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3.1 Introduction

Over the past decade in the modeling and simulation community, there has been a
growing interest in and concern about “conceptual modeling.” Generally accepted
as crucial for any modeling and simulation project addressing a large and complex

C. Bock (&)
National Institute of Standards and Technology, Gaithersburg, USA
e-mail: conrad.bock@nist.gov

F. Dandashi
The MITRE Corporation, Mclean, USA
e-mail: dandashi@mitre.org

S. Friedenthal
SAF Consulting, Reston, USA
e-mail: safriedenthal@gmail.com

N. Harrison
Lawrence Livermore National Laboratory, Livermore, USA
e-mail: Nathalie.Harrison@drdc-rddc.gc.ca

S. Jenkins
NASA Jet Propulsion Laboratory, Pasadena, USA
e-mail: sjenkins@jpl.nasa.gov

L. McGinnis
Georgia Institute of Technology, Atlanta, USA
e-mail: leon.mcginnis@isye.gatech.edu

J. Sztipanovits
Vanderbilt University, Nashville, USA
e-mail: janos.sztipanovits@vanderbilt.edu

A. Uhrmacher
University of Rostock, Rostock, USA
e-mail: lin@informatik.uni-rostock.de

© Springer International Publishing AG (outside the USA) 2017
R. Fujimoto et al. (eds.), Research Challenges in Modeling
and Simulation for Engineering Complex Systems, Simulation Foundations,
Methods and Applications, DOI 10.1007/978-3-319-58544-4_3

23



problem, conceptual modeling is not well defined, nor is there a consensus on best
practices. “Important” and “not well understood” would seem to qualify conceptual
modeling as a target for focused research.

One may define conceptual models as “early stage” artifacts that integrate and
provide requirements for a variety of more specialized models. In this view, con-
ceptual models provide a foundation from which more formal and more detailed
abstractions can be developed and eventually elaborated into analysis models (e.g.,
for simulation). However, “early” and “late” are relative terms that apply within
each stage of development. For example, creating an analysis model might involve
describing (i.e., modeling) the analysis independently of software (“conceptually”)
before implementation and execution. As a consequence, there might be multiple
“early” models: conceptual models of reality and conceptual models of analysis;
and there may be multiple versions of conceptual models as the understanding of
the target system matures and the analysis design and implementation evolves.

These varieties of conceptual models are sometimes distinguished in existing
work, with different terminology. In 2013, Robinson used “conceptual model” to
mean “a non-software specific description of the simulation model, … describing
the objectives, inputs, outputs, content, assumptions, and simplifications of the
[simulation] model” and “system description” to mean models derived from the
“real world,” with two stages of computer-specific models derived from the system
description (Robinson 2013). In a 2012 tutorial, Harrison and Waite use “con-
ceptual model” to mean “an abstract and simplified representation of a referent
(reality)” (Harrison and Waite 2012), instead of Robinson’s “system description.”

With this context, developing an engineering discipline of conceptual modeling
will require much better understanding of:

1. how to make conceptual models explicit and unambiguous, for both the target
system (or referent) and the target analysis,

2. the processes of conceptual modeling, including communication and
decision-making involving multiple stakeholders,

3. architectures and services for building conceptual models.

Answering the first question (explicitness) requires considering alternative for-
malisms for expressing conceptual models, and the languages based on these for-
malisms, which are addressed in Sect. 3.1. The second question (process) is
discussed in Sect. 3.2. The third question involves architectures for model engi-
neering, as well as services provided to conceptual modelers, and is covered in
Sect. 3.3.
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3.2 Conceptual Modeling Language/Formalism

An articulated conceptual model, whether describing the system of interest (the
referent, in Robinson’s terminology) or an analysis model of the system of interest,
is expressed using some language, which may be formal or informal, graphical,
textual, mathematical, or logical. Today, the situation is that most often, conceptual
models are expressed using some combination of sketches, flowcharts, data, and
perhaps pseudo-code. Lack of general agreement on the implications of these
techniques (i.e., ambiguity) limits the computational assistance that can be provided
to engineers. Incorporating conceptual modeling into a modeling and simulation
engineering discipline will require more explicit and formal conceptual modeling
languages. However, conceptual modeling must be done in a manner accessible to
domain engineers, who might not be trained in the necessary formalisms. This is
addressed in the first subsection below. In addition, formal conceptual modeling
applies as much to analysis as to the referent systems, raising questions about the
variety of approaches to simulation, as covered in the second subsection. Formality
in model integration is discussed in Sect. 3.3.

3.2.1 Domain-Specific Formalisms

In mathematical logic, formalism is the application of model and proof theory to
languages, to increase confidence in inferring new statements from existing ones
(Bock et al. 2006). In practice, however, most mathematicians are more informal in
their definitions and proofs, with peer review confirming results, or not. We expect
conceptual modeling formalisms to be rigorous approaches to studying referent and
analysis models, at least in the sense of mathematical practice. Formal approaches
have fewer, more abstract categories and terms than less formal ones, facilitating
integration across engineering domains and construction of analysis tools.
However, by using more abstract language, formal approaches are often too far
from the common language of applications to be easily understood by domain
experts and too cumbersome to use in engineering practice, e.g., in air traffic
control, battlespace management, healthcare systems, and logistics. More specific
formalisms would be useful not only to domain experts, for describing their sys-
tems, but also to technical or modeling experts who must translate the system
description into analysis models and maintain them, and to other stakeholders who
may need to participate in validation.

Logical modeling is a widely used approach to formalizing domain knowledge
(often called ontology, more specifically description logics Baader et al. 2010).
Ontologies can support acquisition of increasing levels of detail in model structure
and also education and communication. For example, in modeling an ecosystem,
one begins with words and phrases expressed in natural language, such as pond,
organism, bio-matter, and insect. Some words will represent categories or classes,
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while others represent instances falling into those categories. Also, words that
connote action will reflect behaviors that are at the core of dynamic system spec-
ification. Words and phrases can be connected through relationships forming
semantic networks and concept maps. Semantic networks (see, e.g., Reichgelt
1991) grew out of theories of cognition around associative memory (Quillian 1968),
whereas concept maps (see Novak 1990) grew out of a theory of associative net-
works for the purpose of learning, both essential for capturing expert knowledge.
Both are closely related to description logics (Sattler 2010; Eskridge and Hoffman
2012).

Developing explicit and formal conceptual models of the referent will require
ontologies and a suitable knowledge representation. Contemporary modeling lan-
guages have been proposed and used for modeling software systems (UML OMG
2015b), for general systems modeling (OPM Reinhartz-Berger and Dori 2005;
SysML OMG 2015a), and for modeling systems in the military domain
(UPDM/UAF (OMG 2016), DoDAF (US Department of Defense 2016a), MoDAF
(U.K. Ministry of Defense 2016)). Domain-specific modeling languages (DSMLs)
also have been developed, for modeling business processes (OMG 2013), for
modeling biological systems, SBML (Finney et al. 2006), SBGN (Le Novère et al.
2009), and others. Of course, general purpose languages can be specialized to a
domain as well. In addition to using ontologies for domains, methods, and pro-
cesses, DSMLs for representing knowledge along with induced constraints and
interdependencies will also help to reduce uncertainty in the modeling process, e.g.,
to answer questions like what modeling approach, execution algorithm, or
steady-state analyzer to use. Thus, ontologies and DSMLs for modeling and sim-
ulation methods are relevant definitely in the requirements stage, where it is decided
which formalism to use and how to execute a model, and also for validating and
verifying a large set of methods. Suitable ontologies, if in place, will help in
identifying solutions.

While these developments are an important element of establishing an engi-
neering discipline of modeling and simulation, they do not yet go far enough.
Ontology is not sufficiently applied to formal and domain-specific modeling lan-
guages, leaving a major gap in linking formalisms to engineering domains. Many of
the available models of formal and domain languages only categorize terminology
rather than semantics of the terms, and consequently cannot utilize domain
knowledge to increase the efficiency of formal computations or bring results from
those computations back into the domains. For example, ontologies are available
for Petri Nets (PN), a widely used simulation formalism, but these only formalize
terminology for reliable interchange of PN models, rather than enabling a uniform
execution of them across tools (Gaševića and Devedžić 2006). In addition, if
adequate DSMLs do not already exist within a domain, each application modeler
still must develop a problem-specific ontology and capture problem-specific
knowledge in a DSML. Within a particular domain, e.g., logistics, the creation of a
domain-specific ontology and modeling framework would support all modelers
within that domain (Huang et al. 2008); (McGinnis and Ustun 2009); (Thiers and
McGinnis 2011); (Batarseh and McGinnis 2012); (Sprock and McGinnis 2014).
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Work on modeling formal and domain-specific languages, including semantics as
well as terminology and how to integrate them for practical use, are in its early
stages (Mannadiar and Vangheluwe 2010); (Bock and Odell 2011), but several
results have emerged during the past decade. This is an important area for future
research and development.

Language modeling (metamodeling) has become a widely used method for
precisely defining the abstract syntax of DSMLs (the part of syntax that omits
detailed visual aspects of a language). A metamodel is the model of a modeling
language (Karsai et al. 2004), expressed by means of a metamodeling language
(Flatscher 2002). There are several metamodeling languages in practical use today,
ranging from informal, graphical languages, such as UML class diagrams and OCL
used by the Object Management Group (OMG 2015b) (OMG 2014), the Eclipse
Modeling Framework (Eclipse Foundation 2016a), or MetaGME (Emerson and
Neema 2006). A formal metamodeling language based on algebraic datatypes
and first order logic with fixpoint is FORMULA from Microsoft Research (Jackson
and Sztipanovits 2009).

Metamodeling can be used to specify diagrammatic syntax of DSMLs, in con-
junction with their abstract syntaxes above. For example, languages such as
Eclipse’s Graphical Modeling Project (Eclipse Foundation 2016b) and WebGME
(Institute for Software Integrated Systems 2016) provide a graphical metamodeling
environment, as well as auto-configuration into domain-specific modeling envi-
ronments using the metamodels created there. Metamodeling of diagrammatic
syntax also enables standardized interchange between tools and rendering of
graphics (Bock and Elaasar 2016).

Metamodeling has a role in precisely defining the semantics of DSML’s. For
example, FORMULA’s constraint logic programming capability is used for defining
semantics of DSMLs via specifying model transformations to formal languages
(Simko et al. 2013). The portion of UML’s metamodel that overlaps description
logic can be extended to specify patterns of using temporal relation models in
UML, providing a basis to formalize the semantics of UML’s behavioral syntaxes
(Bock and Odell, 2011).

Other approaches to the development of DSMLs include developing a DSML for
a subset of the Simulink language, by defining the operational semantics, rather
than by creating a meta-model (Bouissou and Chapoutot 2012), or in a similar vein,
developing a DSML for systems biology based on an abstract syntax and opera-
tional semantics (Warnke et al. 2015).

3.2.2 A Unified Theory for Simulation Formalisms

Conceptual modeling applies not only to the system of interest, but also to the
analysis of that system. Our understanding of a system of interest evolves from our
earliest concept of it as we gain deeper understanding through the development of
system models. In the same way, our understanding of the analysis itself also may
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evolve as we better understand the system of interest and begin to elaborate our
analysis model. To support conceptual modeling of simulation analysis, it seems
reasonable that we should first have the ontology, semantics, and syntax to formally
define a simulation. Unlike the case of other analyses, such as optimization, this
requirement has not yet been satisfied for simulation. Several structures have been
studied as simulation formalisms; however, there is little consensus on the best
approach. In the same way that various models of computation provide a basis for
theory within computer science, considering various simulation formalisms will
further the development of a robust theory of simulation.

Some formalisms are available for general discrete event simulation, some
adopted industrially and others not. For example, the DEVS language (Zeigler et al.
2000) provides a mathematically precise definition of discrete event systems, and
there also are a number of computational implementations, so it is unique in pro-
viding both a simulation programming language and an associated mathematical
specification. It is not widely used industrially, however, in part, perhaps, because
of the requirement to express all behavior using state machines. Popular discrete
event simulation languages or environments, such as Arena (https://www.
arenasimulation.com), FlexSim (https://www.flexsim.com), Simio (http://www.
simio.com), and Tecnomatix Plant Simulation (https://goo.gl/XmQGgN), provide
a programming language with semantics and syntax, but not a corresponding formal
definition. In part, this is due to the intent of many commercial simulation lan-
guages to support simulation in a particular domain, such as Tecnomatix Plant
Simulation, which is naturally reflected in the semantics of the languages.

Another line of research is to view simulations through the lens of dynamical
systems and computational complexity theory. This is particularly suitable when
studying complex socially coupled systems. Formal computational and mathe-
matical theory based on network science and graphical dynamical systems has been
studied in Mortveit and Reidys (2008), Barrett et al. (2004, 2006), Adiga et al.
(2016), Rosenkrantz et al. (2015). The theoretical framework allows one to study
formal questions related to simulations, including: (i) computational lower and
upper bounds on computing phase space properties, (ii) design questions: how does
one design simulations to achieve a certain property, (iii) inference questions: how
does one understand the conditions that led to the observed behavior.

Achieving an engineering discipline for modeling and simulation will require a
more complete set of formalisms spanning up from rigorous discrete event, con-
tinuous, and stochastic system specification to higher level, perhaps
domain-specific, simulation languages. In some areas, those domain-specific
modeling languages that combine a rigorous mathematical semantics with a con-
venient modeling tool are already in use, e.g., in the area of cell biology, or
collective adaptive systems (often based on a continuous time Markov chain
semantics). For example, some specialized simulation languages for biology are
based on mathematical formalisms, such as ML-Rules (Helms et al. 2014), Kappa
(Harvard Medical School 2016), or BioNetGen (BioNetGen 2016), among others.
In general, however, this still represents a very significant challenge for the mod-
eling and simulation community.
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3.3 Conceptual Model Development Processes

Model development is a challenging and highly intricate process, with many
questions needing to be answered, as discussed in this section. Currently, answering
these questions in a systematic and informed manner is hampered by a lack of
formalized knowledge in the modeling domains and in modeling and simulation in
general. Providing these would constrain development decisions and the design of
development processes themselves, reducing uncertainty in model life cycle engi-
neering. The first subsection below gives background on model development
processes and analyzes questions about them. The next two subsections (effec-
tiveness and maturity) describe complementary approaches to reducing model
defects introduced during the modeling process. These help avoid difficult and
high-cost amendments of the model after it is finished. It is impossible to reduce
model defects to zero during development, leading to the need for validation after
the model is built, the results of which are also useful during model development, as
addressed in the last subsection. Taken together, progress in these areas can sig-
nificantly enhance the credibility of models by improving the quality of processes
that produce them.

3.3.1 Motivation and Research Approach

The purpose of modeling and simulation is to improve our understanding of the
behavior of systems: An executable model M of a system S together with an
experiment E allows the experiment E to be applied to the model M to answer
questions about S (Cellier 1991). Simulation is fundamentally an experiment on a
model. A conceptual model C is the articulated description of S, upon which both
M and E are developed. In science we seek to understand the behavior of natural
systems; in engineering we seek to design systems that exhibit desired behavior.
Because modeling and simulation facilities are themselves complex systems, it is
seldom possible to go in one step from problem to solution. The processes involved
in modeling and simulation require different degrees of human interaction, different
computer resources, are based on heterogeneous, partly uncertain knowledge
defined more or less formally, and involve different types of expertize and users.
Data, knowledge, processes, and orchestration vary depending on the system to be
modeled, the questions to be answered, and the users. In these processes different
versions of models and artifacts are generated, that need to be put into relation to
each other.

Model life cycle Engineering (MLE) captures the highly iterative process of
developing, verifying, validating, applying, and maintaining a model. MLE is an
area that requires significant study and exploration to meet society’s needs and
problems. How is MLE different than Engineering Design or Software Engineering
life cycles? In some instances, it may be possible to build on these related
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engineering fields in our attempt to forge MLE as a subdiscipline of Modeling and
Simulation (M&S) . It is expected that MLE will contain phases for constructing
models and simulations by beginning with requirements and then proceeding to
other phases such as design, analysis, implementation, verification and validation
(V&V), and maintenance.

MLE concepts and methods should not be limited to developing M and E; they
also should be applied to the conceptual model C, describing S and used in
developing both M and E. Clearly, this requires that C be expressed in a form that
enables MLE concepts and methods to be applied.

The underlying principle for any type of life cycle engineering, however, is to
ensure that unspent resources (e.g., money, time) are commensurate with work
remaining. For complex systems with substantial de novo content, there is typically
considerable uncertainty in both the work remaining and the rate of resource
consumption. Resources are therefore held in reserve to protect against depletion
due to undesired outcomes. Bearing these principles in mind, a life cycle approach
for model/simulation development should include answering the following
questions:

• Purpose and Scope Characterization: Who are the stakeholders of the model?
What are their concerns? In particular, what are the specific aspects of system
behavior we seek to understand through modeling? The answers form the
context for the relevant conceptual models. Identification of stakeholders and
concerns is a complex undertaking involving a broad spectrum of disciplines,
including perhaps the political and behavioral sciences. For example, a
macroeconomic simulation of energy production, distribution, and consumption
would rightly recognize the public at large as a stakeholder, but it would be
counterproductive to ask individual citizens simply to enumerate their concerns
since ordinary citizens are not likely to understand the stake they have in
atmospheric carbon dioxide or sulfur dioxide. Consequently, it may be neces-
sary to develop methods that combine opinion research with education and
outreach to designated proxies for the public interest.

• Phenomena Characterization: Is the referent a continuous system, discrete event
system, or discrete stepwise system? Are stochastic or spatial aspects important?
What are the elements of the system which contribute to the behavior of
interest? What scientific disciplines address the behavior of interest? Answers to
these kinds of questions will help to identify the content of the conceptual model
and perhaps how it should be expressed. Having identified concerns, it is not
necessarily simple to determine the scope of scientific phenomena to adequately
address those concerns. For example, if stakeholders are concerned about the
availability of drinking water, it may under some circumstances suffice to
consider only hydrological phenomena. Under other circumstances it may be
necessary to consider also social, economic, and political phenomena. Decisions
will ultimately of course involve judgment, but research may elucidate princi-
ples and techniques that might prove useful for such analysis.
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• Formalism Characterization: What formulations will be most appropriate to
describe the relevant system elements and characterize the phenomena of
interest in the form of input-output relations? The conceptual model must
support these formulations. The choice of formalism will depend on the nature
of the system being modeled, as determined by phenomena characteristics
above. Once the nature of the system is identified, how is it best described, e.g.,
for a continuous system, are block diagrams most appropriate, or systems
dynamics, or an object-oriented approach like Modelica (Modelica Association
2014b)? What mathematical formulations will be used to characterize the
phenomena of interest in the form of input-output relations? Differential equa-
tions? Statistical models? Logical models? A given phenomenon may be
mathematically characterized in different ways, depending upon, among other
things, the nature of the concerns under consideration. If we are primarily
concerned with long-term average behavior, we might choose a
lumped-parameter description that assumes all short-term variation self-cancels
over time. On the other hand, if we are concerned with infrequent extreme
events, we will require a characterization that captures higher-order dynamics
accurately. Research may help us better understand how to infer the possible
mathematical formalism from a given referent model, but also how to develop
requirements for the referent model from a useful mathematical formalism.

• Algorithm Characterization: What solution algorithms will be selected for
computing the input-output relations? What verification test cases are appro-
priate? Since the conceptual model is a bridge from S to the computational
model M, it may be important to understand and accommodate the specific
target algorithmic implementation. For example, canonical linear least squares
problems can be stated more compactly as so-called normal equations, but in
practice, normal equations are more computationally complex to solve than the
better-behaved and more efficient orthogonal triangularization. These are con-
siderations of numerical analysis, a mature field with decades of sound theory
and practical technology, but needing integration into M&S methodologies.

• Model Calibration: What data is available to calibrate and later validate the
model, M? Is it necessary to calibrate a conceptual model, and if so, how is it
done? How does one validate a conceptual model?

• Cross-validation: Do other models exist with which the new model can be
cross-validated? If there are other existing conceptual models, how can they be
compared to support cross-validation?

These questions need to be addressed during the requirements phase of the
model engineering life cycle. However, answers are likely to be revised during the
subsequent phases. From this point on, conventional software development life
cycle considerations apply. In addition, special consideration needs to be given to
validation and verification of model variants and their interdependencies. Research
is needed to understand how to help answer the above questions: how to manage
the evolution process of a model and the data, knowledge, activities, processes and
organizations/people involved in the full life cycle of a model?
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Managing the life cycle process of a model is one of the most important tasks of
model engineering. Some research topics should be attacked, for example, how to
structurally describe the modeling process, and how to identify the characteristics of
activities involved in model construction and management to ensure improvement
of model quality and development efficiency and reduction of full model life cycle
cost.

Some decisions, e.g., which execution algorithm to select, might even be sup-
ported automatically by exploiting machine learning methods (Helms et al. 2015).
However, automatic solutions to these decisions require metrics to clearly distin-
guish the good choices from the less suitable ones. For some decisions, e.g.,
selecting the modeling approach, providing suitable metrics is still an open chal-
lenge. Knowledge about constraints on applying one method or the other, and
interdependencies and implications of using one or the other method on future
activities will reduce uncertainties in the overall process.

Within the engineering of models, well-founded answers to the questions of
which step to do next and which method to use largely determine the efficiency and
effectiveness of the model engineering process. Referring to the first question, and
for orchestrating the diverse processes that are involved in modeling engineering,
workflow-based approaches might be exploited to make these processes explicit
and traceable. These approaches facilitate evaluation of different phases of model
life cycle engineering, including validation and verification of models, and, thus,
add to the credibility of M&S. However, this requires a high degree of standard-
ization of these processes. This might be achievable for specific subprocesses of
validation or verification, e.g., how to execute and analyze a parameter scan given a
specific model. However, the overall process of a simulation study is highly
interactive and thus one might only be able to define general constraints on the
engineered artifacts, e.g., if the conceptual model (if we interpret conceptual model
as a representation of requirements or invariants that refer to the simulation model)
changes, so does the stage of the process model, requiring a new validation phase.

3.3.2 Effectiveness Measures

In a model-based engineering (MBE) approach, the development team evolves a set
of models throughout the system life cycle to support design, analysis, and veri-
fication of the system under development. These models are intended to express
aggregate knowledge about the system to enable communications and shared
understanding among the development team and other program stakeholders.
Program leadership must continue to determine what knowledge must be acquired
at any given point in the life cycle to maximize the likelihood of program success.
The type of knowledge to be acquired can help identify the kind of design and
analysis models that should be further developed and updated.

This knowledge can be acquired by performing engineering tasks that involve
different kinds of models, such as performing a trade study to select among
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alternative system architectures, performing an analysis to determine a system error
budget, updating electrical, mechanical, or software designs, or analyzing a par-
ticular design for reliability, safety, manufacturability, or maintainability.
Determining what knowledge is needed becomes more challenging as the com-
plexity of the system increases, and as the complexity of the organization that
develops the system increases (e.g., large geographically distributed teams).

The research challenge is to define one or more effectiveness measures that can
guide the knowledge acquisition process and associated model development and
evolution throughout the system life cycle. In other words, how do you determine
the additional knowledge at each point in time that provides best value to the
program stakeholders? The research can benefit from data that has been collected
over many years to find a solution. For example, the following figures are typical
examples of trends that indicate the impact of collecting certain kinds of knowledge
on the overall cost of system development.

In Fig. 3.1 the lower curves reflect the percentage of the total life cycle cost that
is expended as a function of the phase of the program life cycle. As indicated, much
of the cost is expended in the later life cycle phases. However, as shown in the
upper curve, the percentage of the life cycle cost that is committed occurs much
earlier in the life cycle. This finding shows the importance of early design decisions
based on the available knowledge. The cost to fix a defect increases exponentially
as a function of the phase in the product life cycle where the defect is detected
(Boehm 1981; McGraw 2006). Acquiring the knowledge to surface defects early
can substantially reduce the total system life cycle cost.

Fig. 3.1 Committed and actual lifecycle costs (Berliner and Brimson 1988) citing (Blanchard
1978)
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The following are some suggested factors to be considered for research:

• Aggregate knowledge goals at particular milestones in a system development
life cycle.

• Knowledge elements that contribute to the aggregate knowledge.
• Knowledge elements associated with different aspects of the system of interest

and its environment.
• A value function associated with acquiring knowledge elements at each point in

time, and its impact on the probability of program success.
• Cost to acquire the knowledge elements at a given point in the life cycle.
• Cost associated with acquiring incorrect knowledge at a given point in the life

cycle.
• Relationship between the effectiveness measure (value vs. cost) and more tra-

ditional risk measures.

The acquisition of knowledge across a life cycle can be thought of as a trajectory
whose aim is to maximize program success. The value function of acquired
knowledge is dependent on both the knowledge elements and the sequence in
which these elements are acquired, since there are dependencies among the
knowledge elements. For example, during the concept phase of a vehicle’s devel-
opment, it is often important to acquire knowledge about vehicle sizing and system
level functionality to meet mission performance requirements, but it may not be
important to acquire knowledge about the detailed software design algorithms.

3.3.3 Maturity Models

The Capability Maturity Model (CMM) for software development has played a key
role to guarantee the success of software projects (Paulk et al. 1993). CMM and
CMM Integration (CMMI) originated in software engineering, but have been
applied to many other areas over the years (CMMI 2016a). However, in M&S, there
is no such standardized and systematic assessment methodology developed for
M&S processes. Some related research and development results can be used as
references to establish the maturity model of M&S:

• Software life cycle models describe core processes for software development.
Following proven processes for model development begins with an under-
standing and execution of the core activities in an organization’s chosen
development path. Software life cycle models are an example of core proven
processes for development. Whether the life cycle model chosen is the classic
waterfall model or more modern iterative versions, all have aspects of re-
quirements development, design, implementation, integration, test, etc., utilized
in a way that best fits the size of the organization, the size of the project, or the
constraints of the customer and developer.

34 C. Bock et al.



• Software CMMI or CMMI for Development shows the success of maturity for
general software development. CMMI was originally developed at Carnegie
Mellon University and the federally funded Software Engineering Institute
(SEI). The CMMI Institute reports that thousands of CMMI appraisals are
completed every year in dozens of countries (CMMI 2016b). CMMI enables
organizations to be viewed and certified as being mature and capable of carrying
out intended activities to a certain level or degree of expertise, which lends that
degree of credibility to the components developed by those activities. CMMI
assigns capability levels to process improvement achievement in individual
process areas. Therefore, a certain part of an organization may be identified or
certified at a level 3 out of 4 for Configuration Management, but capability level
2 out of 4 for Maintenance. CMMI assigns maturity levels to process
improvement achievement in multiple process areas or a set of process areas and
applies to the scope of the organization that was evaluated/certified such as a
department, a division, or the entire company—Level 5 being the highest
achievable level of maturity.

• The Federation Development and Execution Process (FEDEP) describes core
processes for simulation development. FEDEP was initially released in 1996 as
the first common process for the development of simulations and was specifi-
cally for guidance in creating High Level Architecture (HLA) federations (IEEE
Standards Association 2010). These common methodologies and procedures
consisted of six steps: (1) Define Objectives, (2) Develop Conceptual Model, ,
(3) Design Federation, (4) Develop Federation, (5) Integrate and Test, and
(6) Execute and Prepare Results. These six steps included specific work prod-
ucts that were inputs and outputs to each step. These steps and the FEDEP
process paralleled the software development process and could serve as the
initial draft of the core processes for model and simulation development that
would be the basis for an examination of an organization’s ability to robustly,
reliably, and repeatedly develop credible models and simulations, i.e., identify
the capability and maturity of organizations or portions of organizations.

System of Systems describes corollaries that may exist within Systems
Engineering (Zeigler and Sarjoughian 2013).

• DoDAF describes the notion of multiple views of simulations (US Department
of Defense 2016b).

Taking CMM/CMMI as a basis, a capability maturity model for modeling and
simulation process (MS-CMMI) could be established by:

• Finding the differences and similarities between the processes of
modeling/simulation and software development by analyzing characteristics of
modeling process and simulation of complex systems, then define indicators and
metrics for M&S processes.
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• Setting up a MS-CMMI evaluation system (evaluation methods, standards,
tools, organizations, etc.) to assess the structured level of capabilities of model
developers or model users (use the model to do simulation).

Achieving these goals requires research in:

• Quantitative analysis of the complexity and uncertainties in modeling processes.
• Optimization of modeling processes.
• Risk analysis and control of modeling processes.
• Quantitative measurement of model life cycle quality and cost.
• Notional mappings with CMMI, etc.
• Identification and description of processes and work products necessary at

differing levels of the Modeling and Simulation Maturity Model, when and why
they are needed and who performs them.

3.3.4 Validation

As simulation models become more complex, validation of conceptual models and
understanding their role in the broader process of validation will continue to be
important research areas. Of course, understanding validation of conceptual models
is dependent on a precise definition of the terms “conceptual model” and “vali-
dation.” This section argues that a better consensus is needed on the first term, while
a careful review of the validation literature will reveal the same for the second.

This is particularly apparent across M&S communities of practice. For example,
the training and engineering communities intersect the broader M&S community,
but M&S stakeholders in those communities draw heavily from skill sets based in
different scientific disciples and different perspectives of the role of modeling and
simulation. The M&S community’s challenge is to address universally applicable
concepts, like conceptual models in validation, from a holistic perspective with
theory that is satisfying to all the stakeholders and technology that is germane to a
broad set of problems (in the case of the stated example, simulation theory and
technology that is useful for both the social scientist and the engineer).

Consider a few simple questions. What does it mean to validate a conceptual
model? How does a conceptual model that is suitable for a specific use inform the
development of other simulation process artifacts? How do the various stakeholders
in the simulation activity use the conceptual model, valid or otherwise? Some
researchers will see these as easily answered in their particular domains, but will
find their conclusions quite different between domains. So, for the discussion in this
section we consider terminology in the broadest context possible.

Consider modeling paradigms as equivalence classes on the set of conceptual
models. Each paradigm has defining characteristics in terms of conceptual modeling
language or formalism. These characteristics define every instance of a conceptual
model as belonging to one class or another, or perhaps none. For well-developed
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theory, further properties and theorems will follow to enable reasoning on all of the
elements of each class in general without resorting to building, coding, and exe-
cuting every instance to understand its properties. As we develop more rigorous and
explicit conceptual models that bridge between the referent system and the com-
puter simulation, methods for validation will become even more critical.

Simulation frameworks that include a category for conceptual models permit the
side-by-side comparison to and facilitate discussion of related artifacts. For
example, Balci and Ormsby (2007), Petty (2009), and Sargent (2013) provide
frameworks that include conceptual models in this context. Advances in conceptual
modeling will drive the need for new frameworks to explain the properties of
conceptual models, and the relations between them, the referent system, and the
computer simulation.

Some researchers would consider that the conceptual model is an appropriate
artifact to analyze for suitability for use. Although recent work in validation theory
is looking hard at the implication of risk in the decision to use particular kinds of
simulation, and propagation of error in simulation, more basic research is needed to
develop a robust model-based decision theory. Accuracy is well understood, par-
ticularly in the context of physics-based models, but its use in simulation is not well
defined. When deciding on the kind of simulation to inform a particular decision,
acceptability criteria are often subjective and little theory exists to objectify the
decision analysis. A well-developed model-based decision theory will recast vali-
dation in the language of decision theory, defining use in a rigorous way, clearly
differentiating objective from subjective elements of the use decision, and providing
a defensible basis for using models and simulations to inform decision-making
(Weisel 2012).

The logical next step for advances in theory involving validation of conceptual
models is to incorporate these advances in simulation development environments.
As model life cycle engineering develops, tools for validation of conceptual models
are needed to keep pace. As conceptual modeling languages and formalisms
become useful additions to simulation development environments, tools using
well-defined conceptual models within the broader process of validation will
improve the quality and defensibility of the simulation end product.

It is well understood that validation is best considered early in the development
process (see the previous two subsections)—there should be no difference when
considering conceptual models in the mix. As development environments would
benefit from rigorous application of conceptual models in the development process,
so too would the consideration of validation from the earliest life cycle stages. New
technologies and tools are needed to incorporate validation of conceptual models
throughout the simulation life cycle.
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3.4 Conceptual Model Architecture and Services

Many modeling paradigms exist for most kinds of domain problems, applied to
knowledge from many engineering disciplines. Understanding complex systems
requires integrating these into a common composable reasoning scheme (NATO
Research and Technology Organization 2014). The software and the system
engineering communities have overcome similar challenges using architecture
frameworks (e.g., OMG’s Unified Architecture Framework OMG 2016), but
modeling and simulation does not have a similarly mature integration framework.
The first subsection below concerns architectures for conceptual modeling, while
the second outlines infrastructure services needed to support those architectures.

3.4.1 Model Architecture

At the foundation of a modeling architecture should be a fundamental theory of
models, to enable reusability, composability, and extensibility. What theory of
models could support the implementation of a model architecture? An epistemic
study of existing modeling and integration paradigms is necessary to develop a
theory of models. This should include a taxonomy of modeling paradigms,
semantics, syntaxes, and their decomposition into primitives that operate under
common rules across paradigms, to integrate them as required by complex systems.

Model architecture is needed to unify different classes of models developed
using different paradigms. An architecture is the glue specifying interfaces, rules of
operation, and properties common across modeling paradigms, enabling models to
be interconnected at multiple levels of conceptual abstraction. What is meaningful
to connect? What is not? An architecture goes far beyond conventional model
transformations and gateways, though these are also essential to comprehension of
multiparadigm modeling processes. An architecture is about persistent coexistence
and coevolution in multiple domains at multiple levels of abstraction. How can a
model architecture framework connect models that operate according to different
sets of laws? For example, critical infrastructure protection requires connecting
country, power grid, internet, economy, command, and control, etc. Combat vehicle
survivability requires connecting humans, materials, optics, electromagnetics,
acoustics, cyber, etc. What mechanisms are required to efficiently interact between
different sets of laws (e.g., layered architecture)? What level of detail is required to
observe emerging behaviors between different sets of laws when integrated? How
should a model architecture be implemented, in which format, using which tools?
As a model architecture matures, successful design patterns should emerge for the
most common reusable interconnections between disciplines. What are these design
patterns in each community of interest?

Model architecture sets the rules to meaningfully interconnect models from
different domains. Generalizing and publishing rules for widespread modeling
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paradigms would allow composing and reusing models that comply with the
architecture and complex system simulations will become achievable. As an
example of interconnected models across domains, start with a Computer-Aided
Design (CAD) model representing a physical 3D object in terms of nodes and
facets. In the CAD paradigm, objects can be merged to interconnect. A related
Finite Element Model (FEM) represents continuous differential equations for
physical laws between boundary layers. It can be used to compute the fluid
dynamics during combustion. FEM models can interconnect at the level of physical
laws to compute the temperature distribution from the combustion products dis-
tribution for instance. They also interconnect with a CAD model at the mesh level.
A computer graphics model enables display of objects as seen from particular
viewpoints. It interconnects with CAD and FEM models to map materials and
temperature to facets for the purpose of generating an infrared scene image in the
field of view of a sensor. A functional model of a surveillance system can represent
discrete events involved in changing a sensor mode as a function of the mission.
The functional model interconnects with the computer graphics model at the sensor
parameter level. Finally, a business process model can represent a commander’s
mission planning. It can interconnect with a functional model by changing the
mission.

Figures of merit must be developed to demonstrate how well a model archi-
tecture facilitates composition of multiparadigm, multiphysics, multiresolution
models. The performance of a model architecture must be checked against inter-
disciplinary requirements using metrics for meaningfulness and consistency. How
can we test a particular integration for validity? How can it be done efficiently over
large-scale complex simulations? How can it be done by a non-expert? What
mechanisms should a model architecture framework include to support checking for
conceptual consistency?

Integration complexity and coupling between the degrees of freedom of indi-
vidual components and the degrees of freedom of the integration are yet to be
understood. When integrating a model in a complex simulation, what details can be
ignored and still ensure a valid use of that model? What details cannot be ignored?

Reliable model integration depends on sufficient formality in the languages used,
as described in Sect. 3.1. In particular, formal conceptual models of both the system
of interest (referent) and analysis provide a basis for automating much of analysis
model creation through model-to-model transformation. As an example, consider
the design of a mechanical part or an integrated circuit. The CAD tools for spec-
ifying these referents use a standard representation, with a formal semantics and
syntax. For particular kinds of analyses—such as response in an integrated circuit—
simulations are essentially available at the push of a button. Formalism in the
specification of the referent enables automation of certain analyses. This pattern is
well demonstrated, e.g., in the use of Business Process Modeling Notation (BPMN)
to define a business process, and then automating the translation of this model into a
hardware/software implementation specification. The Object Management Group
has developed standard languages for model-to-model transformations. At present,
there are only limited demonstrations of applying this approach to systems
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modeling. Automating this kind of model-to-model transformation captures
knowledge about how to create analysis models from referent models, so perhaps
the most fundamental question is: where should this knowledge reside—should it
be captured in the referent modeling language, in the analysis modeling language,
in the transformation, or perhaps spread throughout? Formalization of mappings
between conceptual models of a referent and its analysis models is critical to
building reliable bridges between descriptions of the referent and specifications of a
simulation model and its computational implementation.

3.4.2 Services

The success of large-scale integration of knowledge required by complex systems
fundamentally depends on modeling and simulation infrastructure services aggre-
gated into platforms. These enable affordable solutions based on reusing
domain-specific models and simulators, as well as integrating them into a multi-
model cosimulation. For example, understanding vulnerabilities and resilience of
complex engineered systems such as vehicles, manufacturing plants, or electric
distribution networks requires the modeling and simulation-based analysis of not
only the abstracted dynamics, but also some of the implementation details of net-
worked embedded control systems. Systems of such complexity are too expensive
to model and analyze without reuse and synergies between projects.

Services need to enable open model architecture development and sharing of
model elements at all levels. How can a common conceptual modeling enterprise be
launched involving many stakeholders? How can a conceptual model be augmented
with knowledge from different contributors (e.g., wiki)? How does it need to be
managed? What structure should the conceptual model have? What base ontologies
are required (e.g., ontology of physics)? How can conceptual model components be
implemented in executable model repositories and how can components plug and
play into simulation architectures? Guiding principles must also be defined and
advertised. What guidance should modelers follow to be ready for a collaborative
conceptual modeling enterprise in the future? Standard theory of models, archi-
tecture, design patterns, consistency tests, modeling processes, and tools will arise
naturally as the modeling science matures.

Services can be aggregated into three horizontal integration platforms:

• In Model Integration Platforms, the key challenge is to understand and model
interactions among a wide range of heterogeneous domain models in a
semantically sound manner. One of the major challenges is semantic hetero-
geneity of the constituent systems and the specification of integration models.
Model integration languages have become an important tool for integrating
complex, multimodeling design automation and simulation environments. The
key idea is to derive opportunistically an integration language that captures only
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the cross-domain interactions among (possibly highly complex) domain models
(Cheng et al. 2015).

• Simulation Integration Platforms for cosimulation have several well-established
architectures. The High Level Architecture (HLA) (IEEE Standards Association
2010) is a standardized architecture for distributed computer simulation systems.
The Functional Mockup Interface (Modelica Association 2014a) for cosimula-
tion is a relatively new standard targeting the integration of different simulators.
In spite of the maturity and acceptance of these standards, there are many open
research issues related to scaling, composition, large range of required time
resolution, hardware-in-the-loop simulators and increasing automation in sim-
ulation integration.

• Execution Integration Platforms for distributed cosimulations are shifting
toward cloud-based deployment, developing simulation as a service using
models via web interfaces and increasing automation in dynamic provisioning of
resources as required. More will be said about this in the next chapter.
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