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Abstract 9 

A dimensional analysis was performed to correlate the fuel bed fire rate of 10 

spread data previously reported in the literature.  Under wind condition, six 11 

pertinent dimensionless groups were identified, namely dimensionless fire 12 

spread rate, dimensionless fuel particle size, fuel moisture content, 13 

dimensionless fuel bed depth or dimensionless fuel loading density, 14 

dimensionless wind speed, and angle of inclination of fuel bed.  Under no-15 

wind condition, five similar dimensionless groups resulted.  Given the 16 

uncertainties associated with some of the parameters used to estimate the 17 

dimensionless groups, the dimensionless correlations using the resulting 18 

dimensionless groups correlate the fire rates of spread reasonably well 19 

under wind and no-wind conditions. 20 

 21 
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Introduction 25 

Research interest in fire spread along fuel beds has its origin in the study of 26 

wildland fire behavior since the early 40s.  In his pioneering work at the 27 

U.S. Forest Service, Fons (1946) examined the effect of forest fuel size and 28 

type, fuel bed compactness, fuel moisture content, wind velocity, and slope 29 

on fire spread, provided a detailed analytical framework to understand the 30 

mechanism of fire spread, and lay down a sound foundation for subsequent 31 

studies on fire spread along a forest fuel bed.  Many studies from around 32 

the world has since been conducted and appeared in the literature (Beaufait 33 

1965; Rothermel and Anderson 1966; Anderson and Rothermel 1966; 34 

Anderson 1969; Fang and Steward 1969; Pagni and Peterson 1973; Nelson 35 

and Adkins 1986, 1988; Weise and Biging 1994; Dupuy 1995; Simeoni et 36 

al. 2001; Morandini et al. 2001; Viegas 2004a, 2004b; Weise et al. 2005, 37 

2016; Zhou et al. 2005a, 2005b, 2005c, 2007; Morvan 2007, 2013, 2015; 38 

Boboulos and Purvis 2009; Silvani and Morandini 2009; Anderson et al. 39 

2010; Viegas et al. 2010; Dupuy et al. 2011; Dupuy and Maréchal 2011; 40 

Pérez et al. 2011; Marino et al. 2012; Liu et al. 2014; Nelson 2015; Rossa 41 

et al. 2016; and Mulvaney et al. 2016).  The reference list is by no means 42 

exhaustive.  Most of the studies fall into one of the two major categories: 43 

(1) development of empirical fire spread models using experimental data 44 

obtained in laboratories or in situ fuel complexes in the field under various 45 
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test conditions or (2) comparisons of predicted rate of spread using 46 

developed analytical or numerical models with experimental fire spread 47 

data.  The availability of experimental data in the literature, especially the 48 

extensive tabulated data set with detailed experimental conditions in the 49 

recent work by Anderson et al. (2010) and the comprehensive database 50 

made available online by Weise et al. (2015), give impetus to the work 51 

presented here. 52 

 53 

Dimensional analysis is a very powerful tool for correlating experimental 54 

data in a compact and concise way.  In addition, important dimensionless 55 

groups could be identified and used for scaling to reduce experimental 56 

efforts.  The importance and the application of the theory of similitude to 57 

fire spread were mentioned in passing in Fons (1946).  Pagni and Peterson 58 

(1973) obtained a nondimensional flame spread rate as a function of 59 

nondimensional fuel, flame, and ambient flow properties.  Dimensional 60 

analysis on the spread of wind-driven fires was carried out by Nelson and 61 

Adkins (1988) to correlate the experimental data from their own studies and 62 

previous investigators with some success.  Pérez et al. (2011) used 63 

dimensional analysis in an attempt to develop scaling laws for the effect of 64 

wind and slope on the fuel bed fire spread rate.  The approach presented in 65 

this paper differs from Nelson and Adkins (1988) and Pérez et al. (2011) in 66 
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that the primary variables used in the dimensional analysis to correlate fire 67 

spread rate are the initial conditions, thermo-physical properties of the fuel, 68 

configuration of the fuel bed, and the wind conditions.  Flame properties 69 

were not included as primary variables in this analysis because they could, 70 

in principle, be correlated with fuel properties, fuel bed structure, and 71 

ambient conditions. 72 

 73 

Dimensional Analysis 74 

Fig. 1 is an illustration of the configuration considered in the analysis.  75 

Based on the experimental results reported in the literature, the fuel bed 76 

properties and geometry and ambient conditions were found to affect the 77 

rate of spread (ROS).  To use dimensional analysis to correlate the data, we 78 

start by expressing the rate of spread as a function of the following relevant 79 

parameters, which characterize the fuel bed and ambient conditions. 80 

 81 

(1) )θ,,,,β,α,δ,(1 UMMAfS wsssbbp =  82 

 83 

Note that dimensional analysis does not provide specific nature of the 84 

function.  The fuel volume-to-surface ratio sβ  could be considered as a 85 

characteristic dimension of the fuel particle.  Following the systematic 86 

matrix operation described in Langhaar (1951) on the dimensional matrix 87 
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obtained from eq. 1, an application of the Buckingham π-theorem 88 

(Buckingham 1914) results in the following dimensionless groups. 89 

 90 
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 97 

The variable θ  needs not appear in the formal matrix operation because it 98 

is considered dimensionless (Langhaar, 1951), and we express 6π  in terms 99 

of cosθ instead of simply θ to avoid the trivial (unrealistic) situation of 100 

0≡pS  when θ = 0 (i.e., horizontal fuel bed) in the functional forms for the 101 

dimensionless correlations given below.  The dimensionless group 3π  is, 102 

by definition, the moisture content (MC) (wet basis) of the fuel.  The 103 
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dimensionless group 4π  is a dimensionless fuel bed depth.  The 104 

dimensionless group 4π  can also be expressed in terms of ldF , bA , sρ , 105 

and bε .  Since bbb AV δ= , 
b

s
ld A

M
F ≡ , and 

b

s
b V

V
−≡ε 1 , 106 
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 109 

The dimensionless group 4π  can also be considered as a dimensionless fuel 110 

loading density.  The functional form in eq. 1 can now be expressed in terms 111 

of the six dimensionless groups as ( )654321 ,,,,ππ ππππ= g .  If we assume 112 

the following functional form for the dimensionless correlation, 113 

 114 
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Although other convenient functional form can be assumed to correlate the 120 

dimensionless variables, the form expressed in eq. 9 is less complex and 121 

amenable to simple statistical analysis.  Using the experimental data, the 122 

coefficients 1a , and 1b  to 5b  can be determined by performing a multiple 123 

linear regression analysis on the logarithmic form of eq. 10. 124 

Under no-wind condition, we could similarly express the fire spread rate as 125 

 126 

(11) )θ,,,β,α,δ,(2 wsssbbp MMAfS =  127 

 128 

Following similar procedure, the resulting dimensionless groups are 1π , 129 

2π  , 3π , 4π , and 6π .  We will also use a functional form similar to eq. 10 130 

to correlate the experimental data reported in the literature. 131 
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 134 

Results and discussion 135 

Table 1 summarizes the data sources used to correlate the fire spread rate 136 

using eq. 10 or eq. 12 depending on the wind conditions.  The data sources 137 

cover wide ranges of homogenous fuel species, fuel loading densities, fuel 138 
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moisture contents and wind speeds.  The sources were selected solely based 139 

on the completeness of the experimental data provided in the published 140 

works by the author(s) of the sources so that all dimensionless groups for 141 

the dimensionless correlations could be estimated readily from the available 142 

data.  However, there is one caveat.  Since the thermal diffusivities of most 143 

of the fuels used in the studies were not given or known, a nominal thermal 144 

diffusivity sα  of 1.6 × 10−7 m2/s (Glass et al. 2010) was used for all the fuel 145 

species in the calculations of the dimensionless groups 1π  and 5π . 146 

 147 

Whenever the experimental data were not given in tabulated forms in the 148 

papers by the author(s) of the data sources, the data were extracted from the 149 

figures using the following procedure.  The figures were first digitally 150 

scanned and followed by measuring the relative coordinates of the data 151 

points on the scanned figures with respect to the origin of each figure using 152 

a computer-aided design (CAD) software.  The actual coordinates of the 153 

data point were derived using a scale factor based on the distance of the two 154 

adjacent tick marks on the two axes of the scanned figure and their 155 

corresponding values associated with the tick marks. 156 

 157 
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Note that moisture content expressed in fraction (not in percent) was used 158 

in the dimensionless variable, 3π  and was based on moist fuel (wet-basis).  159 

If the MC data reported in the literature were based on dry fuel, the wet-160 

basis moisture content (in fraction) can be easily obtained using the 161 

following equation. 162 

 163 

(13) 
dry-basis

dry-basis
wet-basis MC1

MC
MC

+
=  164 

 165 

If bδ  was given, eq. 5 was used to calculate the dimensionless group 4π , 166 

whereas eq. 8 was used if ldF , sρ , and bε  were available. 167 

 168 

Field data from Table 6 of Rothermel and Anderson (1966) and from Table 169 

2 of Nelson and Adkins (1986), laboratory data of needles plus palmetto 170 

fronds from Table 1 of Nelson and Adkins (1986) and scrub oak data from 171 

Weise et al. (2015) were excluded in the correlations because the 172 

information needed to estimate some of the dimensionless groups was not 173 

available or given. 174 

 175 

In some cases, as discussed below, informed and educated estimates were 176 

used for the parameters in the dimensionless groups.  When only a range of 177 
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the experimental parameter values associated with the test series was given, 178 

the average value was used, as a nominal value for that particular parameter, 179 

to calculate the dimensionless variables for that test series. 180 

 181 

In the work of Anderson (1969), the fuel loading density and fuel bed 182 

surface area were not specified in each fire spread test, and only a range of 183 

values was given; (0.612 kg/m2 – 1.223 kg/m2) for fuel loading density and 184 

(0.0465 m2 – 0.0929 m2) for fuel bed surface area.  A nominal fuel loading 185 

density of 0.917 kg/m2 and fuel bed surface area of 0.0697 m2 were used to 186 

correlate the experimental data from Anderson (1969). 187 

 188 

Since sβ  was not given in Nelson and Adkins (1986) for needles of pinus 189 

elliottii engelm, the needles were assumed to have a nominal length of 0.2 190 

m and 2 mm in diameter.  These values were used to estimate sβ  in 2π . 191 

 192 

In the experimental studies of Dupuy (1995), tests were separately 193 

conducted in 1991 and 1993, and the results were given without reference 194 

to which year a specific test series was conducted; the fuel bed area was 195 

varied from 1 m2 to 1.5 m2 and moisture content from 1 % to 3 % in 1991 196 

and 1.5 % to 3.5 % in 1993.  Respective nominal values of 1.25 m2 for fuel 197 

load density and 2.25 % for moisture content were assumed and used to 198 
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correlate the data.  In addition, only the median fire spread rates were used 199 

in the correlations because individual data points were aggregated together 200 

in the plot making them very difficult to extract. 201 

 202 

Under no-wind condition, the fuel bed length varied from 4 m to 7.5 m was 203 

stated in Anderson et al. (2010) and was not identified for each test.  A 204 

nominal value of 5.75 m was used to calculate bA  for all the no-wind test 205 

data taken from Anderson et al. (2010). 206 

 207 

If the void fractions of the fuel beds were not given, they were estimated 208 

using the following equation. 209 

 210 

(14) 
1

11
+σλ

−≡ε b  211 

 212 

where sβ≡σ /1  and λ  is defined in Anderson (1969) as 213 

 214 
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Eq. 14 can be easily derived using the definition of bε  and eq. 15. If fuel 217 

bed porosity is not available, it can be estimated using the following 218 

formulae from Anderson (1969) with known σ , sρ and bsb VM /≡ρ . 219 

 220 

(16) 
b

s

ρ
ρ

=+σλ 1  221 

 222 

The ratio bs ρ/ρ  is sometimes termed the packing ratio of the fuel bed in 223 

the literature.  Substituting eq. 16 into eq. 14, the void fraction can be 224 

expressed in terms of bs ρρ / . 225 

 226 

(17) 
s

b
b ρ

ρ
−≡ε 1  227 

 228 

The dimensional groups in eq. 10 and eq. 12 were calculated using the data 229 

sources listed in Table 1.  Taking logarithm of both sides of the two 230 

equations and performing multiple linear regression analysis using the least-231 

squares method result in the following dimensionless correlations for wind 232 

and no-wind conditions. 233 
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 237 

Table 2 shows the regression coefficients for the correlations and their 238 

respective standard errors under wind and no-wind conditions.  Figs. 2 and 239 

3 show the dimensionless correlations using eq. 18 and eq. 19 respectively.  240 

A total of 334 data points for wind condition and 319 data for no-wind 241 

conditions were extracted from the sources in Table 1 and used in the 242 

regression analysis.  The coefficient of correlations (R2) for eq. 18 and eq. 243 

19 are 0.83 and 0.66, respectively.  The correlation under wind condition 244 

correlate the experimental data slightly better than the no-wind condition; 245 

this could be due to the fact that less data information needed to evaluate 246 

the dimensionless groups was given or available in the studies with no-wind 247 

and more nominal values and informed estimates had to be used for some 248 

of the parameters in the calculations. 249 

 250 
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Conclusions 251 

A dimensional analysis was performed to correlate the fuel bed fire rate of 252 

spread data previously reported in the literature.  Under wind condition, six 253 

pertinent dimensionless groups were identified, namely dimensionless fire 254 

rate of spread, dimensionless fuel particle size, fuel moisture content, 255 

dimensionless fuel bed depth or dimensionless fuel loading density, 256 

dimensionless wind speed, and angle of inclination of fuel bed.  Under no-257 

wind condition, five similar dimensionless groups resulted.  The 258 

dimensionless correlations using the resulting dimensionless groups 259 

correlate the fire rates of spread reasonably well in light of the wide range 260 

of uncertainties associated with some of the parameters used for the 261 

calculations. 262 

 263 
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List of symbols 402 

1a , 2a  regression coefficients 403 

1b , 2b , 3b  4b , 5b  regression coefficients 404 

1c , 2c , 3c , 4c  regression coefficients 405 

bA  fuel bed surface area (m2) 406 

ldF  fuel loading density (kg/m2) 407 

sM  moist fuel mass (kg) 408 

wM  water content of fuel (kg) 409 

pS  fire spread rate (m/s) 410 

U  wind speed (m/s) 411 

bV  fuel bed volume (m3) 412 

sV  fuel volume (m3) 413 

sα  fuel thermal diffusivity (m2/s) 414 

sβ  fuel volume-to-surface ratio (m) 415 

bδ  fuel bed thickness (m) 416 

bε  fuel bed void fraction 417 

θ  inclined angle of fuel bed (o) 418 

λ  fuel bed porosity (m) 419 

bρ  fuel bed bulk density (kg/m3) 420 
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sρ  fuel density (kg/m3) 421 

σ  fuel surface-to-volume ratio (m-1) 422 

 423 
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Table 1.  Data sources used for the dimensionless correlations. 

Data sources Wind No wind Slope 

Tables 1-2 (Fons 1946)    

Figure 1 (Beaufait 1965)    

Tables 2-5 (Rothermel and Anderson 1966)    

Tables 1-2 (Anderson 1969)    

Figures 2-5 (Fang and Steward 1969)    

Table 1 (Nelson and Adkins 1986)    

Figure 2 (Dupuy 1995)   a 

Figures 6, 8, and 9 (Simeoni et al. 2001)   b 

Appendix table (Anderson et al. 2010)    

Tables 1 and 3 (Dupuy and Maréchal 2011)   c 

Weise et al. (2015)   d 
a -30° ≤ θ ≤ 20°; b 0° ≤ θ ≤ 10°;c 0° ≤ θ ≤ 30°; d -30° ≤ θ ≤ 35° 
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Table2.  Regression coefficients and their standard errors 

1b  2b  3b  4b  5b  1c  2c  3c  4c  

-0.41 
(0.045) 

-0.82 
(0.052) 

-0.29 
(0.048) 

1.32 
(0.046) 

-13.98 
(5.344) 

-1.27 
(0.074) 

-0.07 
(0.057) 

-0.16 
(0.058) 

-6.25 
(0.713) 
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Figure captions 

 

Fig. 1.  A schematic showing the pertinent parameters used in the 

dimensional analysis. 

 

Fig. 2.  Dimensionless correlation for fuel bed fire spread under wind 

condition (334 data points). 

 

Fig. 3.  Dimensionless correlation for fuel bed fire spread under no-wind 

condition (319 data points). 
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Fig. 1.  A schematic showing the pertinent parameters used in the 

dimensional analysis. 
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Fig. 2.  Dimensionless correlation for fuel bed fire spread under wind 

condition (334 data points). 
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Fig. 3.  Dimensionless correlation for fuel bed fire spread under no-

wind condition (319 data points). 
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