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We present a method for predicting the free energy landscape of fluids at low temperatures from
flat-histogram grand canonical Monte Carlo simulations performed at higher ones. We illustrate our
approach for both pure and multicomponent systems using two different sampling methods as a
demonstration. This allows us to predict the thermodynamic behavior of systems which undergo both
first order and continuous phase transitions upon cooling using simulations performed only at higher
temperatures. After surveying a variety of different systems, we identify a range of temperature dif-
ferences over which the extrapolation of high temperature simulations tends to quantitatively predict
the thermodynamic properties of fluids at lower ones. Beyond this range, extrapolation still provides
a reasonably well-informed estimate of the free energy landscape; this prediction then requires less
computational effort to refine with an additional simulation at the desired temperature than reconstruc-
tion of the surface without any initial estimate. In either case, this method significantly increases the
computational efficiency of these flat-histogram methods when investigating thermodynamic proper-
ties of fluids over a wide range of temperatures. For example, we demonstrate how a binary fluid phase
diagram may be quantitatively predicted for many temperatures using only information obtained from
a single supercritical state. [http://dx.doi.org/10.1063/1.4975331]

I. INTRODUCTION

When cooled from a high temperature state, many phys-
ical systems undergo phase transitions1,2 that may be clas-
sified as either first-order or continuous transitions.2,3 First-
order phase transitions are characterized by a discontinuous
change in the first derivative of the free energy across the
transition. For instance, when a fluid condenses or crystal-
lizes, its density changes discontinuously during the phase
change. Continuous transitions do not display a discontinuity
and are instead characterized by a divergent order parameter
susceptibility and correlations length, with a power-law decay
of these correlations near critical points.3 Some examples
of this include the spontaneous magnetization of ferromag-
netic materials, superconductivity, and the self-assembly of
amphiphiles.

Understanding first-order fluid phase transitions is of
key importance in numerous fields. These transitions form
the foundation of many industrial chemical separation pro-
cesses such as distillation and adsorption.1,4–7 They also play
a key role in chemical and pharmaceutical manufacturing7–9

and have even been shown to control the organization of
materials inside cells.10,11 Similarly, second and higher order
phase transitions play a major role in designing soft recon-
figurable materials,12–19 engineering pharmaceutical delivery
systems,20 controlling the micellization of surfactants,21–23

and understanding protein folding and self-association.24

a)Electronic mail: nathan.mahynski@nist.gov

Yet experimental investigations of phase transitions often
struggle to provide insight into the microscopic details of
these phenomena, and many idealized theoretical models inad-
equately represent the thermodynamics of realistic systems;
consequently, computer simulations have become a valuable
tool for investigating these transitions.

Monte Carlo (MC) simulations are particularly well-
suited to studying the thermodynamic properties of fluid
phases, and a plethora of different techniques have been
developed over the past half century.2,25–27 In particular,
Gibbs ensemble simulations are highly effective at establish-
ing coexistence properties of subcritical systems that undergo
first order fluid-fluid phase transitions, except near a crit-
ical point.26,28 Grand canonical Monte Carlo (GCMC), in
concert with finite-size scaling, is more efficient near criti-
cality.26,29,30 Histogram reweighting techniques often greatly
increase the computational efficiency of GCMC simulations
as they allow one to predict the behavior of a system at other
externally imposed conditions, e.g., temperature or chemi-
cal potential.26 However, this increase in efficiency is lim-
ited by how far one can accurately reweight data obtained
at some reference condition, which is determined by the
breadth of phase space which can be effectively sampled
at the reference state. Reweighting large differences in tem-
perature, for instance, is therefore often very difficult as
the most important regions of phase space can shift signifi-
cantly.31

Flat-histogram techniques, such as Wang-Landau (WL)32

or transition matrix Monte Carlo (TMMC),33–35 use biased
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sampling to explore an entire range of predefined phase
space according to one or more order parameters chosen.
Consequently, they provide complete information about this
phase space by constructing the (logarithm of the) relative
probability, ln Π(~Ψ), of all macrostates in that space defined
by some set of order parameters, ~Ψ. However, these order
parameters must be chosen carefully so that they range over all
physically accessible and meaningful states of the particular
system in question, and should capture the phase transition
being studied. For fluids, energy is a particularly trouble-
some space to cover as its bounds are not often known a
priori as a function of other thermodynamic variables, and
is generally continuous unlike, e.g., particle number which is
discrete. Therefore, its thermodynamic conjugate, β ≡ 1/kBT
(kB is the Boltzmann constant and T is temperature), can be
a cumbersome variable to employ in reweighting schemes,
and obtaining thermodynamic properties about systems at
very low temperatures from simulations at higher ones can be
difficult.

Direct simulations of fluid systems at lower temperatures
tend to be much more difficult than those at higher temper-
atures because of large activation energy barriers between
different states, i.e., long tunneling times. Even flat-histogram
approaches which are designed to have inherently low tunnel-
ing times, such as Wang-Landau or metadynamics,2,27,32,36,37

struggle to converge for many systems at very low tempera-
tures. However, if a good initial guess of the lnΠ(~Ψ) surface
can be provided a priori, convergence can be greatly accel-
erated. Other approaches, such as expanded-ensemble tech-
niques and intelligently biased MC moves including Rosen-
bluth sampling for polymers,27 aggregation volume bias,38,39

and cluster moves40,41 often help ameliorate the problem by
increasing the computational efficiency of MC simulations,
but are not a panacea.

In this work, we present a method by which the macrostate
distribution of an open system may be extrapolated from
one temperature to another, which enables us to circumvent
these difficulties and increase the computational efficiency of
flat-histogram methods commonly used to study fluid phase
behavior. We derive expressions for the thermodynamic partial
derivatives of the macrostate distribution with respect to tem-
perature in two different ensembles, which allows us to con-
struct a Taylor series expansion of the lnΠ(~Ψ) surface at each
discrete macrostate defined by the ensemble’s order parameter.
The order parameters we employ are different for each ensem-
ble, but are based on particle numbers, which are discrete, and
therefore have well-defined bounds. Here, we focus on rela-
tively simple models for bulk and confined fluids, as well as
“patchy” particles, which can be used as coarse-grained mod-
els of proteins. These systems exhibit first order phase transi-
tions, capillary condensation, and self-assembly in the case of
patchy particles. We demonstrate how high-temperature sim-
ulations can be used to predict the free energy landscape and
resulting thermodynamic properties of these systems at much
lower temperatures where phase transitions occur. In many
instances, these predictions are accurate enough to directly
calculate fluid properties; in other instances, these predictions
serve as initial guesses of ln Π(~Ψ) which can be subsequently

refined with additional simulations at reduced computational
expense.

The remainder of this paper is organized as follows.
In Sec. II we discuss two different multicomponent sam-
pling approaches and review the particular flat-histogram
Monte Carlo technique we employ here. We then present the
results of the derivations which permit the extrapolation of
the macrostate distribution for a general k-component system
from one temperature to another. The complete derivations
are relegated to Appendices A and B in the interest of brevity.
In Sec. III we demonstrate our approach by applying it to
both pure component bulk fluids and mixtures, which undergo
first order phase separations upon cooling, using both ensem-
bles discussed in Sec. II to demonstrate their equivalence.
Subsequently, we demonstrate how these equations may be
employed to predict capillary condensation and prewetting
phase behavior. We then apply our approach to the study of
self-assembling patchy systems to demonstrate its capacity
to predict higher order transitions. Finally, we conclude in
Sec. IV and offer some perspective and outlook for future
work.

II. METHODS
A. Thermodynamic ensembles

We consider a multicomponent fluid system com-
posed of particles at fixed temperature, β = 1/kBT , vol-
ume, V, and chemical potentials, ~µ = (µ1, µ2, . . . , µk), for
each species in a k-component mixture. The partition func-
tion, Ξ(β, V , ~µ), for such a system may be expressed
as

Ξ(β, V , ~µ) =
∑
N1

exp (βµ1N1) . . .
∑
Nk

exp (βµkNk) Q(β, V , ~N),

(1)

where Q(β, V , ~N) is the canonical partition function for a
system at fixed temperature, volume, and particle number,
~N = (N1, N2, . . . , Nk). The natural logarithm of the probabil-
ity of observing a macrostate, defined by the number of each
species present, is given by

ln Π(~N ; β, V , ~µ) = β

k∑
i=1

µiNi + ln Q − ln Ξ. (2)

Given a known macrostate distribution, ln Π(~N ; β, V , ~µ0),

at one set of imposed chemical potentials, ~µ0, standard his-
togram reweighting techniques can be used to recalculate it at
any other given set, ~µ,

ln Π(~N ; ~µ) = ln Π(~N ; ~µ0) + β
k∑

i=1

(µi − µ
0
i )Ni + C, (3)

where C =−ln Ξ/Ξ0 which is a constant that may be neglected.
This macrostate distribution is then segmented at local min-
ima to divide different phases.42 Only the parts of the surface
belonging to a certain phase contribute to the properties of that
phase. Ensemble-averaged extensive properties, 〈X〉, may be
obtained as weighted averages of that property as a function
of the macrostate, X̃,
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〈Xa〉 =

∑
N1∈a . . .

∑
Nk ∈a Π(~N)X̃(~N)∑

N1∈a . . .
∑

Nk ∈a Π(~N)
, (4)

where a denotes the phase in question. Intensive quantities
are simply ratios of extensive ones, e.g., for a binary mixture
x1 = 〈N1〉/(〈N1〉 + 〈N2〉). Coexistence between two phases, a
and b, is defined for a fixed set of chemical potentials, ~µ, when

ln
∑
N1∈a

. . .
∑
Nk ∈a

Π(~N) = ln
∑
N1∈b

. . .
∑
Nk ∈b

Π(~N). (5)

This is equivalent to the condition of mechanical equilibrium,
requiring that the pressures of the two phases be equal, since

Pa =
ln Ξ
βV
=

ln
∑

N1∈a . . .
∑

Nk ∈a Π(~N)/Π(~0)

βV
, (6)

whereΠ(~0) denotes the value of the macrostate when there are
no particles in the system, i.e., ~N = ~0, at a given β, V, ~µ.43

However, it is sometimes more convenient to work in
a slightly modified ensemble where the total particle num-
ber, Ntot =

∑
i Ni, can be taken as the order parameter. This

reduces the number of order parameters needed for multicom-
ponent systems and has straightforward bounds; whereas, for
a highly size-asymmetric multicomponent system, simultane-
ously enumerating all valid possible combinations of particle
numbers is difficult or impossible to know a priori. It is
possible to express Eq. (1) as follows:

Ξ(β, V , ~µ) =
∑
Ntot

exp (βµ1Ntot)
∑
N2

exp (β∆µ2N2) . . .

×
∑
Nk

exp (β∆µkNk) Q(β, V , ~N) (7)

=
∑
Ntot

exp (βµ1Ntot)Υ(β, V , Ntot,∆~µ), (8)

where Υ(β, V , Ntot,∆~µ) is the isochoric semigrand partition
function,44,45 and ∆µi ≡ µi − µ1. As a result, we may express
the probability of a given macrostate as

ln Π(Ntot; β, V , µ1,∆~µ) = βµ1Ntot + ln Υ − ln Ξ. (9)

This is equivalent to Eq. (2), but it can be significantly sim-
pler to implement in simulations as we now have a scalar
order parameter.34,35 At a fixed ∆~µ, this distribution may be
reweighted to new µ1 values according to

ln Π(Ntot; µ1) = ln Π(Ntot; µ
0
1) + β(µ1 − µ

0
1)Ntot, (10)

where the trailing constant related to Ξ has been neglected.
Here, we have implemented both methods to demonstrate their
equivalence, and to illustrate how temperature extrapolation of
ln Π(~Ψ) works in both instances.

B. Simulations

Although a variety of flat-histogram methods exist, here
we employ a technique known as Wang-Landau Transition
Matrix Monte Carlo (WL-TMMC) to construct ln Π(~Ψ). This
technique is already described in detail elsewhere,33,34,46 but
we summarize the approach here. Wang-Landau (WL) sim-
ulations are used to build an initial guess of the macrostate
distribution since this technique has a relatively low tunnel-
ing time during the early stages of the simulation. However,

these simulations tend to converge slowly. The opposite tends
to be true of Transition Matrix Monte Carlo (TMMC); there-
fore, these techniques can be combined by using an initial WL
stage to build up an approximate ln Π(~Ψ) surface, which is
subsequently refined with TMMC.

The probability of observing a given microstate, s, in the
grand canonical ensemble with k-components is

π(s) =
exp (−βU(s))

Ξ

k∏
i=1

VNi(s) exp (βµiNi(s))
Ni(s)!

, (11)

where U(s) is the potential energy of the microstate. The
unbiased Metropolis acceptance criteria of moving from one
microstate, “x”, to another, “y”, is then

pu = min

[
1,
π(y)
π(x)

]
. (12)

In flat-histogram sampling, a proposed move is accepted with
a probability that is biased by some function, η(~Ψ), which
depends on the order parameter we have selected, ~Ψ. When
we wish to construct ln Π(~N), ~Ψ = ~N ; whereas if we wish
to construct ln Π(Ntot), ~Ψ = Ntot =

∑k
i=1 Ni. Flat-histogram

methods seek to construct the ln Π(~Ψ) surface by iteratively
converging this biasing function so that it is the inverse of
the macrostate distribution. Simulations proceed by accept-
ing moves weighted by this bias so that the biased proba-
bility of observing any macrostate is constant once η(~Ψ) has
converged,

pbias = min


1,

exp
(
η

[
~Ψ(y)

] )
exp

(
η

[
~Ψ(x)

] ) π(y)
π(x)


. (13)

Thus, once converged the biasing function provides the
macrostate distribution, according to

η(~Ψ) = − ln Π(~Ψ). (14)

Initially, η(~Ψ) is set to zero for all values of ~Ψ and constructed
using WL. As the simulation proceeds, different Monte Carlo
moves are made; after each move, the estimated macrostate
distribution (inverse of the bias) is incremented by an update
factor, f,

ln Π(~Ψ) = ln Π(~Ψ) + ln f . (15)

Initially ln f = 1, but is reduced as the simulation converges.
Convergence is estimated by recording a visited-states his-
togram, H(~Ψ), which monitors how often each macrostate has
been visited. When the minimum of H(~Ψ) is within 80% of the
mean value, ln f is reduced by a factor of 2, and H(~Ψ) is reset
to zero for each macrostate. This is repeated until ln f < 10−8

to build up an initial guess of ln Π(~Ψ), before refinement with
TMMC.

TMMC constructs its estimate of the macrostate distri-
bution differently. In this method, a collection matrix C is
recorded, which accumulates statistics about the unbiased
probability of transitioning between macrostates. The simu-
lation proceeds according to the biased acceptance criteria in



074101-4 Mahynski et al. J. Chem. Phys. 146, 074101 (2017)

Eq. (13), with C being updated after every attempted move,
regardless the outcome, via the following rules:

C
[
~Ψ(x)→ ~Ψ(y)

]
= C

[
~Ψ(x)→ ~Ψ(y)

]
+ pu, (16)

C
[
~Ψ(x)→ ~Ψ(x)

]
= C

[
~Ψ(x)→ ~Ψ(x)

]
+ 1 − pu. (17)

From the collection matrix, one can reconstruct the tran-
sition probability, P

[
x → y

]
, of going from macrostate “x”

to “y” by normalizing the accumulated unbiased probabilities
of this transition over all possible transitions which originated
from macrostate “x,”

P
[
x → y

]
=

C
[
~Ψ(x)→ ~Ψ(y)

]

∑
m C

[
~Ψ(x)→ ~Ψ(m)

] . (18)

The estimated macrostate distribution (inverse of the bias) is
then known from the detailed balance condition,

ln Π
[
~Ψ(y)

]
= ln Π

[
~Ψ(x)

]
+

P
[
~Ψ(x)→ ~Ψ(y)

]

P
[
~Ψ(y)→ ~Ψ(x)

] . (19)

The TMMC portion of the simulation is run long enough
to allow P to converge, after which ln Π(~Ψ) is obtained from
Eq. (14). It is clear, however, that when ~Ψ is not a scalar quan-
tity and there exist multiple “routes” from macrostate “x” to
“y”, it is not simple to reconstruct ln Π(~Ψ) and optimization
methods to minimize the error associated with the violation
of detailed balance must be employed.34 Directed sampling
along fixed routes or grids can help assist in this endeavor, and
has been detailed in Ref. 34. We adopt this approach here to
prove its equivalence to that of Ref. 35, in which ~Ψ = Ntot.
Regardless of the ~Ψ chosen, we also record extensive thermo-
dynamic properties as a function of the order parameter during
the simulations, as well as the products of different properties.
As we will show next, these will be necessary for the extrapo-
lation of ln Π(~Ψ) and extensive properties, X̃(~Ψ), to different
temperatures.

C. Temperature extrapolation

In order to predict the macrostate distribution, ln Π(~Ψ),
at temperatures different from the simulation temperature, we
expand it in a Taylor series up to some order, ξt ,

ln Π(~Ψ; β) = ln Π(~Ψ; β0)

+
∂ln Π(~Ψ)

∂β

������β0

∆β +
1
2!
∂2ln Π(~Ψ)

∂ β2

������β0

∆β2

+ . . . , (20)

where ∆β = β− β0 and β0 corresponds to the (inverse) simu-
lation temperature. A full derivation of the partial derivatives
for each term required is presented in Appendices A and B
for the interested reader. Here we present the results directly
for the sake of brevity. To evaluate these partial derivatives,
extensive properties and permutations of their products raised
to integer powers, such as N1, U2N2, and N1N2U, must be
collected in a histogram at each value of the order parameter,
~Ψ. For a pure component system, we require

W (~Ψ; ~ξ) = N ξ1
1 (~Ψ)Uξu (~Ψ), (21)

where ~ξ = (ξ1, ξu). Here, ξ1 and ξu are non-negative inte-
ger powers. We point out that throughout this manuscript we
take U to refer only to the potential energy of the system.
This is done for mathematical convenience, as it simplifies
the expressions for the derivatives and does not incur any
loss of generality (cf. Appendices A and B). Kinetic energy
effects may be incorporated into this approach; however, this
incurs additional complexity which is beyond the scope of this
paper and is the subject of forthcoming work. Extrapolation
of ln Π(~Ψ) requires all terms that satisfy ξ1 + ξu ≤ ξt . How-
ever, to extrapolate extensive property histograms to the same
order, ξt , we require all ξ1 + ξu ≤ ξt + 1. Therefore, we mea-
sure all ξi ∈ [0, ξt + 1]. In spite of this, the order with which
the macrostate distribution and extensive property histograms
are extrapolated need not be the same, and we have gener-
ally found that extensive property extrapolation can be done
at a lower order than ln Π(~Ψ) while remaining accurate. For
a k-component system, we must collect all

W (~Ψ; ~ξ) = N ξ1
1 (~Ψ)N ξ2

2 (~Ψ) . . .N ξk

k (~Ψ)Uξu (~Ψ), (22)

where ~ξ = (ξ1, . . . , ξk , ξu). Again, we record all ξi ∈ [0, ξt+1]
since to reach a desired order of extrapolation one requires∑
ξi ≤ ξt , and one order higher for the corresponding exten-

sive property extrapolation. In the case where the order param-
eter is given by the set of all particle numbers, ~Ψ = ~N , we
have

∂ln Π(~N)
∂β

=

k∑
i=1

µi (Ni − 〈Ni〉) −
(
Ũ − 〈U〉

)
. (23)

The second order term may be expressed as

∂2ln Π(~N)

∂β2
= −

k∑
i=1

µi
∂〈Ni〉

∂β
−
∂Ũ
∂β
+
∂〈U〉
∂β

, (24)

in which

∂〈W〉
∂β

=

k∑
i=1

µi f̂ (〈W〉, 〈Ni〉) − f̂ (〈W〉, 〈U〉), (25)

where 〈W〉 and W̃ denote average extensive quantities in dif-
ferent ensembles. The former is the grand canonical average
of some property which may be raised to some integer expo-
nent, e.g., 〈W〉 = 〈U3〉 or 〈W〉 = 〈N2

1 U〉, whereas the latter
refers to the canonical ensemble average of W. Average quan-
tities in the grand canonical ensemble are calculated from Eq.
(4), whereas average quantities in the canonical ensemble are
simply the values obtained from the corresponding extensive
property histograms recorded at a given order parameter value.
We use the notation f̂ (〈X〉, 〈Y〉) to denote the fluctuation of
extensive properties 〈X〉 and 〈Y〉 in the grand canonical ensem-
ble, such that f̂ (〈X〉, 〈Y〉) = 〈XY〉 − 〈X〉〈Y〉. It follows directly
that

∂ f̂ (〈X〉, 〈Y〉)
∂β

=
∂〈XY〉
∂β

− 〈X〉
∂〈Y〉
∂β
− 〈Y〉

∂〈X〉
∂β

. (26)

Higher order derivatives of the canonical average potential
energy at each ~N may be obtained by utilizing the fact that

∂Ũξu

∂β
= −f̃ (Ũξu , Ũ), (27)
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where f̃ (X̃, Ỹ ) is used to denote the fluctuation of exten-
sive properties X̃ and Ỹ in the canonical ensemble, such that
f̃ (X̃ , Ỹ ) = X̃Y − X̃Ỹ . Thus, akin to Eq. (26), derivatives of
fluctuations in this ensemble are given by

∂ f̃ (Ũξu , Ũ)
∂β

= −f̃ ( IUξu+1, Ũ) + Ũf̃ (Ũξu , Ũ) + Ũξu f̃ (Ũ, Ũ).

(28)

By recursive application of Eqs. (25)–(28), all higher order
terms may be obtained, given that the appropriate quantities
have been sampled during the simulation. Since the set of par-
ticle numbers is the order parameter in this case, the only
extensive quantity that must be extrapolated as temperature
changes is Ũ; however, this is only required if one wishes to
calculate 〈U〉 at the new temperature, and it is not necessary for
the calculation of ln Π(~Ψ). A simple Taylor series may again
be used, using Eq. (27), to evaluate the necessary derivatives.

In the case where the order parameter is chosen to be the
scalar N tot instead, the first two derivatives of the macrostate
distribution become

∂ln Π(Ntot)
∂β

= µ1 (Ntot − 〈Ntot〉) +
k∑

i=1

∆µi

(
Ñi − 〈Ni〉

)
−

(
Ũ − 〈U〉

)
, (29)

∂2 ln Π(Ntot)

∂β2
= −µ1

∂〈Ntot〉

∂β
+

k∑
i=1

∆µi
*
,

∂Ñi

∂β
−
∂〈Ni〉

∂β
+
-

−

(
∂Ũ
∂β
−
∂〈U〉
∂β

)
. (30)

By definition, ∆µ1 = 0, and hence the first term in the above
sums may be neglected; we include it only for notational con-
venience. Similarly, the requisite derivatives to evaluate these
terms are given by

∂〈Z〉
∂β
= µ1 f̂ (〈Z〉, 〈Ntot〉) +

k∑
i=1

∆µi f̂ (〈Z〉, 〈Ni〉) − f̂ (〈Z〉, 〈U〉)

(31)

and

∂Z̃
∂β
=

k∑
i=1

∆µi f̃ (Z̃ , Ñi) − f̃ (Z̃ , Ũ). (32)

In this ensemble, Z̃ refers to an average extensive quantity (or
product thereof) in the isochoric semigrand ensemble. Z may
be contained in the W matrix, or it may be a product of a term
in the matrix and the order parameter, N tot, raised to an integer
power, ξn, which is necessary to evaluate, e.g., ∂〈Ntot〉/∂ β,

Z(~Ψ; ~ξ) = N ξ1
1 (~Ψ)N ξ2

2 (~Ψ) . . .N ξk

k (~Ψ)N ξn
tot(~Ψ)Uξu (~Ψ), (33)

where now ~ξ = (ξ1, . . . , ξk , ξn, ξu). Note that for a pure compo-
nent system, Z and W are essentially identical since N tot = N1.
The chain rule is equally valid for these expressions and
Eq. (26) may be used recursively again, in conjunction with
Eqs. (31) and (32), to determine higher order derivatives of
ln Π(~Ψ) and the extensive properties.

It should now be clear how the exponents on extensive
properties in the Z and W matrices arise. Summarily, first
derivatives of the macrostate distribution, regardless of the
order parameter, involve average extensive properties, e.g.,
consider Eq. (29). Second derivatives involve fluctuations of
those properties (cf. Eqs. (30)–(32)), while higher derivatives
involve fluctuations of those fluctuations and so on. By inspec-
tion of Eqs. (26) and (28) it is clear that the derivative of a
fluctuation of two extensive properties, X and Y, involves tak-
ing the product of these properties. Thus, obtaining higher
order derivatives of the macrostate distribution requires aver-
ages of the repeated products of such properties, leading to the
necessity of higher powers in the Z and W matrices.

We point out that the macrostate distribution does not
need to be segmented into phases before extrapolation even
if multiple phases are present at the temperature where the ini-
tial simulation was performed; one simply applies Eq. (20) to
the entire ln Π(~Ψ) distribution, after which segmentation into
phases is done, if they exist. We also note that extrapolation to
finite order inherently introduces some error. This problem can
be mitigated if the macrostate distribution is first reweighted
using Eq. (3) or (10) before extrapolating ln Π(~Ψ) to a differ-
ent temperature. Simplified expressions for up to second order
terms (ξt = 2) in Eq. (20) for both ensembles are given in
Appendices A and B.

III. RESULTS
A. Pure component fluid phase behavior

Consider a square-well fluid47 where the interparticle
potential between a particle of species i and j is given by

Ui,j(r) =




∞, r < σi,j,

−ε i,j, σi,j ≤ r < σi,jλi,j,

0, r ≥ σi,jλi,j,

(34)

As an initial comparison, we explore the accuracy of our
extrapolation method for a single component fluid with ε1,1

= 1, σ1,1 = 1, and λ1,1 = 1.5. This fluid has a critical point at
kBTc,1/ε1,1 ≈ 1.22.47,48 Note that for pure component systems,
N tot = N and the ensembles described above produce identi-
cal expansions of ln Π(N) as a function of β. As a proof of
concept, we performed a number of WL-TMMC simulations
at different temperatures such that T ∗ = kBT/ε1,1 = 1.05,
1.10, 1.15, 1.20, 1.30, 1.35; here we limit our discussion to rep-
resentative results. Fig. 1(a) depicts a comparison between
direct simulations (points) obtained at T ∗ = 1.05 and those
extrapolated from simulations performed at T ∗ = 1.35 (lines).
This is the largest difference between the temperatures we have
simulated. For a desired chemical potential, the distribution at
T ∗ = 1.35 is first reweighted to the desired µ1 before extrap-
olation is performed. Performing this sequence in the reverse
order entails reweighting extrapolated data, which tends to
amplify errors. To the naked eye, both first order and sec-
ond order expansions of the ln Π(N) surface at all chemical
potentials seem to agree well with those obtained via direct
simulation at lower T ∗. Closer inspection reveals a systematic
deviation in the tunneling region of ln Π(N) between a
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FIG. 1. (a) Comparison between direct simulations (points) of the pure component square-well fluid at T∗ = 1.05 and extrapolation from T∗ = 1.35 (lines)
over the range −10 ≤ µ/ε1,1 ≤ − 2. (b) Difference between the extrapolated results and those obtained via direct simulation, such that δ ln [Π(N)/Π(0)]
≡ ln [Π(N)/Π(0)]ext − ln [Π(N)/Π(0)]sim. Dashed lines correspond to ε1,1 = 0.93 (increased T∗) instead of ε1,1 = 1. Blue and red curves correspond to the use
of first and second order corrections, respectively.

high and low density state, which at low temperatures repre-
sent the liquid and vapor states, respectively. Including second
order corrections decreases the maximum error in this region
by nearly an order of magnitude over the case when only
a first order expansion is used. Fig. 1(b) depicts a compar-
ison in the error between direct simulation and extrapola-
tion from the supercritical state for ε1,1 = 1 and ε1,1 = 0.93
when kBT = 1.35. In this case, the maximum error is always
less than when ε1,1 is larger, but is also reduced by a sim-
ilar magnitude as higher order corrections are introduced.
Note that by reweighting ln Π(N) before extrapolating it,
the error is essentially independent of the chemical potential
we choose. This is because reweighting produces an “exact”
distribution at the new chemical potential since there are
no approximations involved. The error shown in Fig. 1(b)
comes purely from the extrapolation in temperature.

Representative isotherms obtained by extrapolating super-
critical simulation data from T ∗ = 1.35 as low as T ∗ = 1.05 are
shown in Fig. 2. There is a quantitative agreement between
the isotherms at all temperatures we have considered here;
these isotherms clearly show a bulk phase separation below a
critical temperature of T ∗c,1 ≈ 1.22. The binodal for these sub-
critical temperatures can also be easily located using extrap-
olation of supercritical data. Following this, the enthalpy of
vaporization can be obtained from the Clausius-Clapeyron
expression by plotting ln Psat vs. 1/kBT (cf. inset of Fig. 3(b)).

FIG. 2. Comparison between isotherms for the pure component square-well
fluid obtained by direct simulations (blue lines) at subcritical temperatures
(1.05 ≤ T∗ ≤ 1.30 in increments of 0.05) and those produced as a result of
extrapolation from a single simulation at T∗ = 1.35 (red points). Standard
errors are less than symbol size from five total replicates.

Fig. 3 illustrates the results when data collected from a
simulation at T ∗ = 1.35 are used to predict saturation prop-
erties at subcritical temperatures. These results correspond
to Fig. 2. In Fig. 3(a) the macrostate distribution is shown
for various temperatures to compare direct simulation (solid
lines) to predictions from extrapolated data (dashed lines).
Consistent with Fig. 1, the extrapolation tends to overes-
timate the depth of the minimum separating the two local
maxima; however, the error is significantly reduced as the max-
ima are approached. This implies that the phase behavior, or
any calculation concerned with the most likely macrostates,
is expected to be quite accurate. However, if we are inter-
ested in calculating properties which depend on the tunneling
region (transition state), the error is expected to be higher.
For example, following Binder’s formalism,49 the surface ten-
sion between two fluid phases may be calculated as the mean
of the difference between the local maxima in ln Π(~Ψ) rep-
resenting each phase, and the minima between them.49,50

Such a calculation would be expected to become progres-
sively less accurate as we extrapolate a macrostate distribution
further from the measurement temperature because ln Π(~Ψ)
is poorly estimated in the region between the two phases.
However, as expected, if one calculates the saturation prop-
erties (cf. Fig. 3(b)) there is essentially no difference between
results obtained from direct simulation and those from extrap-
olated data. Similarly, we expect that alternative approaches
such as the interface-potential-based approach,51 which rely
only on properties of phases rather than the transition region
between them, will benefit from the use of this extrapola-
tion method. This is particularly relevant as such approaches
often require expanded ensemble simulations or other special
sampling techniques to investigate low temperatures.51,52

Generally, the error in the extrapolated data grows as ∆β
increases. However, as the error in the macrostate distribution
primarily arises in highly correlated regions, it is anticipated
that this error is related to the accuracy on the measurements
of those correlations. For example, very near the critical point
the fluctuations will be most pronounced in the simulation;
we found that performing simulations just above or below this
point tends to produce the most accurate extrapolations. Con-
sider Fig. 3(c) in which we have depicted the average error
(cf. both the liquid and vapor branches) between the saturation
densities obtained by direct simulation and extrapolation from
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FIG. 3. (a) Macrostate distributions for
the pure component square-well fluid
obtained from direct simulation (solid
lines) and from extrapolating data
(dashed lines) obtained at T∗ = 1.35
(black solid line). (b) Liquid-vapor
coexistence densities from direct simu-
lation and extrapolation from T∗ = 1.35.
The standard error from five total repli-
cates is reported at each point; however,
it is generally much less than symbol
size. (c) Absolute value of the differ-
ence between the replicate-averaged sat-
uration densities for direct simulation
and extrapolation estimates when the
extrapolation is performed starting from
different reference temperatures.

different reference temperatures. In each case, four additional
replicates were performed to obtain statistical averages. The
blue curve represents the case we have focused on until this
point, that is, using the supercritical data as a reference from
which to extrapolate. Over the range of temperatures we have
investigated, the average error does not change very signifi-
cantly and remains on the order of 1% or less; this invariance
is again, due to the fact that the error in the macrostate distri-
bution primarily accumulates in the tunneling region between
the coexisting phases rather than around the macrostates which
principally define the phases. However, if we instead use data
collected at T ∗ = 1.05 as a reference (red curve), we indeed
observe that the error grows as T ∗ increases, especially as
the critical point is approached. Most notably, if we use data
collected just below the critical point at T ∗ = 1.20 the average
error in the saturation densities is almost an order of magnitude
less over the temperature range investigated. We attribute this
to the fact that near the critical point, the simulation samples
large fluctuations. Hence, we suggest that if a critical point,
or other temperature at which large fluctuations occur, can be
estimated a priori, it may be advantageous to attempt to use
that temperature as a reference point for extrapolation. Indeed,
we also found that the error which accumulates in the tunneling
region in ln Π(N) is reduced if we use T ∗ = 1.20 as a reference
temperature.

B. Binary fluid phase behavior

To demonstrate generalization to multicomponent mix-
tures, we next consider a simple binary mixture. To the fluid
considered in Sec. III A, we add an additional square-well fluid
for whichσ2,2 =σ1,1 = 1, λ2,2 = λ1,1 = 1.5, and ε2,2 = 0.93. For
this second component, the principle of corresponding states
suggests a critical temperature of approximately, kBTc,2/ε1,1

≈ 1.13, though this is a very rough approximation since the
ranges of the interparticle interactions are relatively large and
this principle is most accurate when the interactions are more

short-ranged. We employ standard Lorentz-Berthelot mixing
rules such that ε1,2 =

√
ε1,1ε2,2 and σ1,2 =

(
σ1,1 + σ2,2

)
/2,

and set λ1,2 = λ1,1 = λ2,2. Although this is a relatively simple
addition, the size symmetry of this mixture allows us to easily
employ both techniques we have discussed to demonstrate the
success of our approach. First we consider the results when
performing WL-TMMC simulations using the isochoric sem-
igrand ensemble, e.g., we use the total particle number, N tot,
as our order parameter for sampling (cf. Appendix B).

Following Ref. 34, we performed a range of simulations
at different ∆µ2 values for various temperatures. By employ-
ing histogram reweighting techniques, we can easily obtain
any macrostate distribution at an arbitrary (µ1/ε1,1, ∆µ0

2/ε1,1)
having measured the distribution at (µ0

1/ε1,1, ∆µ0
2/ε1,1). Fig. 4

shows a comparison between direct simulation and extrapo-
lation from T ∗ = 1.35 down to T ∗ = 0.85, using second order
corrections. T ∗ = 0.85 is the lowest temperature we examined
and thus represents the most extreme comparison we can make
here. We considered a range where −5.5 ≤ ∆µ2/ε1,1 ≤ 5.5
which is sufficient to span 0 . x1 . 1 for the computations we
report here. Fig. 4(a) shows good agreement again between the
extrapolated results and direct simulations at very low temper-
ature, as in the case of the pure component system. In Fig. 4(b)
we report the deviation between the two, which again is inde-
pendent of the choice of µ1/ε1,1, but does depend on our choice
of ∆µ2/ε1,1. Regardless, over the range we investigated here
we observe a similar maximum in the error in the tunneling
region between high and low densities. Although this error is
larger than in the pure component case, here we have consid-
ered the mixture at T ∗ = 0.85 which is much lower than that
considered in Sec. III A (T ∗ = 1.05).

Once again, we seek to compute the phase diagram of this
mixture at low temperatures using only the supercritical simu-
lation data. Fig. 5(a) illustrates the phase diagram for the lowest
T ∗ we considered, as well as over the same range as considered
in the pure component case. The solid lines (direct simulation)
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FIG. 4. (a) Comparison between direct simulations (points) of the binary square-well fluid at T∗ = 0.85 and extrapolation (second order) from T∗ = 1.35 (lines)
at various −10 ≤ µ1/ε1,1 ≤ −2 when ∆µ2/ε1,1 = 0. (b) Representative difference at T∗ = 0.85 between the extrapolated (second order from T∗ = 1.35) results
and those obtained via direct simulation for various ∆µ2/ε1,1 values such that δ ln [Π(Ntot)/Π(0)] ≡ ln [Π(Ntot)/Π(0)]ext − ln [Π(Ntot)/Π(0)]sim.

agree very well with the predictions made using data obtained
at T ∗ = 1.35 (circles). Given the breadth of the diagram, we
more carefully consider each individual comparison as well.
A representative result for T ∗ = 0.85 is shown in Fig. 5(b).
Over intermediate x1 values, the extrapolated predictions and
direct simulation agree very well. The largest deviations in the
predicted phase diagrams are observed as the pure-component
limits are approached (i.e., x1 → 1 or x1 → 0). Nonetheless,
for intermediate values of x1, the predicted vapor pressure of
each component is in excellent agreement with those values
obtained from direct simulation. The corresponding total den-
sity, ρtotσ

3
1,1 = (N1 + N2)σ3

1,1/V , at saturation is shown in
Fig. 5(c). Deviations are again only marginal, even at remark-
ably low temperatures far away from the reference T ∗ = 1.35.
As in the pure component instance, this is again a result of
the fact that deviations arise primarily in ln Π(Ntot) in the
transition state region between the two coexisting phases, as
depicted in Fig. 5(d) over the range ∆µ2/ε1,1 considered here.

Next we studied the same fluid mixture using individ-
ual particle numbers as the order parameter for generating the
macrostate distribution. This has been explained in detail in

Ref. 53. In this approach, we do not need to extrapolate exten-
sive properties as a function of the order parameter. While
this is advantageous for mixtures which are relatively size-
symmetric, for highly asymmetric mixtures it can be difficult
to define the bounds on, for instance, N1 given a fixed N2.
Thus, the previously illustrated approach is potentially more
general, at the expense of having to sample more correlations
between different extensive variables at each N tot.

Results identical to those in Fig. 5 were obtained, so we
simply report the error as a function of the order parameter, ~N ,
in Fig. 6. At each point in ~N-space we report the error in the
canonical partition function, normalized by that obtained from
direct simulation. Here, simulations performed at T ∗ = 1.35
were extrapolated using a second order expansion down to
T ∗ = 0.85, as in Fig. 5(d). There is an approximate symmetry
along the N1 = N2 curve; if one follows this line, the error
profile is similar to that found for ~Ψ = Ntot. The overall error
is small at low N tot, which goes through a maximum around
Ntot ≈ 150, and then diminishes at higher N tot. Once again, the
error principally accumulates in the tunneling region, which
does not significantly contribute to the behavior of each phase.

FIG. 5. (a) Coexistence pressure,
Pσ3

1,1/ε1,1, versus mole fraction of
species 1, x1, for the binary square-well
fluid from direct simulation (lines)
and as predicted by extrapolation from
T∗ = 1.35 (circles). (b) Amplified view
of the comparison in (a) for T∗ = 0.85.
(c) Total saturation densities, ρtotσ

3
1,1,

along the binodal curves from direct
simulation and extrapolation in (a). (d)
Macrostate distribution at T∗ = 0.85
from direct simulations (solid lines)
and from extrapolating T∗ = 1.35
data (dashed lines) for a range of
∆µ2/ε1,1 values used to construct the
phase diagram at this temperature.
Colors correspond to specific values of
∆µ2/ε1,1.
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FIG. 6. Relative error in the canonical partition function for the binary square-
well fluid, defined as the difference between the surface extrapolated from
T∗ = 1.35 to 0.85, and that obtained from direct simulation at T∗ = 0.85,
normalized by its value from direct simulation at lower temperature.

C. Confined fluids and wetting behavior

Next we demonstrate the utility of such an extrapola-
tion scheme in predicting the phase behavior of confined
fluids. When confined to sufficiently small dimensions, a fluid
adsorbed in a pore may undergo capillary condensation. We
confined species 1 to a slit-pore, defined by parallel walls
separated by Lz = 8 σ1,1. The box was periodic in the other
dimensions, Lx =Ly = 8 σ1,1. The fluid and the walls were
given a square-well interaction, where λ1,w = 1.5, ε1,w = 1 such
that

U1,w(r ′) =



∞, r ′ < σ1,1/2,
−ε1,w , σ1,1/2 ≤ r ′ < σ1,1λ1,w ,
0, r ′ ≥ σ1,1λ1,w ,

(35)

where r ′ is the distance between a particle’s center of mass
and the face of a wall. Capillary condensation for simple fluids
occurs at the point where the ln Π(N) curve develops an asym-
metric doubly peaked shape. The low density peak corresponds
to fluid adsorbed in layers in the pore, which exhibits a density
discontinuity at the Gibbs-dividing surface in the space away
from the walls.54 The second, broad peak at higher density
arises from the state where the pore is filled with condensed
fluid. The asymmetric shape of the peaks in ln Π(N) is not a
trivial feature, and it is not immediately clear how the error
which develops from extrapolating high temperature data will
affect this prediction.

In general, however, we find that the approach remains
helpful in predicting the macrostate distribution over similar
changes in temperature as the bulk. Fig. 7 illustrates the resul-

FIG. 7. Macrostate distribution for a pure component square-well fluid of
species 1 when confined in a slit-pore. The black curve was obtained by direct
simulation at T∗ = 0.85, which is compared to that estimated from simulations
performed at T∗ = 1.35, and 1.10 via second order extrapolation.

ting ln Π(N) at T ∗ = 0.85 obtained via extrapolation from
T ∗ = 1.35 and T ∗ = 1.10 using a second order expansion.
Capillary condensation, like bulk condensation, has already
occurred at T ∗ = 0.85. The data from T ∗ = 1.35 slightly under-
predict the density of the uncondensed phase, while the con-
densed phase peak is essentially identical to that obtained from
direct simulation at this lower temperature. As in the bulk fluid,
error principally accumulates in the tunneling region between
the phases where correlations are expected to be very high.
Extrapolating data which was obtained at T ∗ = 1.10 improves
this estimate; higher order extrapolation does as well, however,
a second order expansion is sufficient to provide a reason-
ably accurate estimate of the confined fluid’s thermodynamic
properties. At the very least, this extrapolated macrostate dis-
tribution is quite close to its true value and would require mini-
mal computational effort to refine with an additional relatively
short TMMC simulation.

Similarly, this asymmetric ln Π(N) distribution appears
during a prewetting transition on flat surfaces, wherein thin
and thick liquid films are at coexistence.56 An example of this
is given in Fig. 8 for a model of argon condensing on solidified
carbon dioxide. This has been reproduced from Ref. 55. Here
we contrast the quality of different orders of extrapolation. For
second order we are able to easily predict data for T ∗ = 0.80
from that obtained at T ∗ = 0.90 with reasonable accuracy; at
T ∗ ≤ 0.75 further refinement would be necessary. As is often
characteristic of third and higher order extrapolation, the pre-
dicted surface tends to become noisy although its mean is
more closely centered around the true result. This seems to
hold true even when extrapolating as low as T ∗ = 0.70. Reduc-
tion of the noise in ln Π(N) may be achieved by running longer

FIG. 8. Comparison between direct
simulations (solid lines) and extrapola-
tion from T∗ = 0.90 down to T∗ = 0.70
in increments of 0.05 for a model of
argon on solidified carbon dioxide
described in Ref. 55. Results are
reported at the prewetting transition. (a)
Extrapolation using up to second order
corrections. (b) Extrapolation using up
to third order corrections.
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simulations at the reference temperature to improve W (N ; ~ξ).
Higher order estimates strongly depend on the length of the
simulation and nature of the system investigated. However,
given that a similar issue also occurs for each of the sys-
tems we have investigated, using a “noisy” ln Π(N) as an
initial guess for further simulations at the target tempera-
ture would result in a more efficient use of computational
resources.

D. Self-assembly

Until this point, all systems we have considered undergo
a first order phase transition upon cooling. Here we assess the
capacity of this extrapolation approach to study continuous
higher order transitions, such as self-assembly. As a represen-
tative system, we consider a recently proposed model for eval-
uating directional electrostatic interactions in “patchy” parti-
cles like proteins and nanocolloids.57 Specific details of the
model are provided in Ref. 57, and briefly summarized here.
In this model, molecules are represented as spherical particles
of diameter σ that interact through a steric repulsion and a
patchy electrostatic potential, where the latter is represented by
the product between a modified isotropic Lennard-Jones (LJ)
potential and an angular modulator providing the anisotropy of
the potential. Two patches from different particles are consid-
ered to interact with each other if both patches are aligned
(cf. Fig. 9(a)); the potential yields an attractive (negative)
energy if the interacting patches have charges of opposite sign,
and a repulsive (positive) energy for patches with like charges
(cf. Fig. 9(b)). The angular modulator characterizes both the
size and charge distribution of a patch, and it is related to the
cosine of the relative orientation between patches with an addi-
tional parameter defining the size of the patch (cf. Fig. 9(c)).
This model has been shown to capture the rich phase behavior
of molecules with specific long-range attractions and repul-
sions, where the imbalance of these forces determines the
order and structural features of the phase separation.57 How-
ever, in the interest of the current discussion, we restrict the
implementation of the extrapolation approach to a system of
zwitterionic particles (i.e., particles with one positively and

FIG. 9. (a) Schematic representation for the interaction between patchy particles. Each patch is defined by its normal surface vector n̂. Two patches are considered
to interact if the characteristic angle of one patch θa (given by the opening angle between n̂a and the interparticle distance ~rij) intersects with that of the other
patch (i.e., θb). (b) Representation of the interaction energy U i ,j between two particles for different relative orientations between the patches. (c) Illustrative
example of the angular modulator, or the charge distribution, within a single patch (f (Ω)= cosηaΩ) for different values of ηa. Ω corresponds to the solid angle
between n̂a and the reference frame as the particle is rotated.

one negatively charged patch), where the size of each patch
is defined by a half opening angle δ = 60◦ and a separation
between patches of d = 0.8 σ (both δ and d are defined in
Ref. 57).

In the particular system illustrated here, fluid phase sep-
aration is frustrated by the self-assembly of particles; specifi-
cally, the formation of entangled chains (cf. Fig. 10(a)). These
supramolecular structures are the result of a reduced patch
size (akin to other patchy systems58) and direct competition
between attractive and repulsive forces over a reduced num-
ber of orientations. Notably, for systems with equivalent patch
sizes but larger separation between patches (d > 0.8 σ), first
order phase separation is dominant over self-assembly.57 In
terms of the macrostate distribution, self-assembly of this
system is characterized by the development of a secondary
peak in lnΠ(N) at low densities (e.g., for N = 48 in a sim-
ulation box of V = 729 σ3; see Fig. 10(b)), while the first
peak indicates the stable dilute or “gas” phase. The posi-
tion of the second peak corresponds to the density at which
percolation of a single entangled chain is reached. That
is, as the number of particles increases, the system transi-
tions from a dilute, monomeric phase to a percolated, sin-
gle chain. By further increasing N, additional chains are
formed (one chain at a time), yielding oscillations in lnΠ(N)
with a periodicity of N = 48. This is a similar behavior
to that observed in the self-assembly of other anisotropic
particles.59,60

It is therefore critical to correctly predict any subtle
changes in curvature of ln Π(N), i.e., the presence of local min-
ima, which delineate the different states of the system which
appear as self-assembly begins at low temperature. Fig. 10
depicts both second and third order extrapolation of simu-
lation results from T ∗ = 0.125, where the system exists in a
single isotropic fluid phase, to T ∗ = 0.12 (∆β∗ = 0.33) which
is below the onset temperature of self-assembly. Both cap-
ture the low density isotropic vapor phase well, but show
some small, systematic deviation in the (first) self-assembled
phase. Regardless of that, both predict the weak minimum in
ln Π(N) that develops between them. An additional refinement
simulation would quickly converge this distribution if further
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FIG. 10. (a) Illustrative example of the configuration of the monomeric state
(N = 10, left panel) of patchy particles and the entangled chain (N = 50,
right panel). (b) Macrostate distribution simulated at T∗ = 0.12 (solid lines)
compared to that obtained from extrapolation of lnΠ(N) at T∗ = 0.125 using
second order (dotted-dashed) and third order (dashed) expansions, at various
chemical potentials.

quantitative analysis was desired; however, for the purposes
of this discussion, it suffices to show that this extrapolation
approach is accurate enough to correctly predict the formation
of self-assembled aggregates at T ∗ = 0.12.

IV. CONCLUSIONS

Using a Taylor series approach, we have demonstrated a
method to extrapolate the free energy landscape and exten-
sive properties obtained from flat-histogram grand canonical
Monte Carlo methods between different temperatures. This
method follows in the spirit of standard histogram reweight-
ing techniques but does not require histograms to be collected
and enumerated at every possible energy and particle num-
ber. It also does not require the energy to be discretized and
is applicable to scalar order parameters, such as N tot, which
simplifies its implementation in biased Monte Carlo simu-
lations. We investigated a range of systems from pure to
multicomponent, undergoing first order and continuous phase
transitions. Although the accuracy of this approach depends
on the system and the quality of the data obtained at the tem-
perature being extrapolated from, we have found that over
a range of −0.25 . ∆β∗ . 0.25 second order extrapolation
is generally accurate enough to provide a quantitative esti-
mate of thermodynamic properties such as density, pressure,
and binodal curves. As such, we have presented simplified
expressions for the requisite first and second order deriva-
tives in Appendices A and B for the interested reader and
practitioner.

Furthermore, an estimate of ln Π(~Ψ) at a low temper-
ature, even if it is not sufficiently accurate to perform cal-
culations with, can still be recycled as a starting guess for
the biasing function for additional simulations performed at
that temperature. Often flat-histogram methods can take a

very long time to converge at low temperatures; a reason-
able a priori estimate of the macrostate distribution (inverse
of the bias) thus has the potential to dramatically reduce the
computational cost associated with these simulations by accel-
erating their convergence. This approach may also be used to
provide an estimate of the temperature-activity relationship
along the saturation line, which is a key input component to
the temperature expanded ensemble method for computing
phase coexistence properties recently pursued by the Erring-
ton group.51 An improved initial estimate of the saturation
curve is likely to accelerate convergence. In principle, it also
possible to perform similar expansions in other thermody-
namic field variables, which is the subject of forthcoming
contributions.
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APPENDIX A: INDIVIDUAL PARTICLE NUMBER
SAMPLING

We start from a binary mixture to illustrate our deriva-
tions and, by extension, present the results for an arbitrary
k-component system at the end. For a binary system in the
grand canonical ensemble, the partition function is given by

Ξ(µ1, µ2, V , β) =
∑
N1

∑
N2

exp (βµ1N1 + βµ2N2)

× Q(N1, N2, V , β), (A1)

where Q(N1, N2, V , β) is the canonical partition function for
the system, µi is the chemical potential of species i, V is the
volume, and β = 1/kBT . The probability of a given macrostate,
defined by the number of particles of each species present, at
a given V and β is

ln Π(N1, N2) = βµ1N1 + βµ2N2 + ln Q − ln Ξ. (A2)

Our objective is to derive an approximate expression for
this macrostate probability distribution at other temperatures
(β). In this section we focus on flat-histogram Monte Carlo
simulation methods which construct the macrostate proba-
bility distribution as a function of the number of particles
of each species present, N1 and N2. In Appendix B we
will derive this result when the macrostate probability dis-
tribution is sampled according to a different order parame-
ter, Ntot =

∑
i Ni, rather than each individual species’ particle

number.
Following Eq. (20) we must establish expressions for the

partial derivatives of ln Π(N1, N2; β0). We begin with the first
derivative which can be evaluated from Eq. (A2),

∂ln Π(N1, N2)
∂β

= µ1N1 + µ2N2 +
1
Q
∂Q
∂β
−

1
Ξ

∂Ξ

∂ β
. (A3)
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The canonical partition function, which has been written
implicitly thus far, can be explicitly expressed as

Q(N1, N2, V , β) =
∑
ν

O(ν) exp (−βU(ν)) , (A4)

where ν denotes a set of microstates for the system, and O
and U are the set’s density of states and potential energy,
respectively. Thus,

∂Q
∂β
= −

∑
ν

O(ν)U(ν) exp (−βU(ν)) = −ŨQ, (A5)

where Ũ denotes the canonical ensemble average potential
energy. Henceforth in this section, we denote average exten-
sive quantities from the canonical ensemble with a tilde.
During a simulation the average potential energy of a given
macrostate may be accumulated in a histogram as a func-
tion of particle numbers in the same fashion as ln Π; thus
Ũ is simply an abbreviation for Ũ(N1, N2). The deriva-
tive of the grand canonical partition function is slightly
more involved. After applying the chain-rule this derivative
is

1
Ξ

∂Ξ

∂β
=

1
Ξ

∑
N1

∑
N2

(
(µ1N1 + µ2N2) exp (βµ1N1 + βµ2N2) Q + exp (βµ1N1 + βµ2N2)

∂Q
∂β

)
=

1
Ξ

∑
N1

∑
N2

(
(µ1N1 + µ2N2) exp (βµ1N1 + βµ2N2) Q − Ũ exp (βµ1N1 + βµ2N2) Q

)
=

1
Ξ

∑
N1

∑
N2

((
µ1N1 + µ2N2 − Ũ

)
exp (βµ1N1 + βµ2N2) Q

)
= 〈µ1N1 + µ2N2 − Ũ〉 = µ1〈N1〉 + µ2〈N2〉 − 〈U〉,

(A6)

where the angle brackets denote the average in the grand
canonical ensemble. By combining the above equations we
arrive at

∂ln Π(N1, N2)
∂β

= µ1(N1 − 〈N1〉)+ µ2(N2 − 〈N2〉)−
(
Ũ − 〈U〉

)
.

(A7)

By extension, it is clear that for a k-component system this
equation generalizes to

∂ln Π(N1, .., Nk)
∂β

=

k∑
i=1

µi (Ni − 〈Ni〉) −
(
Ũ − 〈U〉

)
. (A8)

We now turn our attention to the second derivative. From
Eq. (A8) it is clear that this will involve the derivative of grand
canonical ensemble averaged extensive properties as well as a
single canonical averaged derivative from the potential energy
term. The second derivative may be expressed as

∂2ln Π(N1, .., Nk)

∂β2
= −

k∑
i=1

µi
∂〈Ni〉

∂β
−
∂Ũ
∂β
+
∂〈U〉
∂β

. (A9)

The N i terms in Eq. (A8) are essentially indices of the multi-
dimensional histogram of the macrostate probability distribu-
tion; this derivative is evaluated at each bin (set of N i values).
Thus, these are constant. The derivatives can be evaluated as
follows:

∂Ũ
∂β
=

∂

∂ β
*
,

1
Q

∑
ν

O(ν)U(ν) exp (−βU(ν))+
-

= −Ũ2 + ŨŨ

= −f̃ (Ũ, Ũ), (A10)

where the function f̃ (X̃, Ỹ ) is used to denote the fluctuation
quantity of extensive properties X̃ and Ỹ in the canonical
ensemble. In a similar manner,

∂〈U〉
∂β
=

∂

∂β
*.
,

1
Ξ

∑
N1

∑
N2

Ũ exp (βµ1N1 + βµ2N2) Q+/
-

=
1
Ξ

∑
N1

∑
N2

(
Ũ(µ1N1 + µ2N2 − Ũ) exp (βµ1N1 + βµ2N2) Q

)

−

(
1
Ξ

∂Ξ

∂ β

)
1
Ξ

∑
N1

∑
N2

Ũ exp (βµ1N1 + βµ2N2) Q

= 〈µ1N1Ũ + µ2N2Ũ − Ũ2〉 − 〈U〉 (µ1〈N1〉 + µ2〈N2〉 − 〈U〉)

= µ1 f̂ (〈U〉, 〈N1〉) + µ2 f̂ (〈U〉, 〈N2〉) − f̂ (〈U〉, 〈U〉), (A11)
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where f̂ (〈X〉, 〈Y〉) = 〈XY〉 − 〈X〉〈Y〉 denotes the fluctuation
quantity of extensive properties 〈X〉 and 〈Y〉 in the grand canon-
ical ensemble. It is clear for a k-component system this may
be written as

∂〈U〉
∂β
=

k∑
i=1

µi f̂ (〈U〉, 〈Ni〉) − f̂ (〈U〉, 〈U〉). (A12)

In a similar fashion we obtain

∂〈Nj〉

∂β
=

k∑
i=1

µi f̂ (〈Nj〉, 〈Ni〉) − f̂ (〈Nj〉, 〈U〉). (A13)

Combining these results we obtain an expression for the sec-
ond derivative of the macrostate distribution with respect to
temperature for a k-component system,

∂2ln Π(N1, .., Nk)

∂β2
= 2

k∑
i=1

µi f̂ (〈U〉, 〈Ni〉)

−

k∑
i=1

k∑
j=1

µiµj f̂ (〈Ni〉, 〈Nj〉)

−
(
f̂ (〈U〉, 〈U〉) − f̃ (Ũ, Ũ)

)
. (A14)

Inserting Eqs. (A8) and (A14) into Eq. (20) we have a sec-
ond order expansion for the macrostate probability distribution
function at any temperature β, given a measured distribution
at β0. To estimate the properties at a new temperature, we must
also extrapolate the histograms of extensive properties mea-
sured in the canonical ensemble. In this case, we need only to
extrapolate Ũ at each bin according to Eq. (A10) if we employ
a first order Taylor series expansion. In this way, at most, only
first order correlations between extensive properties must be
measured during the simulation. Higher order extrapolation
of both the macrostate distribution, as well as extensive prop-
erties, may also be done for increased accuracy, though they
need not necessarily go up to the same order. Higher order
terms of both the macrostate distribution and extensive prop-
erties expansions follow directly from subsequent application
of chain rules to evaluate further derivatives of Eq. (A14) as
discussed in the main text.

APPENDIX B: MULTICOMPONENT SAMPLING IN THE
ISOCHORIC SEMIGRAND ENSEMBLE

To simplify the implementation of simulations, it is often
convenient to recast the grand canonical partition function in
terms of the isochoric semigrand partition function such that
we obtain a single order parameter, Ntot =

∑
Ni, for any mul-

ticomponent system. As before, we first consider just a binary
mixture,

Ξ(µ1,∆µ2, V , β)

=
∑
Ntot

exp (βµ1Ntot)
∑
N2

exp (β∆µ2N2) Q(N1, N2, V , β)

=
∑
Ntot

exp (βµ1Ntot)Υ(Ntot,∆µ2, V , β), (B1)

where ∆µ2 = µ2 − µ1, and for general multicomponent sys-
tems ∆µi ≡ µi − µ1. Υ(Ntot,∆µ2, V , β) is the isochoric semi-
grand partition function, which is given by

Υ(Ntot,∆µ2, V , β) =
∑
N2

exp (β∆µ2N2) Q(N1, N2, V , β).

(B2)
For a general k-component system this extends to

Υ(Ntot,∆µ2, . . . ,∆µk , V , β)

=
∑
N2

. . .
∑
Nk

exp (β∆µ2N2 + . . . + β∆µkNk)

×Q(N1, . . . , Nk , V , β). (B3)

Therefore, the macrostate probability distribution is given by

ln Π(Ntot) = βµ1Ntot + ln Υ − ln Ξ. (B4)

Thus, for a k-component system, all multicomponent effects
are contained in Υ. Following Eq. (20) we will seek to find
a Taylor Series expansion of the macrostate distribution as
temperature changes. To first order, we have

∂ln Π(Ntot)
∂β

= µ1Ntot +
1
Υ

∂Υ

∂β
−

1
Ξ

∂Ξ

∂β
. (B5)

As before, we must obtain expressions for this derivative and
eventually the second partial derivative of ln Π as well,

1
Υ

∂Υ

∂β
=

1
Υ

∑
N2

(
∆µ2N2 exp (β∆µ2N2) Q + exp (β∆µ2N2)

∂Q
∂β

)
=

1
Υ

∑
N2

((∆µ2N2 − U) exp (β∆µ2N2) Q) = ∆µ2Ñ2 − Ũ (B6)

In this case, the tilde notation indicates an average taken in the isochoric semigrand ensemble, rather than the canonical ensemble
as in Appendix A. In other words, X̃ is an extensive quantity that is measured (stored as a histogram) as a function of N tot during
simulation. Similar to Eq. (A6),

1
Ξ

∂Ξ

∂β
=

1
Ξ

∑
Ntot

∑
N2

(
(µ1Ntot + ∆µ2N2) exp (βµ1Ntot + β∆µ2N2) Q + exp (βµ1Ntot + β∆µ2N2)

∂Q
∂β

)

=
1
Ξ

∑
Ntot

∑
N2

((µ1Ntot + ∆µ2N2) exp (βµ1Ntot + β∆µ2N2) Q − U exp (βµ1Ntot + β∆µ2N2) Q)

=
1
Ξ

∑
Ntot

∑
N2

((µ1Ntot + ∆µ2N2 − U) exp (βµ1Ntot + β∆µ2N2) Q)

= 〈µ1Ntot + ∆µ2N2 − U〉 = µ1〈Ntot〉 + ∆µ2〈N2〉 − 〈U〉. (B7)
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By extension, for a general k-component mixture,

∂ln Π(Ntot)
∂β

= µ1 (Ntot − 〈Ntot〉) +
k∑

i=1

∆µi

(
Ñi − 〈Ni〉

)
−

(
Ũ − 〈U〉

)
. (B8)

Note that for i = 1, ∆µ1 = 0, so strictly speaking the first term
in the sum does not contribute. We write it only for notational
convenience to be formally correct for single component sys-
tems as well. Note that the first derivative result is identical to

that obtained in the grand canonical ensemble (cf. Eq. (A8)).
Once more, we continue on to the second partial derivative,

∂2ln Π(Ntot)

∂β2
= −µ1

∂〈Ntot〉

∂ β
+

k∑
i=1

∆µi

(
∂Ñi

∂β
−
∂〈Ni〉

∂β

)
−

(
∂Ũ
∂β
−
∂〈U〉
∂β

)
. (B9)

Starting from the derivatives involving isochoric semigrand
ensemble averaged extensive quantities, for the potential
energy, we have

∂Ũ
∂β
=

∂

∂β
*.
,

1
Υ

∑
N2

U exp (β∆µ2N2) Q+/
-

=
1
Υ

∑
N2

U(∆µ2N2 − U) exp (β∆µ2N2) Q −

(
1
Υ

∂Υ

∂β

)
*.
,

1
Υ

∑
N2

U exp (β∆µ2N2) Q+/
-

=

(
∆µ2ŨN2 − Ũ2

)
−

(
∆µ2Ñ2 − Ũ

)
Ũ = ∆µ2 f̃ (Ũ, Ñ2) − f̃ (Ũ, Ũ). (B10)

Similarly, it can be shown that
∂Ñ1

∂β
= ∆µ2 f̃ (Ñ1, Ñ2) − f̃ (Ũ, Ñ1). (B11)

These expressions generalize for a k-component system such that

∂Ũ
∂β
=

k∑
i=1

∆µi f̃ (Ũ, Ñi) − f̃ (Ũ, Ũ) (B12)

and
∂Ñj

∂β
=

k∑
i=1

∆µi f̃ (Ñj, Ñi) − f̃ (Ñj, Ũ). (B13)

The remaining derivatives are with respect to grand canonical ensemble averaged quantities. Consider again the specific case of
a binary mixture,

∂〈Ntot〉

∂β
=

∂

∂β
*.
,

1
Ξ

∑
Ntot

Ntot exp (βµ1Ntot)Υ
+/
-

=
1
Ξ

∑
Ntot

(
µ1N2

tot exp (βµ1Ntot)Υ + Ntot exp (βµ1Ntot)
∂Υ

∂β

)
−

*.
,

1
Ξ

∑
Ntot

Ntot exp (βµ1Ntot)Υ
+/
-

(
1
Ξ

∂Ξ

∂β

)

=
1
Ξ

∑
Ntot

((
µ1N2

tot + Ntot∆µ2N2 − NtotU
)

exp (βµ1Ntot)Υ
)
−

*.
,

1
Ξ

∑
Ntot

Ntot exp (βµ1Ntot)Υ
+/
-

(
1
Ξ

∂Ξ

∂β

)
=

(
µ1〈N

2
tot〉 + ∆µ2〈NtotN2〉 − 〈NtotU〉

)
− 〈Ntot〉 (µ1〈Ntot〉 + ∆µ2〈N2〉 − 〈U〉)

= µ1 f̂ (〈Ntot〉, 〈Ntot〉) + ∆µ2 f̂ (〈N2〉, 〈Ntot〉) − f̂ (〈U〉, 〈Ntot〉). (B14)

Similarly, the other derivatives are as follows:

∂〈N2〉

∂β
= µ1 f̂ (〈Ntot〉, 〈N2〉) + ∆µ2 f̂ (〈N2〉, 〈N2〉) − f̂ (〈U〉, 〈N2〉), (B15)

∂〈U〉
∂β
= µ1 f̂ (〈Ntot〉, 〈U〉) + ∆µ2 f̂ (〈N2〉, 〈U〉) − f̂ (〈U〉, 〈U〉). (B16)

For a general k-component system these may be written as
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∂〈Ntot〉

∂β
= µ1 f̂ (〈Ntot〉, 〈Ntot〉) − f̂ (〈U〉, 〈Ntot〉) +

k∑
i=1

∆µi f̂ (〈Ni〉, 〈Ntot〉), (B17)

∂〈Nj〉

∂β
= µ1 f̂ (〈Ntot〉, 〈Nj〉) − f̂ (〈U〉, 〈Nj〉) +

k∑
i=1

∆µi f̂ (〈Ni〉, 〈Nj〉), (B18)

∂〈U〉
∂β
= µ1 f̂ (〈Ntot〉, 〈U〉) − f̂ (〈U〉, 〈U〉) +

k∑
i=1

∆µi f̂ (〈Ni〉, 〈U〉). (B19)

Combining the above results leads to the following expression for the second derivative of the macrostate probability
distribution with respect to β:

∂2ln Π(Ntot)

∂β2
= 2µ1 f̂ (〈U〉, 〈Ntot〉) − µ

2
1 f̂ (〈Ntot〉, 〈Ntot〉) − 2µ1

k∑
i=1

∆µi f̂ (〈Ni〉, 〈Ntot〉)

−
(
f̂ (〈U〉, 〈U〉) − f̃ (Ũ, Ũ)

)
−

k∑
i=1

k∑
j=1

∆µi∆µj

(
f̂ (〈Ni〉, 〈Nj〉) − f̃ (Ñi, Ñj)

)
+ 2

k∑
i=1

∆µi

(
f̂ (〈U〉, 〈Ni〉) − f̃ (Ũ, Ñi)

)
. (B20)

Unlike in Appendix A where only Ũ needed to be extrapolated
upon changing β, the other extensive quantities now require
this as well. This is because previously the extensive particle
numbers defined the order parameters used for sampling, yet
here we have reduced this solely to N tot. However, this is simple
using a first order Taylor series expansion with Eqs. (B12)
and (B13).
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