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This paper pursues two goals: (a) Define a class of widely used in practice flexible manufacturing systems,
referred to as Multi-Job Production (MJP) and formulate industrially motivated problems related to their
performance. (b) Provide initial results concerning some of these problems pertaining to analysis of the
throughput and bottlenecks of MJP serial lines as functions of the product-mix.

In MJP systems, all job-types are processed by the same sequence of manufacturing operations, but
with different processing time at some or all machines. To analyze MJP with unreliable machines, we
introduce the work-based model of production systems, which is insensitive to whether single- or multi-
job manufacturing takes place. Based on this model, we investigate the performance of MJP lines as a
function of the product-mix. We show, in particular, that for the so-called conflicting jobs there exists a
range of product-mixes, wherein the throughput of MJP is larger than that of any constituent job-type
manufactured in a single-job regime. To characterize the global behavior of MJP lines, we introduce the
Product-Mix Performance Portrait, which represents the system properties for all product-mixes and
which can be used for operations management. Finally, we report the results of an application at an
automotive assembly plant.

Keywords: Flexible manufacturing systems; Serial lines; Unreliable machines; Product-mix;
Throughput and bottleneck analysis; Performance portrait.

1. Introduction

1.1 Multi-job production systems: description and definition

Multi-job production (MJP) is a class of flexible manufacturing systems, intended to produce dif-
ferent products (or job-types) within the same production system. These systems are widely used
in product assembly, e.g., in automotive assembly plants, engine and battery plants, computer and
appliance assembly, etc.

To illustrate MJP operation, consider an automotive assembly plant manufacturing two car
models, A and B. In each area of the plant, i.e., body shop, paint shop, and final assembly, each
job-type follows the same sequence of manufacturing operations. Let r � prA, rBq be the product-
mix, where rA is the fraction of automobiles A to be manufactured and rB � 1�rA is that of B. The
jobs are released one-by-one into the body shop in a sequence defined by the product-mix and the
corresponding build-schedule and then proceed to the paint shop and final assembly. For instance,
a segment of a release sequence may be � � �BAAABABAAB � � � , generated by the product-mix
with rA � 2{3 and rB � 1{3. The jobs are transported from one operation to another (typically,
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Figure 1. MJP serial line

by conveyors, which serve also as buffers) in the sequence of release. Each job-type is processed
by the machines (operations or stations) with zero (or practically zero) setup time, but requires
different processing time at some or all machines.

Based on the above, the class of MJP systems is defined as follows:

(I) The required system performance is specified in terms of the product-mix, which may be
changing frequently (e.g., on a daily basis).

(II) The jobs are released one-by-one (without batching) according to the product-mix and a
corresponding build-schedule.

(III) All jobs undergo identical sequence of manufacturing operations, but require different amount
of work at some or all operations. Therefore, the processing time of each machine is deter-
ministic but job-dependent.

(IV) The machines are unreliable and experience random breakdowns.
(V) The setup times are zero.

(VI) In-process buffers are non-dedicated (i.e., store different job-types in the sequence of arrival).
(VII) The jobs are processed on the first-come, first-served basis.

MJP systems can be classified into two groups: serial lines and assembly systems (see Figures
1 and 2, where the circles represent the machines, the rectangles are the buffers, and J1 and J2

denote the two job-types being manufactured). While the serial lines may (and, often do) comprise
assembly operations, it is assumed that either no starvation by subassemblies take place or the
probabilities of starvations are given along with other system parameters.

In MJP assembly systems, the subassembly components are manufactured by subassembly lines,
which are parts of the overall system at hand and which, as shown in Figure 2, may operate either
in a single-job production (SJP) or MJP regime and have either dedicated finished goods buffers
(FGB) for different job-types or non-dedicated ones. Therefore, in addition to the above, MJP
assembly systems are characterized by the following:

 MJP assembly systems consist of a main assembly line (MA) and subassembly lines (SAi);
while the former operates in MJP regime, the latter may be either MJP or SJP.

 Subassembly lines may have dedicated or non-dedicated FGB.
 Job release in the main and subassembly lines may be coordinated (i.e., synchronized) in

accordance with the build schedule or not; the former case is referred to as build to schedule
and the latter build to finished goods buffer.

It should be pointed out that the term MJP is not a standard one. Obviously, MJP systems can
be viewed as part of the general field of flexible multi-product manufacturing. However, since the
term flexibility is used in many different connotations (including machine tool flexibility, material
handling flexibility, routing flexibility, scheduling flexibility, etc.), to emphasize that we address
here only production systems with flexibility in the product-mix, we use the term MJP.

MJP systems are also related to a class of flexible production systems referred to as mixed-
model assembly, wherein different models of a product are assembled by the same production
system. While this scenario is similar to MJP, the main assumption and the problems addressed
are different. Specifically, in the mixed-model area the machines are assumed to be reliable with
no breakdowns. As a result, the problems addressed are line balancing/workforce assignment and
model sequencing (see Subsection 1.6 for a review). In contrast, in MJP the machines are assumed
to be unreliable with random breakdowns, and the problems addressed are related to the study of
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Figure 2. MJP assembly system

resulting stochastic systems, in particular, throughput and bottlenecks analyses as functions of the
product-mix. Given the above, we find it beneficial to carve out the class of MJP systems defined
by assumptions (I)-(VII).

1.2 Goals of the paper

In practice, performance of MJP systems is often marred by substantial losses: throughput losses
of up to 15% is a typical occurrence. Recovering these losses is impeded by the lack of theory for
MJP systems analysis and improvement. Therefore, the main goals of this paper are:

 Formulate a set of problems related to analysis and continuous improvement of MJP sys-
tems; the intention is to attract the attention of the research community to real-world open
problems, solution of which would contribute substantially to both theory and practice of
MJP.

 Provide solutions for some of these problems, as they pertain to MJP serial lines.
 Report the results of a six-month application project, wherein the techniques obtained to-date

have been applied to develop a continuous improvement project for the underbody production
system at an automotive assembly plant.

As it follows from Subsection 1.1, the main distinguishing feature of MJP in comparison with
SJP is the product-mix. Since the current literature does not offer analytical tools for performance
analysis of MJP systems as a function of the product-mix, the secondary goals of this paper are:

 Develop a method for MJP serial lines analysis, taking into account the product-mix (along
with the machine and buffer parameters, habitually used in SJP systems).

 Evaluate the accuracy of this method using calculations and simulations.
 Based on this method, investigate the throughput and bottlenecks of MJP serial lines as

functions of the product-mix.

Note that while this paper addresses, due to space limitations, only MJP serial lines, a similar
development can be carried out for assembly systems as well (using, for example, the approach
utilized in Li and Meerkov (2009) for SJP systems).
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1.3 MJP problems formulation

Based on a number of continuous improvement projects carried out in the automotive industry
(assembly and battery plants) during the last three years, we formulate the following problems of
immediate importance for MJP operations management:

 Performance analysis: Given the machine, buffer, material handling system, and job-type pa-
rameters as well as the product-mix, calculate the system performance characteristics (e.g.,
the attainable total throughput, throughputs of various job-types, work-in-process, probabil-
ities of machine blockages and starvations) as functions of the product-mix.

 Continuous improvement : Given the machine, buffer, material handling system, and job-
type parameters, determine the production bottlenecks (i.e., the machines that affect the
total throughput in the strongest manner) as a function of the product-mix, indicate a way
to alleviate them, and quantify the resulting performance improvement.

 Quality : Given the machine, buffer, material handling system, and job-type parameters, deter-
mine the quality bottlenecks (i.e., the machines that impede the throughput of non-defective
jobs in the strongest manner) as a function of the product-mix, indicate a way for their
alleviation, and quantify the resulting improvement.

 Leanness: Determine the smallest capacity of the in-process buffers, which is necessary and
sufficient to obtain the desired total throughput.

 Product-mix optimization: Given an MJP serial line or assembly system, quantify the product-
mix leading to the total throughput maximization; note that while this optimal product-mix
may not be utilized in all situations (e.g., due to the nature of customer demand), in some
cases it offers a possibility for efficiency improvement.

 Product-mix assignment : Assuming that a company has several plants capable of manufac-
turing the products in question and given the desired company-wide product-mix, assign a
product-mix to each plant, so that the overall throughput is maximized, while the required
company-wide product-mix is maintained.

 Job sequencing : Develop a method for selecting a build-schedule, which achieves the maxi-
mum throughput corresponding to the assigned product-mix, satisfying sequence-constrained
conditions, if any. This problem is widely discussed in the mixed-model assembly literature
(see Subsection 1.6), and the results reported therein may be viewed as a foundation for MJP
scheduling.

While the above problems refer equally to both serial lines and assembly systems, the ones below
are assembly-specific:

 Product-mix feasibility : Given an MJP assembly system, quantify the set of feasible product-
mixes. This problem arises since subassembly lines often have different production capacities
as compared with that of the main assembly; this limits the attainable product-mixes in the
assembly system as a whole.

 Robustness analysis: Investigate robustness of MJP assembly systems with respect to starva-
tions by subassemblies. In particular, determine the optimal structure of subassembly lines
(e.g., dedicated vs. non-dedicated FGBs, build-to-schedule vs. build-to-FGB, SJP vs. MJP
regimes, etc.) leading to starvation minimization of the main line.

As mentioned in Subsection 1.2, this paper addresses only a small subset of these problems,
using the serial MJP lines as an instance (see Subsection 1.5 for the specific problems addressed
and results obtained).
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1.4 Approach

The approach of this paper is based on a novel work-based model, instead of the traditional part-
based model, of production systems. This implies that, unlike the traditional approach, where the
analyses are carried out in terms of ‘parts produced’, in this paper the research is carried out in
terms of the ‘work produced’, which is insensitive to whether a single- or multi-job manufacturing
takes place. Given the work produced, the throughput of each job-type and other performance
metrics can be calculated using the product-mix.

More precisely, in the work-based model (see Section 2 for details), the machines are defined by
the amount of work they can carry out per unit of time. The jobs are defined by the amount of
work they require at each machine. For instance, a welding operation is defined by the number of
welds it can carry out per unit of time, and the jobs are specified by the number of welds they
require per job-type. The reliability characteristics of the machines in the work-based model remain
the same as in the part-based case, i.e., defined by distributions of up- and downtimes. The buffer
capacity in the work-based model also remains the same as in the part-based case.

This model provides a foundation for solving the problems addressed in this paper.

1.5 Technical contributions of the paper

This paper reports the following results for MJP serial lines with exponential machines:

 A method for calculating MJP lines performance metrics as a function of the product-mix.
This method is based on reducing MJP to SJP, manufacturing a virtual job whose work-
requirements are defined by the product-mix and the original job-types involved. Simula-
tions/calculations show that the accuracy of this method is similar to that of the SJP case
(reported in Li and Meerkov (2009)).

 A method for production bottlenecks identification as a function of the product-mix. Here
the bottleneck is defined as the machine whose work-capacity, weighted by the virtual job
work-requirement, has the largest effect on the total throughput. Since the virtual job work-
requirements depend on the product-mix, the bottleneck machine is also a function of the
product-mix.

 Throughput of MJP vs. SJP. We show that if the jobs are conflicting (in the sense of having
different machines as BNs when manufactured in SJP regime), there exists a range of product-
mixes, where the total throughput of MJP is larger than that of SJP of any constituent job-
type. This phenomenon takes place because SJP overloads respective bottlenecks, whereas
MJP with the “right” product-mix leads to a more balanced work allocation.

 Product-mix performance portrait of MJP serial lines. To represent the global behavior of
MJP lines, we introduce the Product-Mix Performance Portrait (PP), which characterizes the
system throughput and bottlenecks for all possible product-mixes. This portrait is intended
to help managing MJP lines with frequently changing product-mixes. To enable applications,
we have developed a software tool, which calculates the PPs for given machines, buffers, and
jobs parameters.

 Application. We used the above results in a six-month continuous improvement project for
the underbody assembly system at an automotive assembly plant. Analyzing the through-
put part of the resulting PP, it has been shown that the system cannot meet the daily
throughput target for any of the required product-mixes. Analyzing the bottleneck part of
PP, improvement measures have been suggested, resulting in the desired system throughput
for all required product-mixes. These suggestions have been favorably accepted by the plant
management.
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1.6 Related literature

The MJP systems considered in this paper are related to three technical areas: serial lines, flexible
multi-product systems, and mixed-model assembly. Since the literature on serial lines is summarized
in over a dozen of monographs (see, for instance, Viswanadham and Narahari (1992), Askin and
Standridge (1993), Papadopoulos, Heavy, and Browne (1993), Perros (1994), Gershwin (1994),
Altiok (1997), Papadopoulos et al. (2009), Curry and Feldman (2009), Li and Meerkov (2009)), we
overview here only the two latter areas and comment on their relationship with MJP.

The literature on flexible multi-product manufacturing, is quite extensive, with the burst of
activity in 1980-2000 (see the reviews by Dupont-Gatelmand (1982), Browne et al. (1984), Sury
(1985), Sethi and Sethi (1990), Buzacott and Yao (1996), DeToni and Tonchia (1998), Beach et al.
(2000), Buzacott and Mandelbaum (2008), Boysen, Fliedner, and Scholl (2009)). By the end of this
period, it became clear that the ideas of flexibility have not been adopted in industry as widely
as originally expected, with the exception of flexibility in assembly. This is, perhaps, because of
the fact that flexibility in assembly is relatively easy to implement (due to innately short or even
zero set-up times), while flexibility in machining requires sophisticated and expensive equipment
in order to ensure sufficiently short set-ups. Nevertheless, for the sake of completeness, we briefly
overview below the results obtained to-date in various areas of research on production flexibility.

The publications on flexible multi-product systems can be classified into two groups: design
and analysis. Representative papers on design include Kusiak (1985), Stecke (1985), Kimemia and
Gershwin (1985), Dallery and Frein (1986), Heragu and Kusiak (1988), Dallery and Stecke (1990),
Tetzlaff (1990) and several chapters of the monographs by Tempelmeier and Kuhn (1993) and
Buzacott and Shanthikumar (1993). The main issues addressed are machine layout, flexible material
handling, structures of inventory storage, flexible planning and scheduling, etc. The approaches
are typically based on optimization. The results obtained provide guidance for designing flexible
machining and assembly operations.

The literature on performance analysis is less extensive. Namely, publications by Yao (1983),
Buzacott (1984), Yao and Buzacott (1986), and Tempelmeier, Kuhn, and Tetzlaff (1989) use queu-
ing theory methods to investigate the performance of flexible manufacturing systems and quantify
the effects of flexibility. Papers by Krieg and Kuhn (2002), Colledani, Matta, and Tolio (2005),
and Colledani et al. (2008) use a decomposition approach to compute the throughput and buffer
occupancy in linear and nonlinear multi-product manufacturing systems. Finally, Li and Huang
(2005), Zhao, Li, and Huang (2014), Zhao and Li (2014), and Zhao and Li (2015) use the aggre-
gation approach to investigate the throughput and bottlenecks of multi-product serial lines. This
literature differs from the MJP problems considered in this work largely because it does not address
the issues related to the product-mix and its effect on the performance metrics.

The literature on mixed-model assembly is also quite extensive, with activities starting in the
60s and continuing until today. As it follows from its name, it addresses systems manufacturing
different models of a given product. The main problems considered in this literature are devoted to
line balancing/workforce assignment and production scheduling (sequencing). The former addresses
design issues related to the architecture of the production line, the number of work stations, the
tasks assigned to each of them, and the number of operators and their task assignments so that
the desired system cycle time is satisfied. The latter is concerned with operational issues related to
sequencing model release so that the production of each model is as close to the desired product-mix
as possible. In some papers, these two problems are addressed simultaneously (see, for instance,
one of the first papers in the field by Thomopoulos (1967), and a paper by Merengo, Nava, and
Pozzetti (1999)); in most cases, however, they are addressed separately. Below is a brief overview
of this literature.

The line balancing/workforce assignment literature considers problems with various objective
functions and constraints. Typical objective functions are line efficiency, number of stations, line
cycle time, workforce amount and its efficiency. Typical constraints arise from precedence relations,
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operation capacities, space/topological considerations, ergonomic issues, etc. The main surveys of
this literature are van Zante-de Fokkert and de Kok (1997), Boysen, Fliedner, and Scholl (2008),
and Battaia and Dolgui (2013). Recent representative papers on workforce assignment are Battaia
et al. (2015), Bruecker et al. (2015), and Moreira et al. (2017). An example of manufacturing cell
design so that workforce efficiency is maximized can be found in Klampfl, Gusikhin, and Rossi
(2005). The mathematical approaches in this literature are typically based on optimization (often
mixed integer programming) combined with various heuristics (simulated annealing, Tabu search,
genetic algorithms, swarm intelligence, etc.). Although the research in this area is still active today
(see, for instance, Delice et al. (2017), and Roshani and Nazemi (2017), it can be viewed as a
mature engineering field with a substantial practical importance.

The mixed-model scheduling literature also presents numerous techniques based on different
goals and criteria involved (see the review by Boysen, Fliedner, and Scholl (2009)). Some of them
are focused on leveling the schedule (Miltenburg (1989), Kubiak and Sethi (1991), Bard, Shtub,
and Joshi (1994)), other intend to minimize work overload (Li, Gao, and Sun (2012)), still others
utilize cyclic scheduling. The cyclic scheduling is a method for scheduling small batches so that the
throughput is maximized, if the cycles are performed in perpetuity (see the reviews by Dawande
et al. (2005), Brauner (2008), and Levner et al. (2010)). The approaches here are Gantt charts,
PERT, and optimization algorithms coupled with heuristics. The application of cyclic scheduling
to mixed-model assembly is based on the notion of minimum product set (MPS), i.e., the smallest
set of products, which respects the desired model-mix. For instance, if the desired model-mix is 500
of model A and 200 of model B, the MPS is p5, 2q. Given the MPS, one can use cyclic scheduling to
obtain the optimal sequencing. It has been shown that this approach outperforms other approaches
as far as the throughput is concerned (see Sawik, 2012).

Throughout the above-mentioned literature (with a few exceptions, see Bowman and Muckstadt
(1993), Karabati and Tan (1998), Tan and Karabati (2000), and Lee and Lee (2005)), it is assumed
that the operations (or “machines”) are reliable and experience no breakdowns. While this may be
true in well-organized manual assembly (e.g., final assembly in automotive plants), in automated or
partially automated systems (e.g., body or paint shops) this is not the case – breakdowns do occur
and substantially impede systems’ performance. A contrasting assumption of MJP formulation
is that the machines are unreliable, with random breakdown and repair times. The problems
considered in MJP reflect this assumption: As indicated in Subsection 1.3, they are centered on
the throughput, work-in-process, and bottleneck analysis of the resulting stochastic systems as
functions of the product-mix. The latter feature – dependency on the product-mix – makes the
MJP formulation different from the mixed-model assembly and novel in the area of performance
analysis of stochastic production systems as well.

In summary, the relationship among the three areas considered above can be viewed as follows:
The solution of the balancing/workforce assignment problem is the input to the mixed-model
sequencing problem; similarly, the solution of the sequencing problem can be viewed as the input
to MJP problems. Thus, advancements in each area would lead to advancements in flexible multi-
product manufacturing as a whole.

1.7 Paper outline and abbreviations/notations

The remainder of this paper is structured as follows: Section 2 introduces the work-based model. In
Section 3, this model is used for performance and bottleneck investigation of MJP serial lines. In
Section 4, qualitative and quantitative behavior of the throughput and bottlenecks as functions of
the product-mix is investigated. Section 5 introduces the notion of the Product-Mix Performance
Portrait and illustrates its behavior for systems with two and three job-types. An application of the
results obtained to an underbody assembly system at an automotive assembly plant is described
in Section 6. Finally, Section 7 formulates the conclusion and topics for future research. All proofs
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are included in the Appendix.
Throughout this paper, the following abbreviations and notations are used:
Abbreviations: BN – bottleneck; JPH – jobs per hour; MJP – multi-job production; PP – per-

formance portrait; PSE – production systems engineering; SJP – single-job production.
Notations: b – buffer; BL – probability of blockage; c – machine capacity; e – machine efficiency;

λ – machine breakdown rate; M – number of machines in a serial line; m – machine; µ – machine
repair rate; N – buffer capacity; r � rr1, � � � , rSs – product-mix; S – number of job-types; smci
– system-modified capacity of mi; ST – probability of starvation; τ – machine cycle time; TPj –
throughput of job-type j; TPv – throughput of virtual job; tpi – stand-alone throughput of mi; Wi

– work-capacity of mi; wij – work-requirement of job j at mi; WIPi – work-in-process in bi.

2. Work-Based Model

The work-based model of MJP serial lines (see Figure 1) is defined by the following assumptions:

(i) Each machine mi, i � 1, � � � ,M , is characterized by its work-capacity, Wi (in units of
work/min).

(ii) Each job-type, Jj , j � 1, � � � , S, is characterized by its work-requirements wij , i �
1, � � � ,M ; j � 1, � � � , S, (in units of work/job), i.e., by the vector of work-required, wj �
rw1j , � � � , wMjs. The set-up time of each job-type is zero.

(iii) The jobs are released one-by-one according to a given product-mix r � rr1, � � � , rSs,
°S
j�1 rj �

1, where rj is the fraction of job-type Jj to be manufactured. The release sequence is formed
by selecting each job-type j with probability rj , j � 1, � � � , S.

(iv) The buffers are not dedicated.

While these features of the model are novel, the remaining ones follow standard conventions
used in serial lines modeling and analysis (as, for instance, in Li and Meerkov (2009)):

(v) Machines are characterized by the breakdown and repair rates, λi and µi (in units of 1/min),
respectively; this implies that the machines are exponential with the average up- and down-
time given by Tup,i �

1
λi

and Tdown,i �
1
µi

, and with machine efficiency ei �
µi

λi�µi
.

(vi) The first machine is not starved and the last machine is not blocked.
(vii) Specific technical conventions, under which the MJP lines are analyzed in this paper, are:

 the machines obey the blocked-before-service assumption;
 the breakdowns are time-dependent;
 the flow model description is used;
 the job release also follows the flow model convention.

Discussion: (a) The machine work-capacity, Wi, is defined by the technological operation it
carries out. In addition to the welding operation mentioned in Subsection 1.4, it can be the feed
rate of a cutting instrument in turning, milling or drilling; the rate of etching or material deposition
in semiconductor manufacturing; the number of assembly steps carried out in a robotic or manual
assembly operation per unit of time, etc. The units of work in job work-requirements, wij , are the
same as in the corresponding machines (but in terms of work per job-type, rather than work per
unit of time).

(b) As it follows from (i) and (ii), the time necessary to process a job-type j on machine i (i.e.,
the cycle time of machine i for processing job j) is

τij �
wij
Wi

, i � 1, � � � ,M ; j � 1, � � � , S. (1)

While in the part-based model the cycle time is an independent variable, (1) indicates that in the

8



May 30, 2017 International Journal of Production Research alavian˙denno˙meerkov

work-based model it is not: wij and Wi are the independent variables. This allows to investigate
the effect of the job work-requirements on the system’s throughput and bottleneck.

(c) The random job release of assumption (iii) is introduced for simplicity. The issues of perfor-
mance under other job release policies (e.g., cyclic scheduling) are beyond the scope of this paper
and will be addressed in future work.

(d) Also for simplicity, we use the exponential machine reliability model of assumption (v);
other reliability models, e.g., Weibull, gamma, log-normal can be considered as well (using the
approximations developed in Li and Meerkov (2009)).

(e) The technical conventions mentioned in (vii) are introduced to simplify the analysis and can
be substituted by others discussed in the literature, e.g., those used in Gershwin (1994).

(f) Assumptions (i)-(vii) define open (non-palletized) serial lines. If the line under consideration
is closed (i.e., palletized), the results obtained based on model (i)-(vii) provide an upper bound of
performance for the corresponding closed line. Indeed, since pallets may lead only to impediment of
the open system performance (by starving the first machine for pallets or blocking the last machine
by the pallet return buffer), a closed line cannot perform better than the corresponding open line.
In the future, we plan to extend the results of this paper to MJP closed lines (using the approach
reported in Li and Meerkov (2009)).

(g) Model (i)-(vii) can be used for analysis of SJP systems as well. In this case, S � 1 and
wij � wi. While several results in this direction are available online1, they are not included here
due to space limitations.

The performance metrics of production systems in the framework of work-based model (i)-(vii)
are as follows: TPj , j � 1, � � � , S – the average number of jobs of type j produced by the last
machine per unit of time; TP �

°
j TPj – the average total number of jobs produced by the

last machine per unit of time; WIPi, i � 1, � � � ,M � 1 – the average number of jobs in buffer
bi; STi, i � 2, � � � ,M – the probability that machine mi is starved; BLi, i � 1, � � � ,M � 1 – the
probability that machine mi is blocked. The methods for evaluating these performance metrics and
identification of bottlenecks as functions of the product-mix are described next.

3. Performance and Bottleneck Analyses of MJP Serial Lines In the Framework of
Work-based Model

3.1 Performance analysis

3.1.1 Procedure

Consider an MJP serial line defined by assumptions (i)-(vii) and denote its performance metrics as

TP �
°S
j�1 TPj , WIPi, STi, and BLi. To evaluate these characteristics, the following three-stage

procedure is introduced:

Stage I: Given the work-requirements wij , i � 1, � � � ,M, j � 1, � � � , S, define the work-
requirements of the virtual job at machine mi as the work imposed on mi under a given
product-mix rr1, � � � , rSs, i.e.,

wi,v :�
Ş

j�1

rjwij . (2)

Stage II: Consider the virtual SJP line consisting of the machines and buffers of the original MJP
line, but manufacturing the virtual job. Denote this line as SJPv and its performance metrics

1http://web.eecs.umich.edu/˜smm/publications/MJP/MJPfull.pdf
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Figure 3. Flow diagram for MJP serial line performance evaluation

as TPv, WIPi,v, STi,v, and BLi,v. Evaluate these performance metrics using the recursive
aggregation procedure described in Li and Meerkov (2009) by expressions (11.40)-(11.49)
(with the machine capacity ci replaced by Wi{wi,v). As a result, SJPv is approximated byySJPv with the performance metrics yTP v, {WIP i,v, xST i,v, and yBLi,v.

Stage III: Calculate the estimates of the performance metrics of the original MJP line according
to

yTP j � rjyTP v, j � 1, � � � , S, {WIP i �{WIP i,v, i � 1, � � � ,M � 1,xST i � xST i,v, i � 2, � � � ,M, yBLi �yBLi,v, i � 1, � � � ,M � 1. (3)

3.1.2 Accuracy

The above procedure is illustrated in Figure 3. Each of its stages may introduce errors in the
performance metrics estimates. We denote these errors as εI

X , εII
X , and εIII

X , where the subscript
‘X’ stands for one of the four performance metrics. In order to quantify the errors of Stage III,
we evaluate the errors denoted as εT

X , where ‘T’ stands for the total error between the metrics of

MJP and zMJP, and compare εTx with εIx and εIIx .
For Stage I, these errors are defined as follows:

εI
TP �

|TP � TPv|

TP
� 100%, εI

WIP �
1

M � 1

M�1¸
i�1

|WIPi �WIPi,v|

Ni
� 100%,

εI
ST �

1

M � 1

M̧

i�2

|STi � STi,v|, εI
BL �

1

M � 1

M�1¸
i�1

|BLi �BLi,v|, (4)

The errors εII
X , εIII

X , and εT
X are defined similarly.

Specific MJP lines, for which these errors have been evaluated, are as follows: The values of M
and S have been selected from the sets

M P t2, 3, 4, 5u, S P t2, 3, 4u. (5)

For each pair pM,Sq, 2000 MJP serial lines have been created by selecting their parameters ran-
domly and equiprobably from:

Tup,i P r20, 100s, ei P r0.80, 0.99s,Wi P r0.75, 1.25s, wij P r1.0, 1.5s,

Ni � tkiWiTdown,iu� 1, where ki P t1, 2, 3, 4, 5u, (6)

rj P r0.1, 0.9s so that
Ş

j�1

rj � 1,

where ki � Ni
µi

Wi
represents the number of average downtimes the buffer of capacity Ni protects

10
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machine i. Thus, the total of 24,000 lines have been constructed and evaluated using the following
simulation procedure (for MJP and SJPv): For each line, 20 discrete-event simulation runs have
been carried out. Discrete-event model assumes jobs are released and processed individually one
after another and their type is determined randomly according to the product-mix (as opposed
to flow model in which a continuous flow of jobs is released and processed continuously). In each
simulation run, the first 20,000 units of time were considered as warm-up period, and the subsequent
180,000 units of time were used to statistically evaluate TP sj , WIP si , ST si , and BLsi , where s is the
index of the simulation run. This leads to the expected values denoted as TPj , WIPi, STi, and
BLi, with 95% confidence intervals less than 0.002 for TP , less than 0.1 for WIPi, and less than
0.005 for STi and BLi.

The results of these analyses are shown in Table 1. Examining these data, we formulate:

Observation 3.1.

 Stage I induces practically no errors in all four performance metrics for all M and S consid-
ered.

 Stage II does introduce errors in all performance metrics. The errors in TP are two-to-four
times smaller than those in WIP . The errors in BL and ST are practically identical. All the
errors are increasing functions of M and practically independent of S. We note that these

Table 1. Average errors and confidence intervals
(a) For Stage I

M 2 3 4 5
S 2 3 4 2 3 4 2 3 4 2 3 4

εI
TP (%)

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.2
� 0.004 � 0.004 � 0.009 � 0.004 � 0.009 � 0.009 � 0.004 � 0.009 � 0.009 � 0.004 � 0.004 � 0.009

εI
WIP (%)

0.5 0.8 0.8 0.4 0.6 0.7 0.4 0.5 0.6 0.3 0.5 0.5
�0.15 �0.18 �0.13 �0.08 �0.13 �0.12 �0.07 �0.11 �0.11 �0.06 �0.08 �0.09

εI
BL

0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
�0.0001 �0.0001 �0.0001 �0.0001 �0.0001 �0.0001 �0.0001 �0.0001 �0.0001 �0.0001 �0.0001 �0.0001

εI
ST

0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
�0.0001 �0.0001 �0.0001 �0.0001 �0.0001 �0.0001 �0.0001 �0.0001 �0.0001 �0.0001 �0.0001 �0.0001

(b) For Stage II

M 2 3 4 5
S 2 3 4 2 3 4 2 3 4 2 3 4

εII
yTP

(%)
0.1 0.1 0.1 1.0 0.8 0.8 1.4 1.6 1.7 2.1 2.0 2.2

� 0.004 � 0.004 � 0.004 � 0.076 � 0.067 � 0.067 � 0.085 � 0.089 � 0.089 � 0.103 � 0.098 � 0.107

εII
{WIP

(%)
0.2 0.2 0.2 4.1 4.2 4.3 6.4 6.5 7.0 8.0 8.7 8.0

�0.016 �0.017 �0.018 �0.76 �0.775 �0.77 �0.903 �0.998 �1.025 �1.077 �1.104 �1.011

εII
yBL

0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03
�0.001 �0.001 �0.001 �0.001 �0.001 �0.001 �0.002 �0.002 �0.002 �0.002 �0.002 �0.002

εII
yST

0.01 0.01 0.01 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03
�0.001 �0.001 �0.001 �0.002 �0.002 �0.001 �0.002 �0.002 �0.002 �0.002 �0.003 �0.002

(c) Total

M 2 3 4 5
S 2 3 4 2 3 4 2 3 4 2 3 4

εT
yTP

(%)
0.1 0.1 0.2 1.0 0.9 0.9 1.5 1.7 1.8 2.2 2.1 2.3

� 0.009 � 0.004 � 0.009 � 0.080 � 0.072 � 0.067 � 0.085 � 0.094 � 0.089 � 0.107 � 0.103 � 0.107

εT
{WIP

(%)
0.5 0.8 0.9 4.4 4.6 4.8 6.6 6.8 7.4 8.2 9.0 8.3

�0.152 �0.182 �0.139 �0.757 �0.783 �0.779 �0.904 �1 �1.024 �1.074 �1.105 �1.01

εT
yBL

0.011 0.010 0.010 0.018 0.018 0.017 0.023 0.023 0.024 0.028 0.028 0.027
�0.001 �0.001 �0.001 �0.001 �0.001 �0.001 �0.002 �0.002 �0.002 �0.002 �0.002 �0.002

εT
yST

0.010 0.011 0.010 0.020 0.019 0.019 0.026 0.026 0.026 0.029 0.032 0.029
�0.001 �0.001 �0.001 �0.002 �0.002 �0.002 �0.002 �0.002 �0.002 �0.002 �0.003 �0.002
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errors are similar to those observed in evaluating asynchronous exponential SJP lines (see Li
and Meerkov 2009, Section 11.2).

 Stage III introduces practically no errors. This follows from the fact that the values of εIIX and
εTX are almost the same.

Along with quantifying the three stage method for performance analysis of MJP serial lines, this
observation indicates that using the flow model of system description and job release (rather than
discrete-event model) does not lead to substantial errors and, thus, can be used for MJP systems
analysis.

3.2 Bottleneck definition and identification

3.2.1 Definition

The issue of bottlenecks in the framework of the work-based model is addressed as follows: Recall
that the bottleneck in the framework of the part-based model is defined in Li and Meerkov (2009)
as the machine mi with the largest effect on the system throughput quantified as

BTP

Bci
¡
BTP

Bcj
, @j � i, (7)

where ck � 1{τk is the capacity of machine mk, and τk is its cycle time. Since in the work-
based model the virtual cycle time is wk,v

Wk
and the only variable characterizing the machine is Wk,

expression (7) becomes:

wi,v
BTP

BWi
¡ wj,v

BTP

BWj
, @j � i. (8)

We use this expression as the definition of the bottleneck in MJP systems. Note that (8) implies
that MJP bottlenecks depend not only on the machines and buffers, but also on the job work-
requirements and the product-mix. In other words, in the same system with the same jobs, different
product-mixes may lead to different bottlenecks.

3.2.2 Identification method

To identify BNs defined by (8), we use the procedure described in Li and Meerkov (2009, Sec-
tion 13.2) for bottlenecks in SJP lines. This method consists of the following:

 Calculate BLi and STi for the line in question.
 Place these data under the block diagram of the line and assign arrows from mi to mi�1 if
BLi ¡ STi�1, and from mi�1 to mi, if STi�1 ¡ BLi (see Figure 4).

 If there is only one machine with no emanating arrows, it is the bottleneck in the sense of
(8).

 If there are multiple machines with no emanating arrows, the one with the largest severity is
the Primary BN, where the severity is defined by:

S1 � |BL1 � ST2|,

Si � |BLi�1 � STi| � |BLi � STi�1|, i � 2, � � � ,M � 1, (9)

SM � |BLM�1 � STM |.

12
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Figure 4. Illustration of BN identification using the arrow method

We use this method to determine bottlenecks of the first three systems of Figure 3 and denote

them as BN, BNv and yBNv, respectively. Note that the bottleneck of the fourth system, zMJP, is

the same as yBNv (because starvations and blockages of ySJPv are the same as those of zMJP, see
(3)). Also note that BN and BNv are identified using pST,BLq and pSTv, BLvq, respectively, whileyBNv is determined by calculating (xST v,yBLvq.
3.2.3 Accuracy

The discrepancy among the BNs of first three systems of Figure 3 are quantified by

εI
BN �

°K
k�1 I

Ipkq

K
� 100%, εII

BN �

°K
k�1 I

IIpkq

K
� 100%, εT

BN �

°K
k�1 I

Tpkq

K
� 100%, (10)

where k P t1, � � � ,Ku is the index of the line analyzed and IIpkq is the indicator function taking
value 0 when BN � BNv and 1 otherwise. The indicator functions IIIpkq and ITpkq are defined

similarly (i.e., in terms of the discrepancies between BNv and yBNv and between BN and yBNv,
respectively).

We evaluate εI
BN , εII

BN , and εT
BN using the 24000 lines described in Subsection 3.1.2. The results

are shown in Table 2. Part (a) of this table considers all 24,000 lines mentioned in Subsection 3.1.2.
In some of these lines there is only one machine with no emanating arrows (i.e., a single BN).
In others there are multiple machines with no emanating arrows and, thus, multiple BNs, one of
which, with the largest severity (see (9)), is the Primary BN. To characterize each of these cases,
Table 2(a) addresses systems with single and multiple BNs, while Table 2(b) considers only lines
with a single BN. Based on Table 2, we formulate:

Observation 3.2.

 Stage I induces practically no errors in BN identification for all M and S considered.
 Stage II introduces significant errors in BN identification. These errors increase as a function

of M and are almost independent of S. The errors of BN identification in MJP lines with a
single BN are about 40% smaller than those in the case of combined single/multiple BNs.

 Since, εIIBN and εTBN are almost the same, we conclude that Stage III introduces practically
no errors in BN identification.

The methods developed in this section are used in the rest of this paper for performance analysis
of MJP serial lines as a function of the product-mix.

4. MJP Systems Throughput and Bottlenecks as Functions of Product-Mix

4.1 Preliminaries

The throughput, bottlenecks, and other characteristics of SJP serial lines as functions of machine
and buffer parameters have been investigated in numerous studies (see, for instance, Li and Meerkov

13
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Table 2. Errors of BN identification
(a) Combined single/multiple BNs

M 2 3 4 5
S 2 3 4 2 3 4 2 3 4 2 3 4

εIBN (%) 0.2 0.0 0.2 0.1 0.4 0.4 0.7 0.5 0.7 0.6 0.6 0.6
εIIBN (%) 1.0 0.8 0.8 3.2 3.5 3.3 7.6 6.5 7.3 9.6 10.7 11.3
εTBN (%) 0.9 0.8 0.8 3.2 3.6 3.3 7.3 6.75 7.6 9.9 10.6 11.4

(b) Single BNs only

M 2 3 4 5
S 2 3 4 2 3 4 2 3 4 2 3 4

εIBN (%) 0.2 0.0 0.2 0.1 0.2 0.4 0.5 0.3 0.6 0.4 0.4 0.4
εIIBN (%) 1.0 0.8 0.8 2.3 2.4 2.5 4.5 3.9 4.5 4.8 6.4 6.7
εTBN (%) 0.9 0.8 0.8 2.3 2.6 2.5 4.2 4.1 4.7 5.1 6.3 6.6
# lines 2000 2000 2000 1901 1900 1899 1770 1766 1771 1629 1615 1626

2009, and references therein). Since, as it is shown in Section 3, performance analysis of MJP
systems can be reduced to analysis of SJP lines (manufacturing virtual jobs), the results of these
studies are applicable to MJP lines as well. Thus, the only open issue is the behavior of the
throughput and bottlenecks as functions of the product-mix. The current section is intended to
investigate this issue. We begin with the case of S � 2 job-types and then generalize the results
for S ¡ 2. Note that for S � 2, the product-mix is defined by a scalar r � r1 (since r2 � 1 � r1)
and, therefore, TPvprq � TPvprq.

For N � 0 and N � 888, (where N � rN1, � � � , NM�1s and 0 and 888 indicate zero and infinite

buffers, respectively), the function yTP vprq � TPvprq can be evaluated quite easily – without using
the aggregation procedure of Li and Meerkov (2009, Section 11.2). Indeed, for N �888, TP vprq can
be calculated as

TP vpr,N �888q � minttp1,vprq, � � � , tpM,vprqu, (11)

where tpi,vprq is the virtual stand-alone throughput of machine i given by

tpi,vprq �
eiWi

wi,vprq
�

eiWi

rwi1 � p1 � rqwi2
. (12)

For N � 0, TP vprq is

TP vpr,N � 0q � mintsmc1,vprq, � � � , smcM,vprqu, (13)

where smci,vprq is the so-called virtual system-modified capacity of machine i given by

smci,vprq �
Wi

wi,vprq

M¹
i�1

ei �
Wi

rwi1 � p1 � rqwi2

M¹
i�1

ei. (14)

Clearly,yTP vpr,Nq for all other N ’s is upper- and lower-bounded by (11) and (13), respectively,
i.e.,

TP vpr,N � 0q ¤yTP vpr,Nq ¤ TP vpr,N �888q. (15)

In this section, we first analyze the behavior of (11) and (13) as functions of the product-mix
and then address the case of finite buffers in more details.

It turns out that both qualitative and quantitative properties of (11) and (13) depend on the
relationship between the jobs work-requirements. To characterize this relationship, consider an MJP

14
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serial line producing two job-types, J1 and J2, with work-requirements, wi1 and wi2, i � 1, � � � ,M ,
respectively, and with product-mix r. Let the bottleneck of this line be the machine denoted as
BNJ1 when r � 1, and BNJ2 when r � 0. Note that in all systems of Figure 3, the bottleneck for
N �888 is the machine with the smallest stand-alone throughput, and for N � 0 the machine with
the smallest system-modified capacity.

Definition 4.1. Given a serial MJP line defined by assumptions (i)-(vii), jobs J1 and J2 are called
non-conflicting if BNJ1 � BNJ2. Otherwise the jobs are conflicting.

In Subsections 4.2 and 4.3 below, we characterize the behavior of the throughput and bottlenecks
of MJP lines for non-conflicting and conflicting jobs, respectively.

4.2 Throughput and bottlenecks of MJP serial lines with non-conflicting jobs

4.2.1 The case of two job-types

Theorem 4.1. Consider an MJP serial line defined by assumptions (i)-(vii) and producing two
non-conflicting jobs, J1 and J2, with BNJ1 � BNJ2 � mk. Then, if all buffers are of infinite or
zero capacity,

(a) mk is the BNvprq for all r P r0, 1s;
(b) TP vprq can be calculated using

TP vprq �
1

r
TPJ1

� 1�r
TPJ2

. (16)

(c) TPvprq is:

 strictly monotonically increasing if TPJ1 ¡ TPJ2;
 strictly monotonically decreasing if TPJ1   TPJ2;
 constant if TPJ1 � TPJ2.

Proof: See the Appendix.
For finite buffer capacity, N , statements (a) and (c) of this theorem have been verified nu-

merically. Specifically, we have constructed 25,000 non-conflicting MJP lines with five machines
producing two job-types. The machine and job-type parameters have been selected randomly and

equiprobably from the sets defined in (6). For each of these lines, yTP vpr,Nq and yBNvpr,Nq have
been evaluated using the method of Section 3 for r P t0, 0.01, 0.02, � � � , 1u. As a result, we obtain
the following:

Observation 4.1. Among the 25,000 lines with non-conflicting jobs analyzed:

 yBNvpr,Nq, is the same machine for all r P r0, 1s in 99.2% of cases.

 yTP vpr,Nq satisfies statement (c) of Theorem 4.1 in 92.8% of cases.

Statement (b) of Theorem 4.1 shows that TPvprq for N � 0 and N �888 can be represented not
only by (11) and (13), but by (16) as well. This representation allows to evaluate the throughput
for any buffer capacity. Indeed, motivated by (16), introduce the following approximation for the
throughput of a serial MJP line with arbitrary buffer capacity vector N :

}TP vpr,Nq �
1

r
yTP J1pNq

� 1�r
yTP J2pNq

, (17)

where yTP J1pNq and yTP J2pNq denote the system throughput operating in the SJP regime, which

can be evaluated using the method of Section 3. Note that while }TP v represents the throughput
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Figure 5. Throughput of a five-machine MJP line with non-conflicting jobs

for any r P r0, 1s, it requires calculating only yTP J1pNq and yTP J2pNq.
To investigate the accuracy of approximation (17), we used the same 25,000 MJP lines as before,

along with theiryTP vpr,Nq. In addition, we computed}TP vprq using (17) and quantified its accuracy
by

ε
}TP

� max
0 r 1

$&
%
���yTP vpr,Nq �}TP vpr,Nq

���
yTP vprq

,.
- � 100%. (18)

As a result, we obtain:

Observation 4.2. Among the 25,000 lines with non-conflicting jobs analyzed, ε
}TP

¤ 1% in 95.8%
of cases and ε

}TP
¤ 2% in 98.5% of cases.

Thus, expression (17) offers an efficient way for calculating the throughput of MJP lines with
two non-conflicting jobs for any buffer capacity.

Example 4.1. Consider an MJP line with five identical machines, defined by λi � 0.01, µi � 0.09,
Wi � 1, producing two jobs, J1 and J2, with the following work-requirements: w1 � r1.3, 3.0, 2.3,
1.9, 1.9], w2 � r1.9, 4.0, 1.6, 1.4, 2.6s. For N �888 and N � 0, the jobs are non-conflicting and the
common BN is m2. Thus, for N � 888, according to (11), TP vprq � tp2,vprq for all r P r0, 1s; the
graph of TP vprq is shown in Figure 5(a), along with the stand-alone throughputs of non-bottleneck
machines. Similarly, for N � 0, TP vprq � smc2,vprq for all r P r0, 1s; the graph of TP vprq is shown
in Figure 5(b), along with the system-modified capacities of other machines. Finally, when the

capacity of all buffers is equal to 2, the graph of }TP vpr,Nq, calculated according to (17), is shown
in Figure 5(c), along with its upper- and lower-bounds, TP vpr,N � 888q, TP vpr,N � 0q. Clearly,
in this MJP system, even small buffers of capacity 2 lead to the throughput within 12% of that for
N �888 for all r. �

4.2.2 The case of more than two job-type

Theorem 4.2. Consider an MJP serial line defined by assumptions (i)-(vii) and producing S
pairwise non-conflicting jobs, J1, � � � , JS with BNJ1 � � � � � BNJS

� mk. Then, if all buffers are
of infinite or zero capacity,

(a) mk is the BNvprq for all product-mixes r1, � � � , rS,
°S
j�1 rj � 1;
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(b) TPvprq can be calculated using

TP vprq �
1

r1
TPJ1

� � � � � rS
TPJS

,
Ş

j�1

rj � 1, (19)

where TPJj
is the throughput of the line producing job-type Jj in SJP regime.

Proof: Similar to that of Theorem 4.1.
For finite buffer capacity, N , the TP can be evaluated using an expression analogous to (17):

}TP vprq � 1
r1
yTP J1pNq

� � � � � rS
yTP JSpNq

,
Ş

j�1

rj � 1, (20)

where yTP JjpNq, j � 1, � � � , S, is the throughput of the line in question manufacturing job-type Jj
in SJP regime. These results offer a possibility for analyzing MJP serial lines with non-conflicting
jobs for any number of job-types.

4.3 Throughput and bottlenecks of MJP serial lines with conflicting jobs

The behavior of MJP serial lines with conflicting jobs is more complex than that with non-
conflicting ones. Therefore, we begin with the simplest case of two-machine lines and then generalize
the results to systems with M ¡ 2.

4.3.1 Two-machine lines

Theorem 4.3. Consider an MJP serial line defined by assumptions (i)-(vii) and producing two
conflicting jobs, J1 and J2, having BNJ1 � m1 and BNJ2 � m2. Then, if the buffer is of infinite
or zero capacity,

(a) BNvprq has one switch on the interval r P r0, 1s:

BNvprq �

"
m2, if r P r0, r�q,

m1, if r P pr�, 1s,
(21)

where r� is the unique solution of tp1prq � tp2prq for N � 8 or smc1prq � smc2prq for N � 0.
(b) TPvprq can be calculated using

TPvprq �

$&
%

r�
r

TPvpr�q
� r��r

TPJ2

, if 0 ¤ r   r�,

1�r�
r�r�

TPJ1
� 1�r

TPvpr�q

, if r� ¤ r ¤ 1.
(22)

(c) This function of r is:

 non-monotonic if tw11 ¡ w12, w21   w22u, so that TPvpr
�q ¡ maxtTPJ1, TPJ2u;

 strictly monotonically increasing if tw11 ¡ w12, w21 ¡ w22u and decreasing if
tw11   w12, w21   w22u;

 non-strictly monotonic if wi1 � wi2 for either i � 1 or 2, so that TPvpr
�q � TPJ1 or

TPvpr
�q � TPJ2.

Proof: See the Appendix.
The first bullet in part (c) implies that there exists a range of product-mixes, where the throughput

of MJP line is larger than the throughput of each individual job-type manufactured in SJP regime.
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ŤP v(r,N = 10)
TPv(r,N = 0)

(a) w1 � r3.0, 2.0s, w2 � r2.0, 3.0s

r
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
P
(r
)

14

15

16

17

18

19

20

21

22

23

24

r∗

TPv(r,N = ∞)

T̂P v(r,N = 10)
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Figure 6. Patterns of throughput behavior for a two-machine line producing two conflicting jobs

This phenomenon occurs because SJP regimes of J1 and J2 overload their respective BNs, whereas
MJP with the “right” product-mix leads to a more balanced work allocation on both BNs and,
thus, to a higher throughput.

For finite buffer capacity, statements (a) and (c) of Theorem 4.3 have been verified using the
same approach as in Subsection 4.2. Specifically, we have constructed 25,000 two-machine MJP lines

with two conflicting job-types and evaluated their yTP vpr,Nq and yBNvpr,Nq using the method of
Section 3 for r P t0, 0.01, 0.02, � � � , 1u. As a result, we obtained the following:

Observation 4.3. Among the 25,000 lines with conflicting jobs analyzed:

 yBNvpr,Nq, r P r0, 1s, switches once in 99.1% of cases.

 If w11 ¡ w12 and w21   w22, then there exist r1 and r2 such that yTP vpr,Nq ¡

maxrtyTP J1pNq,yTP J2pNqu for all r P rr1, r2s in 76% of cases.
 If the difference between job work-requirements is sufficiently large, so that w11�w12

0.5pw11�w12q
¡ 0.1

and w22�w21

0.5pw22�w21q
¡ 0.1, the inequality yTP vpr,Nq ¡ maxrtyTP J1pNq,yTP J2pNqu, r P rr1, r2s,

takes place in 96.7% of cases.

Statement (b) of Theorem 4.3 can also be generalized for arbitrary buffer capacity. This is
accomplished as follows: Consider a two-machine MJP line with a buffer of capacity N and r�

defined by tp1prq � tp2prq. Using the method of Section 3, evaluate yTP vpr,Nq for the following

four values of r: r � 0, r
�

2 ,
1�r�

2 , and 1. Introduce the estimate of throughput,}TP vpr,Nq, @r P r0, 1s,
as follows:

}TP vpr,Nq � min
0¤r¤1

$&
% 0.5r�

r
yTP p0.5r�,Nq

� 0.5r��r
yTP J2pNq

,
0.5p1 � r�q

r�0.5p1�r�q
yTP J1pNq

� 1�r
yTP p0.5p1�r�,Nqq

,.
- (23)

Quantifying the accuracy of (23) by error (18), we obtain:

Observation 4.4. Among the 25,000 lines with conflicting jobs analyzed, ε
}TP

¤ 2% in 95.6% of
cases and ε

}TP
¤ 3% in 99.9% of the cases.

Example 4.2. Consider a two-machine MJP line with λi � 0.01, µi � 0.09, Wi � 1, i � 1, 2,
and with two conflicting jobs having work-requirements corresponding to the three cases of part
(c) of Theorem 4.3. For each set of the work-requirements, Figure 6 shows TPvprq, evaluated for
N � 0 and N � 8 using (22). As one can see, under the conditions of the first case, there
exists a set R of r’s (which includes the point of the bottleneck switch r�), such that TPvprq ¡
maxtTPJ1, TPJ2u,@r P R, and TPvpr

�q is 22% larger than TPJ1 and TPJ2. Parts (b) and (c)

of Figure 6 illustrate the behavior of TPvprq for two other cases. The behavior of yTP vpr,N �
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Figure 7. Patterns of throughput behavior for a four-machine line producing two conflicting jobs

10q (evaluated using the method of Section 3) and }TP vpr,N � 10q (calculated using (23)) are

also shown in Figure 6. As one can see, }TP vpr,N � 10q provides an accurate approximation ofyTP vpr,N � 10q, except for a small neighborhood of r�. �

4.3.2 M ¡ 2-machine lines

For MJP lines with more than two machines and conflicting jobs, numerous patterns of TPvprq
and BNv behavior are possible. The theorem below quantifies these patterns.

Theorem 4.4. Consider an MJP serial line defined by assumptions (i)-(vii) with M ¡ 2 machines
producing two conflicting jobs, J1 and J2. Then, if all buffers are of infinite or zero capacity,

(a) BNvprq has at most M�1 switches in the interval r P r0, 1s; each machine can be a bottleneck
only in a single interval of r0, 1s;

(b) TPvprq has the following properties:

 if the number of switches of BNvprq is 1 ¤ K ¤ M � 1, then TPvprq, r P r0, 1s has K � 1
intervals of continuous differentiability; the BNvprq switches occur at the values of r, where
TPvprq is non-differentiable (the value of K is referred to as the order of conflict);

 if wBNJ1,1 ¡ wBNJ1,2 and wBNJ2,2 ¡ wBNJ2,1, then there exist r1 and r2such that TPvprq ¡
maxtTPJ1, TPJ2u,@r P pr

1, r2q.

Proof: See the Appendix.
Note that a characterization of the throughput similar to (23) is possible for M ¡ 2 as well.

However, this characterization becomes too involved, and, therefore, is not pursued here.

Example 4.3. To illustrate Theorem 4.4, consider a four-machine MJP line with λi � 0.01,
µi � 0.09, Wi � 1, manufacturing two jobs with work-requirements indicated in Figure 7. Using
(11) and (13) we evaluate TPvprq for N � 888 and N � 0. The results are shown in Figure 7,
illustrating three types of the order of conflicts and the resulting patterns of TPvprq behavior. For

0  N  888, yTP vpr,Nq can be evaluated for various r P r0, 1s using the method of Section 3. The
results for N � 1 are shown in Figure 7 as well. �

4.3.3 S ¡ 2 job-types

In the case of S ¡ 2 job-types, the throughput and bottlenecks are functions of S � 1 inde-
pendent variabls, r1, � � � , rS�1 (with rS � 1 �

°S�1
j�1 rj), i.e., TP � TP pr1, � � � , rS�1q, BN �

BNpr1, � � � , rS�1q. This implies that both TP and BNs are defined not on the interval r0, 1s, as in
the case of S � 2, but on a pS � 1q-dimensional simplex in RS�1, referred to as the product-mix
simplex. The following statement characterizes BNs in S ¡ 2 case.
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Figure 8. Illustration of bottleneck positions and the throughput in a serial line with three pairwise conflicting job-types

Theorem 4.5. Consider an MJP serial line defined by assumptions (i)-(vii) with M ¥ 2 machines,
infinite or zero buffers and manufacturing S ¥ 3 job-types, at least two of which are conflicting.
Consider also the product-mix simplex S P RS�1, defined by

°S
j�1 rj � 1. Then, there are at most

M non-intersecting simply connected open sets in S, such that each machine is the BN in at most
one of them.

Proof: See the Appendix. Note that this proof provides also a way for calculating the open sets
mentioned in the theorem.

If the buffers are finite, BNs and TP for any product-mix can be calculated using the method
of Section 3.

Example 4.4. To illustrate Theorem 4.5, consider a five-machine MJP line with λi � 0.01, µi �
0.09, Wi � 1, and infinite buffers, manufacturing three pairwise conflicting job-types with the
following work-requirements:

w1 � r2, 1, 1, 1, 1s, w2 � r1, 2, 1, 1, 1s, w3 � r1, 1, 2, 1, 1s.

For this system, the above-mentioned product-mix simplex and the open sets of Theorem 4.5 are
shown in Figure 8(a). Clearly, in this system, m4 and m5 are never bottlenecks, while three other
machines are bottlenecks for the indicated open sets. Note that in this case, the closure of the open
sets constitutes a partitioning of S. The resulting throughput as a function of r1 and r2 is shown
in Figure 8(b). It indicates, in particular, that if r1 � r2 � r3 � 1{3, the TPv is 40.5 JPH, while
for r1 � 0.6, r2 � 0.1, r3 � 0.3, the TPv is 16.7% smaller (33.75 JPH).

5. Product-mix Performance Portraits

In System Science, the global behavior of dynamical systems is often represented by a state-space
portrait (SSP), (see Khalil 2002), which is a set of system trajectories for various initial conditions.
The SSP succinctly represents the main properties of the system � its steady states, stability, limit
cycles, and even strange attractors – in a single picture. Control system engineers often use SSP
in order to design a controller, which forces the system operation in a desired regime.

Similar to SSP, it is possible to represent the global behavior of MJP systems by their portraits
with respect to the product-mix. We refer to this representation as the Product-Mix Performance
Portrait or just Performance Portrait (PP). It consists of two graphs: the throughput graph, which

shows yTP v as a function of the product-mix, and the bottleneck graph, which showsyBNv, also as a
function of the product-mix. The purpose of this section is to discuss the PP and outline its utility
for operations management and control.

We have created a software tool for calculating and displaying PPs. The calculations are based
on the method of Section 3. Several screenshots of this tool are shown in Figures 9 and 10 for S � 2
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Figure 9. PP of MJP serial line with two conflicting job-types

and S � 3, respectively. Each of these figures is elucidated below.
Figure 9 represents the PP of the MJP serial line with the following parameters:

λ � r0.05, 0.05, 0.06, 0.04, 0.09s, µ � r0.95, 0.95, 0.94, 0.96, 0.91s,

W � r1, 1, 1, 1, 1s, N � r1, 2, 1, 3s,

w1 � r2, 1, 1, 1, 1s, w2 � r1, 1.75, 1.75, 1, 1s.

As indicated in this figure, it shows PP with respect to J1; the PP with respect to J2 is the
symmetric image of the one shown. For the purposes of explanation, we have added to this PP two
lines, AB and CD.

The shaded area in the throughput graph is the feasibility domain: for every r, it represents all

attainable yTP v’s. The line AB indicates all product-mixes, for which yTP v of at least 30 JPH can
be obtained. The line CD indicates all the throughputs, which can be attained for the product-mix

corresponding to point C. Finally, r� is the product-mix, for which yTP vprq is maximized.
The bottleneck graph represents the bottleneck machine for each product-mix. It indicates the

most efficient way for system improvement (as far as the machines are concerned). For example, if
the desired product-mix is rd P r0, r

�q , the most effective way of system improvement is to improve
operation m3; if rd P pr

�, 1s, m1 should be improved.
For MJP systems with S ¡ 2, an additional feature is introduced in PP to avoid the difficulties

of three and higher dimensional representations. Specifically, for S � 3, we introduce a one-handle
sliding bar, which enables to modify the ratio of non-primary job-types. Figure 10 provides an
illustration of such a PP for a system with parameters given by

λ � r0.05, 0.05, 0.06, 0.04, 0.09s, µ � r0.95, 0.95, 0.94, 0.96, 0.91s,

W � r1, 1, 1, 1, 1s, N � r1, 1, 1, 1s,

w1 � r1, 3, 1, 1, 2.1s, w2 � r1, 1, 3, 1, 2.1s, w3 � r2, 1, 2.5, 1, 2.1s.

The rows of Figure 10 show the system performance for the primary job-type being, J1, J2, and J3,
respectively, while the columns show the performance for various allocations of the non-primary
job-types (0.2/0.8, 0.5/0.5, and 0.8/0.2, respectively), defined by the one-handle sliding bar at the
bottom of each graph. The meaning and the significance of the throughput and the bottleneck
graphs, remain the same as in the case of S � 2.

For the case of S ¡ 3, performance portraits can be constructed in a similar manner. Namely,
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Table 3. Line MA machines and jobs parameters for Week 1 (modified due to confidentiality reasons)

Operation i 1 2 3 4 5 6 7 8 9 10 11

λi
�

1
min

	
0.007 0.023 0.015 0.001 0.062 0.083 0.037 0.078 0.009 0.002 0.006

µi
�

1
min

	
0.339 2.857 0.541 20.000 0.282 0.571 0.377 0.408 0.952 20.000 0.267

ei 0.98 0.99 0.97 1.00 0.82 0.87 0.91 0.84 0.99 1.00 0.98
τi1 �

wi1
Wi

(sec) 150.0 1.0 39.5 30.3 30.6 44.9 45.5 42.8 40.7 23.8 33.9

τi2 �
wi2
Wi

(sec) 1.0 75.0 43.3 24.5 27.3 42.7 44.5 43.8 38.2 22.5 35.1

instead of using one-handle sliding bar, we use an pS � 2q-handle sliding bar partitioned (by the
handles) into S � 1 regions, each representing the ratios of non-primary rj ’s, whereas the primary
one is the argument of the throughput and bottleneck graphs.

The utility of PP for operations management is that for any assigned product-mix, the manager
can see which level of throughput can be achieved and, if necessary, which operation(s) should be
most profitably improved, if a higher throughput is required to meet the daily production target.

6. Application

The methods developed in this paper have been applied in a six-month project devoted to analysis
and potential improvements of a section of the underbody assembly system at an automotive
assembly plant. This section, which we refer to as Line MA (where MA stands for the Main
Assembly), has been the bottleneck of the body shop for a long time, consistently producing about
15% less than its daily target. The goal of the project was to identify the reasons for these losses
and suggest steps for their elimination.

Line MA consists of 11 automated welding operations and a conveyor material handling system.
Although it is capable of producing four different products, over 98% of the product-mix (which
changes daily) is comprised of two job-types. Therefore, we assume S � 2. Operations 3, 4, 7, and
8 require subassemblies. While the system is closed (with respect to the carriers, transporting the
jobs from one operation to another), during the six months of the study no blockage or starvation
by carriers have been reported; therefore, Line MA is modeled as an open line.

The system performance has been monitored by the Production Monitoring System, which has
been used to collect the data for this study. Based on these data, a mathematical model of Line
MA has been constructed and validated (with the weekly error of throughput in the range of 1 to
9%, with the average 5.1%). Due to confidentiality reasons, we are displaying here modified data,
although this modification has been carried out so that the qualitative features of the system at
hand are preserved.

The modified machine and job parameters for Line MA are shown in Table 3 for Week 1; the
data for other weeks are similar. The capacity of all buffers between the machines is 1. Based on
these data, the bottlenecks of Line MA in SJP regimes are BNJ1 � OP1 and BNJ2 � OP2. Thus,
jobs J1 and J2 are conflicting.

Using the data of Table 3, we obtain the PP of Line MA shown in Figure 11(a). As one can
see, the maximum throughput is 60 JPH, reached for r P r0.25, 0.40s. When r is close to 0 or 1,
throughput is 46 JPH and 24 JPH, respectively. The bottlenecks are OP2 for r P r0, 0.23s, OP6 for
r P r0.23, 0.39s, and OP1 for r P r0.39, 1s.

The modified daily target for Line MA, as indicated by the thick horizontal line in Figure 11(a)
(and in the subsequent figures), is 55 JPH, with the product-mix in the range r P r0.25, 0.50s. As
this line indicates, this target can be achieved only for r P r0.25, 0.42s. Thus, for r P p0.42, 0.50s
production is below the target, up to 15% (for r � 0.50).

These performance characteristics are achieved assuming that Line MA is not starved by sub-
assemblies. In reality, however, these starvations do take place. Table 4 shows the probabilities of
starvation by the subassemblies. To take them into account, we modify the breakdown rates of the
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Figure 10. PP of MJP serial line with three job-types
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(a) Without starvation by subassem-

blies

(b) With starvation by subassemblies

Figure 11. PP of Line MA

Table 4. Starvations of MA by subassemblies and adjusted machine parameters

Operation i 1 2 3 4 5 6 7 8 9 10 11

ST sub
i – – 0.02 0.02 – – 0.18 0.04 – – –
e1i 0.98 0.99 0.95 0.98 0.82 0.87 0.75 0.81 0.99 1.00 0.98
µ1i 0.339 2.857 0.309 0.0718 0.282 0.571 0.108 0.324 0.952 20.0 0.267

respective operations of Line MA by introducing the starvation-induced efficiency, e1i, of operation
i as follows:

e1i �
µ1i

λi � µ1i
�

µi
λi � µi

� p1 � ST subi q, (24)

where µ1i is the adjusted breakdown rate and ST subi is the probability of operation i starvation by
its subassembly. From this relationship, the adjusted breakdown rate, µ1i, is

µ1i �
λieip1 � ST subi q

1 � eip1 � ST subi q
. (25)

The values of µ1i and e1i are also shown in Table 4. Note that this approach is akin to that used in
Sevastyanov (1962).

Using the data of Table 3 with µi and ei substituted by µ1i and e1i from Table 4, we obtain the
PP of Line MA with the starvations by subassemblies taken into account (see Figure 11(b)). As
the horizontal line indicates, the throughput is 13-15% below the target for all r P r0.25, 0.50s and
the bottleneck shifts to OP7. Thus, improvement of OP7 is necessary.

As it follows from Table 4, OP7 suffers from significant starvations by subassemblies. Examining
the reasons for these starvations, it has been determined that they are mostly due to late delivery
of the subassemblies by in-plant delivery trucks and by tardiness in manual loading operations.
To investigate the effect of improvement of subassembly delivery and loading, we have calculated
PP with ST sub7 � 0, shown in Figure 12(a). As one can see from this PP (which is quite similar
to that of Figure 11(a)), eliminating ST sub7 allows for meeting the daily target with product-mix
r P r0.25, 0.42s. To meet the daily target for r P p0.42, 0.50s, one must improve the corresponding
bottleneck, which is OP1. Since OP1 has high efficiency and no starvation by subassemblies, the
only venue of improvement is to reduce its cycle time. Reducing the cycle time for J1 of OP1 by
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(a) Without starvation of OP7 (b) Without starvation of OP7 and
OP1 cycle time reduced

Figure 12. PP of improved Line MA

15% allows the system to satisfy its daily target for all product-mixes, as shown in Figure 12(b).
Note that cycle time of OP1 for J2 does not need to be reduced.

The above recommendations have been communicated to the plant management and found their
favorable acceptance.

7. Conclusions and Future Work

This paper addressed a class of multi-product flexible manufacturing systems, referred to as MJP,
where all job-types are processed by the same sequence of machines, but with different processing
time at some or all operations. The MJP system performance is defined in terms of a required
product-mix, which may be changing on a daily basis.

For this class of systems, the paper introduced a set of industrially motivated problems of analysis
and continuous improvement, solutions of which would allow to increase MJP systems efficiency.
For some of these problems, pertaining to MJP serial lines with exponential machines, the paper
provides solutions. Specifically, it investigates the behavior of the throughput and bottlenecks as
functions of the product-mix. The results obtained lead to a possibility of calculating the so-called
Product-mix Performance Portrait, which represents the system behavior for all feasible product-
mixes and which can be used for operations management and improvement.

Obviously, these are just initial results, and numerous problems remain open. Some of them are
as follows:

 Extension of the results obtained in this paper for open serial MJP lines in the following
directions:

� lines with release based on cyclic scheduling;
� closed lines (with carriers);
� lines with non-perfect quality machines;
� lines with rework;
� lean buffering design;

 Analysis and improvement methods for MJP assembly systems. (Note that the underbody
manufacturing analyzed in Section 6 is, in fact, an assembly system; however, in the study
reported here we reduced it to a serial line using the measured probabilities of its starvation
by subassemblies.)

25



May 30, 2017 International Journal of Production Research alavian˙denno˙meerkov

 Robustness properties of MJP assembly systems. As illustrated in Figure 2, there may be
different configurations of subassembly lines supplying the main assembly. Which one of
these configurations is the most robust with respect to various perturbations, e.g., machine
downtime, release errors, etc.? Answering this question would lead to novel approaches to
MJP assembly systems design.

Solutions of the problems mentioned above will lead to a relatively complete and practical theory
of MJP systems analysis, design, and continuous improvement.
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Appendix A. Proofs

Proof of Theorem 4.1: For N � 888, BN-machine for each job, j, is the machine with the
smallest stand-alone throughput, given by

tpij �
eiWi

wij
, i � 1, � � � ,M, j � 1, 2. (A.1)

Since mk is the common BN for J1 and J2, tpk1   tpi1 and tpk2   tpi2, @i � k. Substituting (A.1)
into these inequalities and inverting them, we have

wk1

ekWk
¡

wi1
eiWi

, @i � k, (A.2)

wk2

ekWk
¡

wi2
eiWi

, @i � k. (A.3)

Multiplying both sides of (A.2) by r, and (A.3) by p1� rq, and adding the inequalities, we obtain:

rwk1 � p1 � rqwk2

ekWk
¡
rwi1 � p1 � rqwi2

eiWi
, @i � k, r P r0, 1s. (A.4)
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Since the numerators in (A.4) are the work contents of the virtual jobs (see (2)), the above inequality
can be rewritten as

wk,vprq

ekWk
¡
wi,vprq

eiWi
, @i � k, r P r0, 1s, (A.5)

which implies that

tpk,vprq   tpi,vprq,@i � k, r P r0, 1s. (A.6)

Clearly, expression (A.6) shows that mk is the BN machine of the virtual job for all r P r0, 1s. This
proves part (a) of the theorem.

Using (11) and (12), part (b) is proved as follows:

TPvprq � min
1¤i¤M

ttpi,vprqu � min
1¤i¤M

"
eiWi

wi,vprq

*
�

ekWk

wk,vprq
(A.7)

�
ekWk

rwk1 � p1 � rqwk2
�

1

r wk1

ekWk
� p1 � rq wk2

ekWk

�
1

r
TPJ1

� 1�r
TPJ2

.

Monotonicity properties of part (c) follow directly from the derivative of (16) with respect to r:

BTPvprq

Br
�

TPJ1 � TPJ2

TPJ1TPJ2

�
r

TPJ1
� 1�r

TPJ2

	2 . (A.8)

For N � 0, the bottleneck and throughput are evaluated using the same steps as above,
replacing tpij by smcij �Wi{wij and using (13) and (14). �

Proof of Theorem 4.3: For N � 8, BNpr � 1q � m1 implies that tp1,vp1q   tp2,vp1q.
Similarly, BNpr � 0q � m2 implies tp1,vp0q ¡ tp2,vp0q. Since, as it follows from (12), tpi,vprq is a
continuous function of r P r0, 1s, there exist r�, such that tp1,vpr

�q � tp2,vpr
�q. Solving for r�, we

obtain

r� �
w22

e2W2
� w12

e1W1

w11�w12

e1W1
� w22�w21

e2W2

, (A.9)

which is unique as long as w11 � w12 or w21 � w22. Thus, TPv is characterized by

TPvprq � min
r
ttpi,vprqu �

"
tp1,vprq, if r� ¤ r ¤ 1,
tp2,vprq, if 0 ¤ r   r�.

(A.10)

Using (8), it follows from (A.10) that BN of the line is m1 for r P pr�, 1s, and m2 for r P r0, r�q.
This proves part (a).

To prove part (b), we generalize (12) for any r1   r2 (rather than r1 � 0 and r2 � 1). This is

29



May 30, 2017 International Journal of Production Research alavian˙denno˙meerkov

accomplished as follows:

tpi,vprq �
eiWi

rwi1 � p1 � rqwi2
�

1
r
tpi1

� 1�r
tpi2

�
r2 � r1

rpr2�r1q
tpi1

� p1�rqpr2�r1q
tpi2

�
r2 � r1

rr2�rr1
tpi1

� r2�r1�rr2�rr1
tpi2

�
r2 � r1

rr2�rr1�r1r2�r1r2
tpi1

� r2�r1�rr2�rr1�r�r�r1r2�r1r2
tpi2

�
r2 � r1

pr � r1q
�
r2
tpi1

� 1�r2
tpi2

	
� pr2 � rq

�
r1
tpi1

� 1�r1
tpi2

	
�

r2 � r1
r�r1

tpi,vpr2q
� r2�r

tpi,vpr1q

. (A.11)

The last equality in (A.11) is obtained by taking into account that tpi,vpr1q �
1

r1{tpi1�p1�r1q{tpi2
and

tpi,vpr2q �
1

r2{tpi1�p1�r2q{tpi2
.

Each tpi,vprq in (A.10) can be rewritten using (A.11). Specifically, for tp1,vprq, set r1 � r� and
r2 � 1, and for tp2,vprq, set r1 � 0 and r2 � r�. This proves part (b).

For part (c), differentiating (12) with respect to r gives

Btpi,vprq

Br
�

eiWipwi1 � wi2q

prwi1 � p1 � rqwi2q2
. (A.12)

As a result, if wi1 ¡ wi2, then tpi,vprq is a decreasing function of r. Similarly, if wi1   wi2, then
tpi,vprq is an increasing function of r. Finally, if wi1 � wi2, then tpi,vprq is a constant. With
conditions given in the first bullet of part (c), for r P r0, r�s, TPvprq � tp2,vprq is an increasing
function of r; similarly, for r P rr�, 1s, TPvprq � tp1,vprq is decreasing. Therefore, TPvprq is non-
monotonic. Furthermore, r� yields maximum throughput, because of the monotonicity of each
constituent part of TPvprq. This proves bullet one. Other bullets can be proved similarly.

For N � 0, the proof is similar to the above, using smci,vprq instead of tpi,vprq. The BN switch
point in this case is

r� �
w22

W2
� w12

W1

w11�w12

e1W1
� w22�w21

W2

. (A.13)

�
To prove Theorem 4.4, we need the following auxiliary statements:

Lemma A.1. Every pair of functions ptpi,vprq, tpj,vprqq, defined by (12), has at most one inter-
section on r P r0, 1s, unless the two functions are identical in the sense that tpi,vprq � tpj,vprq,@r P
r0, 1s.

Proof: If tpi1   tpj1 and tpi2   tpj2, then for all r P p0, 1q, r
tpi1

¡ r
tpi2

and 1�r
tpi1

¡ 1�r
tpi2

. Thus,

tpi,vprq   tpj,vprq, and, therefore, tpi,vprq and tpj,vprq do not intersect in (0,1). Similar result takes
place when tpi1 ¡ tpj1 and tpi2 ¡ tpj2.

If tpi1   tpj1 and tpi2 ¡ tpj2, then solving tpi,vprq � tpj,vprq yields

r

tpi1
�

1 � r

tpi2
�

r

tpj1
�

1 � r

tpj2
, (A.14)

which has a unique solution r� �
tp�1

j2 �tp
�1
i2

tp�1
i1 �tp

�1
i2 �tp

�1
j1 �tp

�1
j2

. If tpi1 ¡ tpj1 and tpi2   tpj2, solving

tpi,vprq � tpj,vprq yields similar results. �
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Lemma A.2. The equality tpi,vprq � minttp1,vprq, � � � , tpM,vprqu takes place on at most one in-
terval of r P[0,1].

Proof: As follows from Lemma A.1, since every pair of functions, tpi,vprq and tpj,vprq, intersects
only once, at, say, r�, one of the following takes place:

(α) tpi,vprq   tpa,vprq, for r P r0, r�q, or
(β) tpi,vprq   tpb,vprq, for r P pr�, 1s.

If (α) takes place, tpi,vprq cannot be the minimum for any r P pr�, 1s, because at least tpa,vprq has
smaller values in this range. Similar statement holds for (β). Now, consider machine i with tpi,vprq,
for which no machine l with tpl,vprq   tpi,vprq,@r P r0, 1s exists (if such machine exists, then
tpi,vprq is not the minimum). Let tpa1

prq, � � � , tpas
prq be tp functions, which intersect with tpi,v at

ra1
  � � �   ras

, and satisfy item (α) above. Similarly, let tpb1prq, � � � , tpbtprq be tp functions, which
intersect with tpi,v at rb1   � � �   rbt , and satisfy item (β). Then, as stated earlier, tpi,v cannot be

the minimum in
�s
j�1praj

, 1s � pra1
, 1s. It also cannot be the minimum in

�t
k�1r0, rbkq � r0, rbtq.

Thus, if rbt   ra1
, then tpi,vprq � minttp1,vprq � � � , tpM,vprqu only at the interval prbt , ra1

q. �

Proof of Theorem 4.4: As it follows from Lemma A.2, there can be no more than M
intervals in which different machines are the bottlenecks. Thus, at most M � 1 switch points exist.
This proves part (a).

For part (b), let r1   � � �   rK be product-mixes at which bottlenecks switch from one machine
to another and i0, � � � , iK the indices of the corresponding bottleneck machines (i.e., K switches
and K � 1 bottlenecks). Defining r0 � 0, rK�1 � 1, the bottleneck is given by

BNprq �

$''&
''%

mi0 , if r0 ¤ r   r1,
mi1 , if r1   r   r2,
� � �
miK , if rK   r ¤ rK�1,

which implies the throughput given by

TPvprq �

$''&
''%

tpi0prq, if r0 ¤ r   r1,
tpi1prq, if r1   r   r2,
� � �
tpiK prq, if rK   r ¤ rK�1.

Since, as it follows from (12), tpiprq is continuously differentiable on [0,1] and at r � rk, k �
1, � � � ,K, tpikprq � tpik�1

prq, TPvprq is piecewise differentiable on [0,1]. This proves the first bullet
of part (b).

Under conditions of the second bullet of part (b), tpi0,vprq is increasing on r0, r1s and tpiK ,vprq is
decreasing on rrK , 1s. If TPJ1   TPJ2, then for any r P p0, r1q, TPvprq ¡ TPJ2 ¡ TPJ1. Similarly,
if TPJ1 ¡ TPJ2, then for any r P prK , 1q, TPvprq ¡ TPJ1 ¡ TPJ2. Finally, if TPJ1 � TPJ2, for
any r P p0, r1q

�
prK , 1q, TPvprq ¡ TPJ1 � TPJ2. This proves the second bullet of part (b). �

Proof of Theorem 4.5: Assume that all buffers are of infinite capacity. Define the set
Sk,i � tr P S|tpk,vprq   tpi,vprqu, which is a hyperplane in S, obtained by solving the strict
inequality tpkprq   tpiprq, or, equivalently,

°S�1
j�1 rjpwkj � wkSq � wkS

ekWk
¡

°S�1
j�1 rjpwij � wiSq � wiS

eiWi
. (A.15)
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Then, the set Sk, where mk is the BN, is given by

Sk :�
£

i�1,��� ,M
i�k

Sk,i, (A.16)

which is the intersection of hyperplanes and, therefore, a simply connected convex open set (since
its complement in S is closed). Note that some of Sk’s may be empty, implying that mk is not a BN
for any product-mix. Since at least two job-types are conflicting, there are at least two non-empty
Sk’s. It is possible to show (by contradiction) that Sk’s are non-intersecting. Thus, each machine
may be the BN in at most one simply connected subset of S.

The proof for the case of zero buffers is identical to the above, using smck instead of tpk. �

32


