack step by 

using an attack example. In this experimental attack launched from our Kali Linux, we, as 

the attacker, used ssh to log into “FileServer” by using stolen credentials from a legitimate 

user named “coco”. In order to simulate the stealthy attack without triggering IDS alerts, 

we assumed that the attacker could use social engineering attacks, such as shoulder surfing, 

to obtain the legitimate user’s (username, password) pair to log into the “FileServer” using 

ssh. The corresponding sshd log from “/var/log/auth.log” in “FileServer” is listed in Figure 
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10, where user “coco” was listed to log in “FileServer” from “172.16.168.173” that 

actually belonged to the attacker, which indicates that the attacker stole user coco’s 

credentials. 

A process typically comprises of many system calls, of which only some generally 

are important to ascertain a process’ behavior (we use the ones presented in [18]. These 

system calls are listed in the second column of Table 4). Figure 11 is a snippet of important 

system calls captured from the attack of using coco’s stolen credentials to modify a file in 

“FileServer” (due to space limitations, we list a part of captured system calls). By 

analyzing these system calls, we notice that the “write/read” system calls (in bold font) 

indicate that the attacker used “vi test.txt”(“vi” is a text editor) command to modify 

“test.txt” file. In the “write/read” system call, the first argument is the file descriptor where 

the process reads or writes, the second argument represents the content in the buffer, the 

third argument represents how many bytes the system call will write/read, and “=1/<any 

number greater than 1>” indicates that the system call executed successfully. 

Table 4: Important System Calls 

Tasks System Calls 
Process modifies file write, pwrite64,rename, mkdir, linkat, link, symlinkat, symlink, fchmodat, 

fchmod, chmod, fchownat, mount 
Process uses but does not 
modify file 

stat64,lstat6e,fsat64, open, read, pread64, execve, mmap2, mprotect, linkat, 
link, symlinkat, symlink 

Process uses and modifies 
file 

open, rename, mount, mmap2, mprotect 

Process creation or 
termination 

vfork, fork, kill 

Process creation Clone 

write(9, "v", 1) = 1 
read(11, "v", 16384) = 1 
write(3, "\0\0\0\20\331\255\275\264c\2173)z2j\32\255 
n\2007d\366m\21\316\2648\240\207\31\211"..., 36) = 36 
read(3, 
"\0\0\0\20\240\253\341\227\321xU\305\347\226\246\361\316\242S=\30\341QT\231\n\343\314\34 
3\307\f\361"..., 16384) = 36 
write(9, "i", 1) = 1 
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read(11, "i", 16384) = 1 
write(3, 
"\0\0\0\20\177\352\313\332\373yjM\3416l\230\215\10\220p\252g\375\365\1\f\335\361\r\273\374\ 
357"..., 36) = 36 
read(3, 
"\0\0\0\20\27\334?\201x\300\16\356\346,\0379\32\220{\372)\366\4\v\1=\347\263\311\250k\353"... 

write(3, 
"\0\0\0\20`i\321\344\220\313\322\254S\252o\201\225;6v\243\205\10gs^\253\237\325\375\332v"... 

read(3, "\0\0\0\20\5\27k;\254\301\24\n\\ZN\267\260\336\323`\323\32\345\2b\226-\271|[B\21"..., 

, 16384) = 36 
write(9, " ", 1) = 1 
read(11, " ", 16384) = 1 

, 36) = 36 

16384) = 36 
write(9, "t", 1) = 1 
read(11, "t", 16384) = 1 
read(3, 
"\0\0\0\20\325\261\7\254\211(\201\331\272\344[\355\200\\u4\357G\347\232\276:\201\376\342\20 
2\201."..., 16384) = 36 
write(3, 
"\0\0\0\20\320\254#\312\211_\3022\n\227u\16I\372\202\347\37\252T\257\220\210E\343\222\342\ 
24S"..., 36) = 36 
write(9, "e", 1) = 1 
read(11, "e", 16384) = 1 
write(3, "\0\0\0\20\334n}4\375Q\212o\353\375\262\342\316\334w-
F\213\303\277t\312\245\16\266\255B|"..., 36) = 36 
read(3, "\0\0\0\20\274\376\7J\214L\314OL\1c\22\364-gvJ%\21\344J<,h\363\261\36\10"..., 16384) 
= 36 
write(9, "\t", 1) = 1 
read(11, "st.txt ", 16384) = 7 
… 

Figure 11. Traces of “Read” and “Write” system calls 

//The initial attack status 
attackerLocated(internet). 
// the attacker was able to log into “FileServer” by using stolen credentials 
attackGoal(logInService(fileserver, tcp,22) 
attackGoal(princinpalCompromised(user)) 
//InCompetent user 
InCompetent(user). 

//The attack status obtained from analyzing system call sequence 
attackGoal(canAccessFile(fileServer,user,modify,_)). 
//The user could login fileserver by using ssh protocol 
networkServiceInfo(fileServer , sshd, tcp, 22, _). 
//the user who has the account on “FileServer” has the privilege to modify a file 
localFileProtection(fileServer,user,modify,_). 

Figure 12. Input file for the attack of modifying a file with stolen credentials 
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We converted the program behavior learned from the system call sequence in 

Figure 11, that is the attacker’s using a text editor to convert “test.txt” file, to Prolog 

Predicate “canAccessFile(fileServer,user,modify,_)” (This predicate means that the 

attacker as the user can modify the file located at “_“ representing the home directory of 

the user). With the evidence obtained from the log in Figure 10 that the attacker with stolen 

credentials (represented by predicates “attackGoal(princinpalCompromised(user))”, 

“InCompetent(user)” and “attackerLocated(internet)”) logged into the “FileServer” by 

using ssh ( represented by Predicate “attackGoal(logInService(fileserver, tcp,22)” ), and  

the fact user “coco”, who has an account on “FileServer”, has the privilege to modify a 

file (the corresponding predicate is “localFileProtection(fileServer,user,modify,_)”), we 

formed the input file as Figure 12 to use our Prolog based tool. The constructed attack 

path is shown in Figure 13, and the notation of all nodes is in Table 5. In Figure 13, the 

attack step (3, 4, 7) → 2→1 has two pre-conditions represented by Node 4 and Node 7.  

Node 4 is obtained from the fact that the “FileServer” can be accessed by using ssh with 

protocol tcp from port 22. Node 7 is obtained from ssh authentication log in Figure 10 that 

indicates the user’s credentials have been stolen by the attacker. Without the evidence 

obtained from the system call sequence (Node 1), the attack step (3, 4, 7) → 2→1 would 

not have been established. 

Notice the two rule nodes (Node 5 and Node 2) in Figure 13 do not have any rule 

description because of the obvious correlation between Node 6 and Node 4 (if the network 

provides the service of using ssh to log into a fileserver by using tcp at port 22, the user 

including the attacker could log into the fileserver with stolen credentials), nodes (3,4,7) 

and Node 1 (if a user is allowed to have the privilege of modifying a file in fileserver, the 
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attacker with the stolen credentials from the user could access the file and modify it). 

Figure 13. The attack step constructed by using evidence obtained from system calls 

Table 5. The notation of all nodes in Figure 13 

Node Number Notation of Node 
1 canAccessFile(fileserver,user, modify,_) 
2 THROUGH 23() 
3 localFileProtection(fileserver,user,modify,_) 
4 logInService(fileserver,tcp,22) 
5 THROUGH 18 () 
6 networkServiceInfo(fileserver,sshd,tcp,22,user) 
7 princinpalCompromised(user) 
8 THROUGH 16(password sniffing) 
9 inCompetent(user) 

10 attackerLocated(internet) 

5. Conclusion and Future work 

The use of cloud computing can increase the flexibility and efficiency of 

organizations or enterprises. However, clouds present significant challenges to forensics, 
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including customers’ lack of control of the physical locations of their data, the large 

volume of data logs and the prevalence of proprietary formats. To solve the above 

problems, we plan to implement a forensic-enabled cloud by exploring what evidence 

could be useful for cloud forensic analysis. 

Our example attacks show evidence from three resources could help investigators 

to construct attack scenarios, which include (1) evidence from IDS and application 

software logging, (2) cloud service API calls, and (3) system calls from VMs. To acquire 

the evidence from the three resources, the forensic-enabled cloud should have three 

extensions, which can (1) retrieve IDS and software service logging; (2) store and secure 

OpenStack service API call logs, firewall logs and snapshots for running instances; (3) 

obtain system calls when the evidence from (1) and (2) is missing. Our future plan 

addresses implementing forensic-enabled cloud with the above extensions and resolving 

the corresponding problems including assuring the data integrity, reducing the large 

volume and formalizing the proprietary of forensic data stored in the cloud. 

DISCLAIMER 

This paper is not subject to copyright in the United States. Commercial products are 

identified in order to adequately specify certain procedures. In no case does such 

identification imply recommendation or endorsement by the National Institute of Standards 

and Technology, nor does it imply that the identified products are necessarily the best 

available for the purpose. 

References 

[1] Kent K, Chevalier S, Grance T and Dang H. “Guide to integrating forensic techniques 
into incident response”. 2006. p. 800e86. NIST Special Publication. 
[2] Gary Palmer. “A Road Map for Digital Forensic Research”. Report from DFRWS 2001, 

19 



  

      
 

   
    
 

   
 
 

 
    

 
    

 
    

   
     

 
  

 
    

    
 

  
     

 
     

   

     
      

 

   
 

    
 

  
   

  
 

First Digital Forensic Research Workshop, Utica, New York, August 7 – 8, 2001, Page(s) 
27–30. 

[3] Ruan, Keyun, Joe Carthy, Tahar Kechadi, and Mark Crosbie. "Cloud forensics." In 
IFIP International Conference on Digital Forensics, pp. 35-46. Springer Berlin Heidelberg, 
201. 
[4] M. Hogan, F. Liu, A. Sokol,J. Tong. "NIST cloud computing standards roadmap." 
NIST Special Publication 35 (2011). 
[5] A. Jaquith, “Security Metrics: Replacing Fear, Uncertainty, and Doubt”, Addison 
Wesley, Mar 26, 2007. 
[6] P. Mell and T. Grance. “NIST definition of cloud computing”. National Institute of 
Standards and Technology. October 7, 2009. 
[7] Pichan, Ameer, Mihai Lazarescu, and Sie Teng Soh. "Cloud forensics: technical 
challenges, solutions and comparative analysis." Digital Investigation 13 (2015): 38-57. 
[8] J. Dykstra and A.T. Sherman, “Acquiring forensic evidence from infrastructure-as-a-
service cloud computing: Exploring and evaluating tools, trust, and techniques,” in Proc. of 
the 12th Annual Digital Forensics Research Conference (DFRWS’12), Washington, DC, 
USA, Digital Investigation, vol. 9, August 2012, pp. 90–98. 
[9] OpenStack Open Source Cloud Computing Software. Retrieved from 
https://www.openstack.org. 
[10] J. Dykstra and A. Sherman, "Design and implementation of FROST: Digital forensic 
tools for the OpenStack cloud computing platform," Digital Investigation, vol. 10, no. 
Supplement, p. S87–S95, 2013. 

[11] S. Zawoad and R. Hasan, “FECloud: A Trustworthy Forensics-Enabled Cloud 
Architecture,” Proc. 11th Ann. Int’l Fed. Info. Processing WG 11.9 Int’l Conf. Digital 
Forensics, 2015, pp. 271–285. 
[12] Hay, Brian, and Kara Nance. "Forensics examination of volatile system data using 
virtual introspection." ACM SIGOPS Operating Systems Review 42.3 (2008): 74-82. 

[13] D. Birk, C. Wegener. “Technical issues of forensic investigations in cloud computing 
environments”. In 6th International workshop on systematic approaches to digital forensic 
engineering–IEEE/SADFE 2011, Oakland, CA, USA; 2011, p. 1–10. 

[14] ] W. Wang, E.D. Thomas, “A graph based approach toward network forensics 
analysis”, ACM Transactions on Information and Systems Security 12 (1) 2008. 

[15] C. Liu, A. Singhal, D. Wijesekera. “A Logic Based Network Forensics Model for 
Evidence Analysis”. IFIP Int. Conf. Digital Forensics 2015. 

[16] Kali Linux--Penetration Testing and Ethical Hacking Linux Distribution. Retrieved 
from https://www.kali.org. 
[17] Hofmeyr, Steven A., Stephanie Forrest, and Anil Somayaji. "Intrusion detection using 
sequences of system calls." Journal of computer security 6, no. 3 (1998): 151-180. 

20 

http:https://www.kali.org
http:https://www.openstack.org


  

  
  

  
    

[18] X. Sun, J. Dai, A. Singhal, P. Liu and J. Yen, “Towards Probabilistic Identification of 
Zero-day Attack Paths”, Accepted for IEEE Conference on Communication and Network 
Security,   Philadelphia, October 17th – 19th, 2016. 
[19] F. Beck and O. Festor. "Syscall interception in xen hypervisor." (2009): 19. 

21 


	Structure Bookmarks
	Figure 13. The attack step constructed by using evidence obtained from system calls Table 5. The notation of all nodes in Figure 13 


