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a  b  s  t  r  a  c  t

We  describe  a general  method  to  use  Monte  Carlo  simulation  followed  by torsion-angle  molecular  dynam-
ics simulations  to  create  ensembles  of  structures  to  model  a wide  variety  of  soft-matter  biological  systems.
Our particular  emphasis  is focused  on  modeling  low-resolution  small-angle  scattering  and  reflectivity
structural  data.  We  provide  examples  of this  method  applied  to HIV-1  Gag  protein  and  derived  fragment
proteins,  TraI  protein,  linear  B-DNA,  a nucleosome  core  particle,  and  a glycosylated  monoclonal  antibody.
This procedure  will enable  a large  community  of  researchers  to  model  low-resolution  experimental  data
with greater  accuracy  by  using  robust  physics  based  simulation  and  sampling  methods  which  are  a
significant  improvement  over traditional  methods  used  to  interpret  such  data.

Published  by Elsevier  Inc.

1. Introduction

Molecular simulation encompasses a powerful and compre-
hensive set of methods to provide atomistic insight into a diverse
set of material, chemical, and biochemical systems. The type of
problem that we aim to address is the modeling of low-resolution
experimental structural biology data from small-angle scattering
(SAS) using either neutrons (SANS) or X-rays (SAXS). Many struc-
tural biology problems involve intrinsically disordered proteins
and nucleic acids and flexible multi-domain complexes that often
adopt a large range of conformations in solution. The use of
molecular dynamics simulation to study such systems is often a
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challenging if not intractable task as many systems sample broad
time and length scales that are beyond the current capabilities
of algorithms and hardware. Thus a large number of structural
biology problems exist where low-resolution experimental data
are often modeled using analytical [1,2] and dummy-ball models
[3,4]. While these methods are fast, robust, widely used and
are commensurate with the idea that a low-resolution model
adequately reflects low-resolution data, they are fundamentally
limited by not using atomistic information.

Chemical bonding, topology and interactions are key factors
to accurately model experimental data. In recent years, several
groups have applied existing or developed new methods to model
SAS experimental data of biological systems [5–9]. To different
degrees, these methods incorporate atomistic aspects into the
modeling process. We  have developed a set of algorithms to per-
form Monte Carlo (MC) sampling of backbone-dihedral angles that
can quickly generate ensembles of proteins and/or single-stranded
nucleic acids to model low-resolution scattering and reflectivity
data [10,11]. Recently we  have implemented a MC  algorithm to sim-
ulate B-DNA that utilizes an intermediate worm-like chain coarse
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grain representation that is mapped back to all-atom coordinates
[12]. These all-atom models are created and defined by mature
force fields, are structurally robust and directly available for fur-
ther advanced simulation methods such as accelerated molecular
dynamics [13], replica-exchange [14] and reverse MC  methods [15]
as needed. While powerful, advanced MD  simulation methods can
have limited utility based on the size of the system and/or available
computational resources.

MC  sampling is fast and numerically inexpensive since the
number of degrees of freedom are dramatically reduced. Typi-
cal systems are well sampled in minutes using commodity single
CPU hardware. Such algorithms inherently sample a rugged energy
landscape and thus there are limitations to these methods. Addi-
tionally, sequential moves can be highly correlated, and the basic
move-set is not designed for internal or concerted moves, such
as internal loops between two rigid domains. Nonetheless this
approach has been successfully used to model a large number of
important structural biology problems [16–21]. The combination
of MC  sampling with advanced simulation methods is largely not
used, thus there remains a need to develop additional sampling
procedures to improve the quality and robustness of such simula-
tions. These procedures’ will help realize the full-potential of fast
atomistic modeling of scattering data.

In this report we discuss the combination of MC  sampling with
torsion-angle molecular dynamics (TAMD) simulations [22] that
overcome some of the limitations of the rugged MC  sampling
methods. TAMD samples molecular configurations in torsion space
and allows convenient specification of rigid domains and flexible
degrees of freedoms consistent with sampling of MC  trajectories.
Using TAMD allows large time steps when propagating the equa-
tions of motion [22]. In TAMD, the molecule is represented by a
branched tree structure consists of clusters of rigid-body atoms
linked by hinges. Importantly, forces arising from the traditional
Cartesian force field are projected along the internal coordinates
in TAMD [23], thus allowing one to benefit from the significant
improvement and accuracy of physics-based force fields. Using
TAMD greatly increases sampling efficiency over traditional MD
simulations and is widely used in NMR  structure refinement
[24,25].

Details of subsampling of MC  ensembles and the performance of
the improved algorithm are explored with several representative
examples covering systems containing not only protein but also
nucleic acid and carbohydrate components. In the development
of the algorithm several implicit solvent models and constrained
simulation variables greatly affected the efficacy of the result-
ing algorithm. The combination of MC  and TAMD will enable the
generation of robust models to interpret SAS, neutron and X-
ray reflectivity, NMR, electron microscopy and other experimental
data.

2. Methods

Seven systems are used in this study to illustrate the utility of the
combined MC/TAMD modeling protocol. Four protein only systems
of differing complexity are studied: full-length human immuno-
deficiency virus type 1 (HIV-1) Gag protein, two truncated Gag
protein constructs (A-B and A-tail) and a TraI protein fragment.
Two example nucleic acid systems are highlighted, a linear 60 bp
B-DNA molecule and nucleosome core particle (NCP), the latter of
which combines protein and DNA elements. The application of the
methodology to carbohydrate containing systems is represented
using a glycosylated and truncated human monomer IgA1 antibody
molecule (PTerm455). Systems were prepared for MC  simulations
using CHARMM27 [26–29] and CHARMM36 force fields [30–33]. A
summary of model systems is shown in Table 1.

Table 1
Model systems, flexible residues and experimental radius of gyration (RGYR) values.
Errors are reported as ±1 standard deviation.

Name Flexible residues RGYR (Å)

HIV-1 Gag 123–143, 277–281, 34 ± 1 [16]
354–373, 378–389,
408–412

A-B (HIV-1 Gag 1–276) 123–143 29 ± 1 [16]
A-tail (HIV-1 Gag 1-143) 123–143 no data
TraI  (381–858) 574–576, 790–803 36.9 ± 0.6 [34]
Linear B-DNA chain A &B: 1–60 no data
NCP  chain A &B: 1–31, 117–147 no data
Pterm455 N-linked glycans no data

2.1. Model proteins

Three of the protein systems used in this study were derived
from the full-length human immunodeficiency virus type 1 (HIV-
1) Gag protein. Full-length HIV-1 Gag protein can be divided into
five globular domains, specifically, MA  domain (residues 1–122),
N-terminal domain of CA (residues 144–276), C-terminal domain
of CA (residues 282–353), p2 “spacer” (residues 374–377), and NC
domain (residues 390–431). The construction of structural model
of the full-length HIV-1 Gag protein has been previously described
[16]. An A-B system (first two domains of full-length HIV-1 Gag
protein, residues 1–276) and an A-tail system (first domain with
a flexible linker of full-length HIV-1 Gag protein, residues 1–143)
were built from the full-length model. A fourth protein model taken
from a fragment of TraI protein consisting of residues 381-858
was constructed as previously described [34]. This fragment con-
tains three globular domains spanning residues 381–573, residues
577–789 and residues 804–849, respectively connected by regions
of flexible amino-acids. Initial models were energy minimized for
2000 steps following by 10 ps of vacuum MD  simulation using
NAMD [35] and the CHARMM27 force field prior to use in the MC
simulations.

2.2. Model linear B-DNA and NCP

A 60 bp linear DNA model was  generated using psfgen, a plug-in
of VMD  [36], and based on a model of a random sequence gen-
erated by the 3D-DART DNA structure modeling server [37]. The
initial NCP model was generated using psfgen and based on the
PDB-ID 1KX5 X-ray structure of the NCP solved at 1.9 Å resolution
[38]. Using NAMD with the CHARMM36 force field, the DNA mod-
els were prepared for MC  simulations by independently performing
2000 energy minimization steps followed by 200 vacuum MD  steps
(0.2 ps) then another 2000 energy minimization steps. Note that the
CHARMM36 force field more accurately represents the experimen-
tally measured distribution of BI to BII DNA, a behavior not modeled
well by the CHARMM27 force field.

2.3. Model protein – carbohydrate system

The initial model structure was built using coordinates from a Fc
domain crystal structure (PDB: 1OW0) [39] and glycan coordinates
from a previous solution modelling study [40] as described in [41].
The composition of the bianntenary N-glycan incorporated in the
model was (NeuAc)2(Gal)2(GlcNAc)2(Fuc)1(Man)3(GlcNAc)2. The
PTerm455 structure was prepared for simulation using the glycan
reader component of CHARMM-GUI [42,43] using the CHARMM36
forcefield. The PTerm455 construct contains the full antibody
structure truncated at residue 455 in the heavy chain (removing
the flexible tailpiece region and a pair of N-linked glycans). The
remaining structure contains two N-linked glycans and the Fc
domain. Currently there is no MC move-set available to sample
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carbohydrate degrees of freedom therefore MC  simulations were
not carried out and an energy minimized PTerm455 was used
directly as input for TAMD simulations.

2.4. Monte Carlo simulations

MC  trajectories were generated for each model protein using
the “Monomer Monte Carlo” module of the SASSIE program [10].
Flexible residues were subjected to backbone dihedral angle samp-
ling at 300 K. The maximum single step rotation angle was set to
30 degrees and structures with heavy atom overlap were discarded.
For the full-length HIV-1 Gag, A-B, A-tail and TraI systems, a total
number of 150,000 trial attempts were performed and generated
126,196, 136,281, 142,311 and 131,014 structures, respectively.
Accepted structures from MC  simulations were energy mini-
mized. MC  trajectories containing 71,479 and 8166 structures were
respectively generated for the linear B-DNA and NCP using the MC
simulation algorithm for B-DNA described by Howell et al. [12].
For MC  simulation of linear B-DNA and NCP flexible regions are
listed in Table 1, the last 30 base pairs on each end of the wrapped
DNA were designated as flexible. For both DNA containing simu-
lations, the maximum single rotation angle was  set to 10 degrees
and structures with heavy atom overlap were discarded.

2.5. Subsampling of MC  ensembles

Spatially representative configurations of each model system
were selected from the structural ensembles generated by MC
simulation module for subsequent TAMD simulations. The selec-
tion of the representative configurations involved subsampling in
regards to the relative positions of different globular-like domains
by clustering similar configurations on a geometric grid. The spa-
tial coordinate system was divided into voxels, where the size was
proportional to the size of the globular-like domains to ensure a
proper fraction of occupancy in the voxels. Structures with the
centers of mass of individual domains occupying the same vox-
els were clustered, and one representative structure in each cluster
was extracted and added to the sub-ensemble. This resulted in a
total of 200, 175, 107, and 155 representative structures sampled
from the initial MC  ensembles for full-length HIV-1 Gag protein,
A-B system, A-tail system and TraI protein respectively. For linear
B-DNA and NCP, a total of 110 and 178 structures were subsampled
from the MC  ensembles, respectively.

2.6. Torsion angle molecular dynamics

TAMD simulations were carried out for the subsampled ensem-
bles for each model protein using the TAMD module [22]
implemented in CHARMM [44,45]. For each protein, the globular
domains were clustered as rigid bodies. Rigid bodies were con-
nected by flexible regions that sample all torsional degrees of
freedom in each flexible region. 2500 steps of steepest descent
energy minimization followed by 2500 steps of adopted basis
Newton–Raphson energy minimization method were performed
before TAMD simulations. TAMD simulations were then carried
out for all representative structures with a length of 500 ps and
time step of 2 fs. Distance dependent dielectric (RDIE) was  used
to describe electrostatic interactions. Structures were saved every
1 ps. For comparison among different implicit solvent models, addi-
tional TAMD simulations of four representative structures of A-B
system and TraI protein were carried out in the generalized Born
with smooth switching (GBSW) [46,47] and solvent accessible sur-
face area (SASA) [48] models. GBSW in particular is one of the
latest generation of implicit solvent models that can provide a bet-
ter description of solvent dependent molecular interactions and
allow more realistic descriptions of biomolecular conformational

equilibria [49]. It was  observed that DNA molecules are unstable
in the implicit solvent used in the TAMD simulations. To maintain
structural integrity of the DNA molecules in TAMD simulations, a
harmonic restraint with a force constant of 0.1 kcal/mol/Å2 on the
backbone atoms of the DNA molecules was  used. For each DNA
containing subsampled structure, a 10 ps TAMD simulation was
performed to mainly relax the structure and sample local fluctu-
ations. TAMD simulations of PTerm455 were carried out with the
protein segment remained fixed whilst the carbohydrate was free
to move.

2.7. Data analysis

Density plots to visually evaluate conformational coverage from
MC  simulations, subsampling, and TAMD trajectories were calcu-
lated using “Density Plot” module in SASSIE [10] with grid spacing
of 6.0 Å. The analysis of Ramachandran plots, RMSD, and radius of
gyration were carried out using CHARMM and additional analysis
scripts.

2.8. Implementation

Scripts to enable the automatic generation of CHARMM input
files for proteins, nucleic acids, carbohydrates and their complexes
have been incorporated into the SASSIE program [10] as a separate
“Torsion Angle Molecular Dynamics” module. Thus the capabil-
ity to perform sequential MC  and TAMD simulations is accessible
to a wide variety of structural biology problems in a single soft-
ware suite. Note that a valid license to use CHARMM is required
to run TAMD (http://charmm.chemistry.harvard.edu/charmm lite.
php) and an automated license verification scheme is incorporated
with SASSIE-web (https://sassie-web.chem.utk.edu/sassie2).

3. Results

3.1. Simulations of proteins

This section is divided up into several subsections to explore
the conditions required to apply MC  simulation with TAMD to
adequately sample configuration space for multi-domain protein
systems. This involves how one can sub-sample the MC  trajectories
to carry out a limited yet representative set of TAMD simulations
and the role of implicit solvent models on how the TAMD simula-
tions compared to experimental data.

3.1.1. Monte Carlo and subsampling
For intrinsically disordered and flexible protein systems MC

sampling using backbone torsion degrees of freedom is an efficient
way to generate a wide range of structures that cover the large con-
formational space of these molecules. MC  sampling alone is robust
way to evaluate structural models to compare to low resolution
SAS experimental data. The example systems, A-B, full-length HIV-
1 Gag and TraI colored by domains Fig. 1(A–C) covered a wide-range
of conformational space in their MC  simulations as depicted in the
density plots shown in Fig. 1(D–F). Since performing advanced MD
simulations on the entire MC  ensemble is generally not possible
and likely unnecessary, a simple clustering algorithm was devised
and implemented to extract a tractable and representative subsam-
ple from each MC  trajectory. As an example of the characteristics of
the details of subsampling the A-B system is shown in Fig. 2 and for
A-B, HIV-1 Gag and TraI as density plots in Fig. 1 (G-I). For the A-B
system the average of the Cartesian dimensions of the two globular
domains were 43 and 39 Å respectively, thus using voxel size ∼ one-
third of the globular domain dimensions yielded 175 structures in
the sub-sample.
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Fig. 1. Cartoon representation of A-B system, HIV-1 Gag protein and TraI protein (A–C), and their density plots of conformational coverage from MC  simulation (D–F), from
subsampled representative structures (G–I) and after TAMD simulations (J–K). (A), (D), (G) and (J) A-B system, MA  domain is shown in green, NTD domain is shown in blue;
(B),  (E), (H) and (K) the full-length HIV-1 Gag protein the MA  domain is shown in blue, the NTD domain is shown in red, the CTD domain is shown in green and the NC domain
is  shown in grey. (B), (E) and (H) full-length HIV-1 Gag protein is aligned with CTD domain. (C), (F), (I) and (L) TraI protein, the first globular domain (residues 381–573) is
shown in green, the second globular domain (residues 577–789) is shown in blue and the third globular domain (residues 804–849) is shown in red.

The voxel size one should use for other systems to account
for asymmetry of domain sizes and orientations that may  have to
be taken into account in specific situations to adequately extract
representative subsamples is beyond the scope of this report.
Subsampling using 15 Å voxels was adequate for the illustrative
purpose for the examples in this study. One quantitative measure
of conformational space coverage is to enumerate the number of
occupied voxels in three-dimensional space as shown in Fig. 2A.
Additionally, for low-resolution methods such as SAS which one
can calculate theoretical data from atomic coordinates [50], conver-
gence of theoretical SAS profiles can be used in concert with spatial
convergence to obtain a objective evaluation of the extent of con-
formational space coverage [12]. Although not used in this study,

an advantage of using SAS convergence is that structural configu-
rations that are not discernible by SAS are deemed redundant thus
reducing the number of structures one needs to consider.

3.1.2. TAMD enhances local sampling
TAMD propagates the equations of motion directly in torsion

space. It does not sample bond or angle degrees of freedom remov-
ing the limitation imposed by the short timescale of bond vibrations
and allowing the use of much larger time steps. The process of sub-
sampling the original MC  generated sampling of A-B, HIV-1 Gag and
TraI results in rougher spatial coverage for all systems (as can be
seen by comparing 1 (J-L) to 1 (D–F)). The domain sampling is much
smoother following local enhanced sampling by TAMD (Fig. 1(G–I)),
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Fig. 2. Representative characteristics of subsampling MC ensembles. (A) The total number of unique 5 Å voxels occupied by an alpha carbon as a function of the number of
structures in each MC ensemble. (B) The number of center of mass voxels occupied by structures in the A-B MC Ensemble as a function of voxel size. (C) Comparison between
the  total number of unique 5 Å voxels occupied by an alpha carbon for the A-B MC  Ensemble and the ensembles created using TAMD simulations on various sizes center of
mass  voxels. (D) TAMD/MC ratio of the total number of unique 5 Å voxels occupied by an alpha carbon as a function of the center of mass voxel size.

thus much of the spatial coverage in the original MC  trajectory is
recovered in this process. This is highlighted in quantitative detail
for the A-B system in Fig. 2. The spatial coverage of individual
domains is much smoother than that observed for the subsampled
ensembles (Fig. 1(G–I)) after local enhanced sampling by TAMD
thus recovering much of the spatial coverage in the original MC
trajectory (Fig. 1(D–F)). Backbone torsion angle MC  samples con-
figurations on a rugged energy surface whereby local intra-residue
bond and angle degrees of freedom are not relaxed completely even

following an energy minimization step. A short MC  trajectory was
carried out where only residue 124 of the flexible region of the A-
B system was sampled and energy minimized. 136281 structures
from MC  were subsampled into 175 representative structures and
simulated using TAMD for 1 ns. In Fig. 3 the results indicate that
MC on its own  generally samples distinct highly populated states. A
total of 17,500 structures from the TAMD simulations were used to
calculate the Ramachandran plot shown in Fig. 3B. TAMD smoothly
sampled the residue configurations in torsion angle space. The

Fig. 3. Ramachandran plot for residue 124 in A-B system. (A) Dihedral space sampled by 17,500 MC  configurations generated using only residue 124 as the flexible torsion.
(B)  Dihedral space sampled by MC  combined with TAMD simulations. 175 representative configurations were subsampled from 136,281 MC  configurations and used to carry
out  independent 1 ns of TAMD simulations. A total of 17,500 structures were used in calculating Ramachandran plot shown in B.
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Fig. 4. Red: Averaged backbone RMSD calculated from 175 independent TAMD sim-
ulations of A-B system. RMSD are calculated by aligning domain A. Green: Averaged
backbone RMSD calculated from 155 independent TAMD simulations of TraI protein.
RMSD are calculated by aligning the first domain (residue 1-192). (For interpreta-
tion  of the references to color in this figure legend, the reader is referred to the web
version of the article.)

torsion angle populations sampled by TAMD are more physically
realistic, with the two most populated states found at the alpha
helical and extended torsion angle regions as expected. Note that at
this length scale there are no discernible differences in the SAS pro-
files between the MC  and TAMD configurations (data not shown).

One way to evaluate the range of conformational space sam-
pled in TAMD simulations is to calculate the RMSD with respect to
the starting structures. Sampling the flexible region in the A-B sys-
tem for 500 ps on average resulted in structures that with RMSD of
17 Å from the initial structure as shown in Fig. 4. For the TraI pro-
tein fragment the average RMSD of the final structure after 500 ps
simulation was approximately 10 Å. This suggests that even short
TAMD simulations efficiently sample a large conformational space.

For more complex systems, such as full-length HIV-1 Gag
protein, TAMD simulation is capable of sampling large domain rear-
rangements. The RMSD of the MA,  NTD and NC domains calculated
by aligning the CTD domain ranged from 20 Å to 80 Å (Fig. S1).
Importantly, TAMD simulation of the subensembles were able to
refine structural features in several ways. Fig. S2 demonstrates that
the two domains in the A-B system remain relatively stable during
the TAMD simulation while loop regions assume a more compact
structure and reorient at the hinge ends. With two  domains inter-
acting with each other, TAMD is able to more rigorously sample
the rearrangement of the flexible loop regions. Sampling of this
cooperative movement of the loop region is limited in the back-
bone torsion MC  method. Compared with dummy  ball models,
TAMD simulations are driven by a physics based force field and are
thus capable of more accurately describe the interactions between
domains. TAMD simulation also removed some of the steric clashes
introduced by MC  sampling, along with the optimization of the rela-
tive orientations of domains and the interaction interface as shown
in Fig. S3. Even though the algorithm mainly employs short TAMD
simulations and focuses on local sampling, some large scale domain
movement was observed (Fig. S4).

3.1.3. Implicit solvent models
The quality of conformations sampled during TAMD simulations

are determined by the force field employed. Efficiency consid-
erations require deployment of efficient implicit solvent-based
force fields, where the crucial solvent effects on biomolecule struc-
tures are captured by direct estimation of so-called solvation free
energy. Only the molecule of interest need to be represented at

Fig. 5. Averaged RGYR calculated from TAMD simulations of A-B system (red) and
TraI  protein (black). (For interpretation of the references to color in this figure legend,
the  reader is referred to the web version of the article.)

the atomistic level with implicit solvent, thus reducing the sys-
tem size dramatically. Distance dependent dielectric (RDIE) is a
simple model to describe the solvent dependence of electrostatic
interactions [51], yet it has been shown to be quite effective in
docking and ranking of protein–ligand interactions [52]. In compar-
ison, solvent accessible surface area (SASA) and generalized Born
with smooth switching (GBSW) are two classes of more advanced
implicit solvent models that can provide more realistic estimation
of conformational dependence of solvation free energies [49]. Both
models have demonstrated reasonable successes in folding sim-
ulations of small proteins, whereas they are more limited when
applied to larger systems [49].

Using RDIE during TAMD simulations, both the A-B and TraI pro-
teins tend to collapse during TAMD simulations, particularly with
longer simulation times. As shown in Fig. 5, the radius of gyration
(RGYR) gradually reduced from 38 to 29 and 34 to 30 for A-B system
and TraI protein, respectively, during 500 ps TAMD runs. The value
of RGYR for TraI is much lower than experimentally determined
value of 36.9 Å as shown in Table 1.

Unfortunately, it does not appear that the tendency for the
proteins to compact over the duration of the simulations could
be effectively suppressed by the more advanced SASA and GBSW
implicit solvent models. The structures of the A-B system in all three
implicit solvent force fields collapsed, albeit to varying extents (Fig.
S5). The RGYRs generally remain at the same level within the first
100 ps, and quickly reduced to a plateau around 400 ps. TAMD simu-
lations of TraI in implicit solvents showed less severe collapse, with
an RGYR decrease of only about 5 Å  with values typically reaching
a plateau after 400 ps (Fig. S6). It should be noted that the TAMD
simulation of TraI using all the implicit solvent models led to RGYR
values less than that observed experimentally [34]. These obser-
vations reflect a common limitation of the current implicit solvent
models, which energetically favor and over-stabilize compact state
of proteins [53]. Several factors contribute to this bias, including
the underlying protein force field, inadequate description of sol-
vent screening of dispersion interactions and others [53]. We  also
note that the limitations associated with GB-class of implicit sol-
vent models are shared by the corresponding Poisson–Boltzmann
approaches. This will reduce the accuracy of solvent accessi-
ble surface area calculations thus affecting the estimation of the
hydrophobic effect in domain-domain interactions. As such, we
conclude that TAMD coupled with implicit solvent should be mainly
used for refinement of local structural features and not for sampling
large-scale conformational re-arrangements. Thus large scale rear-
rangements as noted in Fig. S4 may entirely be due to deficiencies in
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Fig. 6. Radii of gyration of A-B system from three representative TAMD simulations
with (solid lines) or without (dashed lines) RGYR restraints.

the implicit solvent model and not a natural interaction predicted
by TAMD. Specifically, we chose to perform short (100 ps) TAMD
simulations to sample substantial conformational space without
artificial collapse of the initial structures.

3.1.4. TAMD with RGYR restraints
One way to reduce the tendency for structures to collapse is to

apply RGYR restraints on the initial structures in the TAMD sim-
ulations. The restraint force stabilizes the central moment of the
selected atoms around their center of geometry. Fig. 10 shows the
RGYR of A-B system from three representative TAMD simulations
both without and with RGYR restraints using a force constant of
20 kcal/mol/Å. The restrained TAMD simulations were extended
up to 1 ns duration and the RGYR restraints effectively suppressed
the artifactual protein collapse introduced by the implicit models.
Although applying RGYR restraints prevents TAMD from sampling
large scale conformational transitions, the sampling of local struc-
tural features and the refinement of the MC  structures could be
efficiently achieved (Fig. 6).

3.2. Simulations of polypeptide chains

While we have explored MC  simulation followed by TAMD to
sample large protein systems connected by flexible residues, the
use of simple backbone torsion-angle MC  sampling to model disor-
dered chains in isolation is largely unexplored and there are many
advanced and mature simulation and sampling methods available
that inherently capture the relevant states with greater accuracy
[54,55]. The simulation of chains attached at the termini of globu-
lar macromolecules may  still benefit by the rugged MC  simulation
approach to provide rapid comparison of models to experimen-
tal scattering data. Many intrinsically disordered proteins contain
regions at the terminus of globular segments that can be considered
as disordered tails or polypeptide chains [56,57].

While the contribution to scattering profiles of disordered
regions often have little influence relative to the orientation of
large globular domains that they connect, the sampling of configu-
rations of disordered chains at the end of globular domains needs
to accounted for with greater care as successive structures in a MC
simulation can be highly correlated and backbone torsion sampling
is limiting. As as model system of a disordered polypeptide chain
we considered residues 1–143 of HIV1 Gag which is referred to as A-
tail, where residues 123–143 were considered flexible as shown in
Fig. 7A. Initial MC  simulation and subsampling and unconstrained
TAMD density plots are shown in Fig. 7B–D. In addition, two TAMD
simulations were run using the initial RGYR value of each subsam-
pled structure applied to all atoms in the A-tail model or only to
the flexible residues of the A-tail model with density plots shown
in Fig. 7E-F respectively.

Fig. 7. A-tail system and the density plot of different ensembles. (A) Cartoon ren-
dering of the A-tail system, extracted from the HIV-GAG protein (residue 1–143),
tail region is flexible in the simulations and is shown in orange. (B) Density plot of
the  Monte Carlo ensemble. (C) Density plot of the sub-sampled ensemble. (D) Den-
sity plot of the TAMD ensemble without constraints. (E) Density plot of the TAMD
ensemble with RGYR constraints imposed on the entire A-tail system. (F) Density
plot of the TAMD ensemble with RGYR constraints imposed on the tail only.

To evaluate the efficacy of TAMD to simulate polypeptide chains
attached to globular protein regions it is instructive to evaluate
a few representative TAMD trajectories in detail. In Fig. 8A and
B, RGYR is plotted as a function of simulation time for indepen-
dent TAMD simulations (shown in red, green, and blue in A and
red, green, and black in B). Each simulation was carried out with
no RGYR constraints, RGYR constraints on the entire molecule,
or RGYR constraints applied to the flexible residues only (tail).
Without RGYR constraints on the entire molecule all three simula-
tions resulted in compact structures with RGYR values plateauing
at ∼17–18 Å and the tail RGYR plateauing at ∼8–10 Å. In simula-
tions where RGYR constraints were applied to the entire system
the resulting RGYR of the entire molecule in some cases would
collapse (blue lines with circles in Fig. 8A) and in other cases
remained stable (green and red lines with circles in Fig. 8A). The
RGYR of the tail was  less effected when the RGYR was applied
to the entire system where a broad range of RGYR values of the
tail were observed (Fig. 8B red, green and black lines with cir-
cles). In simulations where the RGYR constraints were only applied
to the tail residues the resulting RGYR of the entire molecule
(Fig. 8A) collapsed to ∼17–18 Å while RGYR of the tail (Fig. 8B)
resulted in values ∼13–16 Å and thus less compacted. Representa-
tive structures from a selection of TAMD simulations are shown in
Fig. 8C–F.

The average RGYR and end-to-end distance distributions are
shown in Fig. 9. TAMD simulations without RGYR constraints
led to a dominant population of collapsed molecules while con-
straining RGYR on all atoms leads to the broadest distribution of
RGYR values using both metrics shown in Fig. 9A and B. While
we do not have access to an experimental RGYR value for the A-
tail system, an average experimental RGYR of residues 1–131 of
A-Tail system was  calculated from an ensemble of NMR  struc-
tures [58] and was found to be 17.4 ± 1 Å. Note that the NMR
ensemble had 12 fewer residues than the A-tail system. Taken
together, the results suggest that a proper way  to provide broad
conformational sampling requires applying RGYR constraints to
the flexible regions of such disordered tails and not to the entire
molecule.
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Fig. 8. Affect of RGYR constraints on A-tail TAMD simulations. (A) RGYR plot of the entire A-tail system (residues 1–143) from three representative TAMD simulations.
(B).  RGYR plot of tail region (residues 123–143) from three representative TAMD simulations. For both panels A and B straight lines without symbols indicate the TAMD
simulations without constraints; lines with circles indicate the RGYR from the TAMD simulations with RGYR constraints on the entire A-tail system; lines with crosses
indicate RGYR from TAMD simulations with RGYR constraints on the tail region only. Different colors indicate simulations starting from different initial structures. (C).
Cartoon rendering of the initial structure of one representative TAMD simulation (red in A and B). (D) Final snapshot of the structure in TAMD simulation without constraints.
(E)  Final snapshot of the structure in TAMD simulation with RGYR constraints on the entire A-tail system. (F) Final snapshot of the structure in TAMD simulation with RGYR
constraints on the tail region only. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

3.3. Simulations of nucleic acids

Nucleic acid simulations are a particularly difficult problem due
to the greater number of charges than proteins and the difficulty
in capturing multi-body electrostatic affects. While simulation of
double-stranded DNA, including NCP and higher order DNA com-
plexes and structured RNA containing systems has been extensively
studied [59–66,12,19,67] there is a continuing need to improve con-
formational sampling for these challenging and important systems.
As an example of the use of combined MC/TAMD on a disordered

nucleic acid we used MC  trajectories of the 60 bp B-Form DNA
molecule and the NCP (which combines protein and DNA elements)
using a MC  algorithm derived for B-DNA [12].

Fig. 10 demonstrates the spatial coverage of the structures from
the MC  ensemble (blue), subsampled ensemble (red) as well as
the total ensemble from TAMD simulation (green). The density
plot shows that the subsampled ensemble covers most of the
MC ensemble in conformational space. We  have found that DNA
molecules are unstable using the implicit solvent models in the
TAMD simulations. To maintain a stable double stranded structure,

Fig. 9. (A) RGYR distribution of the A-tail system from TAMD simulations. Solid lines indicate the distribution from the first 500 ps simulations and dashed lines indicate the
distribution form the last 500 ps simulations.
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Fig. 10. Cartoon representation of (A) 60 bp B-DNA, and (B) NCP molecule. Protein molecules are colored in cyan and DNA molecules are colored in orange. The flexible
regions  sampled in MC simulations are highlighted by lines. (C) and (D) density plot of spatial coverage of MC ensemble. (E) and (F) density plot of the spatial coverage of
subsampled ensemble. (G) and (H) density plot of the spatial coverage of TAMD ensemble. 90 degree rotation about the z-axis is shown for each case. (For interpretation of
the  references to color in this figure legend, the reader is referred to the web version of the article.)

and prevent DNA molecules from deviating from the initial subsam-
pled structures in the TAMD simulation, a small harmonic restraint
was applied on each DNA backbone atom with a force constant of
0.1 kcal/mol/Å2. Despite the harmonic restraints in the short TAMD
simulations, the structure ensemble generated by TAMD simulation
adequately sampled configuration space.

To ensure the DNA molecules did not unwind during the TAMD
simulations, we calculated the change of RGYR during the entire
course of TAMD simulations. As shown in Fig. 11, the RGYR of the
60 BP DNA and the NCP molecule is stable (∼0.3 Å for 60 bp DNA
and ∼0.15 Å for the NCP molecule) during the TAMD simulations.
TAMD mainly samples the local fluctuations and serves as a tool to
quickly relax DNA structures.

3.4. Simulations of carbohydrates

Many mammalian proteins undergo post-translational modifi-
cations which incorporate carbohydrates into their structure with
important consequences for their biological activity. Our approach
to incorporate carbohydrate flexibility is to perform MC  simula-
tions on the protein component with rigid carbohydrate followed
by subsampling and TAMD on both protein and carbohydrate

degrees of freedom. Ensemble modeling using molecular dynamics
of glycosylated proteins to analyze SAXS data and examples of using
MC simulations of monoclonal antibodies have been described in
the literature [68,18,41]. In this example we  focus on the TAMD
simulation of the carbohydrate moiety in detail using a single con-
figuration of the antibody protein fragment for brevity. Specifically,
we carried out TAMD simulations the PTerm455 construct derived
from the human monomer IgA1 antibody [41] containing two N-
linked glycans. Based on the solution structure (PDB: 1IGA) by
Boehm et al. [40] these glycans were modelled pointing away from
the protein and into the solvent, in a splayed conformation (with
the terminal sialic acids spread by 27.8 Å) as shown in Fig. 12A.
More recently, a crystal structure of the IgA1 Fc domain bound to
a receptor (PDB: 1OW0) has been solved [39] in which one of the
two arms of each of the bianntenary N-linked glycans are resolved.
This branch of the glycan runs along the Fc surface with the clos-
est protein residue to the carbohydrate terminus being arginine
392, which is located towards the C-terminus of the protein (see
Fig. 12A). Ten independent 500,000 step TAMD simulations were
performed of the PTerm455 construct. In all simulations the pro-
tein segment remained fixed whilst the carbohydrate was  free to
move. During the simulations the glycans explore a wide range of
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Fig. 11. The change of RGYR of the DNA molecules during the TAMD simulations.

Fig. 12. TAMD simulation of the N-glycan in the PTerm455 construct based on IgA1. (A) The location of the N-linked glycans in the Fc fragment of the construct for both
the  crystal structure (orange) and the initial structure used for simulation which is based on the model of Boehm et al. [40] (green). The C1 atoms of the terminal sialic acid
monosaccharides are shown as spheres. The carbon alpha of arginine 392 is shown as a black sphere. The inset figure shows the structure viewed along the symmetry axis. (B)
Occupancy plot showing the space explored by the N-glycans during simulations. The blue wireframe volume represents all regions of space sampled during the simulation
and  the red shaded region that sampled by more than 50% of the simulation frames. The crystal structure glycan conformation (orange) is shown for comparison. (C) The
variation in glycan conformation observed in the simulation characterized by the minimum distance between a C1 atom of one of the branch terminal sialic acids to arginine
392  and the separation between the two branches. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

conformations, both protruding into the solvent and lying along the
protein surface as shown in Fig. 12B and C. However, all simulations
predominantly sampled structures with one branch approaching
arginine 392 as observed in the crystal structure with the terminal
sialic acids of the two arms within 10 Å of one another. These results
are in agreement with more recent solution studies where the best
fitting structures featured glycan conformations based upon the
crystal structure pose [41].

4. Conclusion

The combination of MC  and TAMD to rapidly generate physically
representative structural ensembles to compare to experimental
data is a natural evolution to overcome sampling and solvation
limitations in molecular dynamics simulations. While MC  alone
has the ability to sample a large configuration space the limited
degrees of freedom can lead to configurations that are not ade-
quately relaxed. It was found by evaluating several implicit solvent
models that in order to prevent the prediction of unrealistic com-
pact states, that a simple RGYR constraint corresponding to the
starting RGYR for each MC  configuration be applied. Thus a simple
procedure has been described whereby MC  ensembles are spatially
subsampled followed by RGYR constrained TAMD. Due to the cur-
rent state of current implicit solvent models the predictive ability of
the combined MC/TAMD method is limited. Regardless, the genera-
tion of physically realistic and robust ensembles to be compared to
experimental data is a valuable advance that will improve as more
accurate implicit solvent models are developed. Programs to carry
out the MC  and TAMD for proteins, nucleic acids, and carbohydrates
are freely available (https://sassie-web.chem.utk.edu/sassie2).
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