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Abstract— Robot calibration and performance will degrade if 

proper maintenance isn’t performed. There have been 

challenges for manufacturers to optimize the maintenance 

strategy and minimize unexpected shutdowns. Prognostics and 

health management (PHM) can be applied to industrial robots 

through the development of performance metrics, test methods, 

reference datasets, and supporting tools. A subset of this 

research involves developing a quick health assessment 

methodology emphasizing the identification of the positional 

health (position and orientation accuracy) changes. This 

methodology enables manufacturers to quickly assess the 

static/dynamic position and orientation accuracies of their robot 

systems. In this paper, the National Institute of Standards and 

Technology’s (NIST) effort to develop the measurement science 

to support this development is presented, including the 

modeling and algorithm development for the test method, the 

advanced sensor development to measure 7-D information 

(time, X, Y, Z, roll, pitch, and yaw), algorithms to analyze the 

data, and a use case to present the results. 

I. INTRODUCTION 

As robotic technologies become more integrated with 
complex manufacturing environments, robot system reliability 
has become more critical. From the moment a robot system is 
put into service to enable a manufacturing process, the overall 
process, its constituent sub-systems, and components begin to 
degrade. Without maintenance, these degradations will lead to 
faults and/or failures impacting the process. These faults 
and/or failures ultimately lead to unexpected downtime and 
lost production if they are not remedied. Unexpected 
downtime and lost production are ‘pain points’ for 
manufacturers, especially in that they usually translate to 
financial losses. To minimize these pain points, manufacturers 
are developing new health monitoring, diagnostic, prognostic, 
and maintenance (collectively known as prognostics and 
health management (PHM)) techniques to advance the 
state-of-the-art in their maintenance strategies.  

PHM is an approach to the system life-cycle support that 
seeks to reduce/eliminate time-based maintenance through 
accurate monitoring, incipient fault detection, and prediction 
of impending faults [1]. PHM can be applied in both the 
component level and system level. Component level PHM is 
typically focused on monitoring the health of individual 
components (e.g., gears, engines, and electronic devices) to 
determine if the health of the monitored component is 
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degraded by taking into account environmental, operational, 
and performance-related parameters [2, 3]. System level PHM 
assesses the health of the overall system by taking into account 
the system architecture, system function, and process-related 
parameters [4]. System level PHM may delay the need to 
replace a component that would not immediately affect the 
operation of the system. In the case of monitoring the system 
where robot system reconfiguration and re-tasking is 
necessary (often driven by the market requirement for high 
design-variation and low-batch), efficient health monitoring 
should be addressed not only at component level, but also at 
higher system level since the decision making procedure may 
rely on the global industrial system state [4]. Many of the 
existing PHM strategies are adept at handling component 
PHM; fewer PHM techniques are capable of being integrated 
into the sometimes volatile nature of the manufacturing 
process (for example, system process changes and hardware 
reconfiguration) [5].  

A robot system is complex. It contains robot arms, sensors, 
control systems, end-effectors, process tooling, power 
supplies, and software all working together to perform a task. 
To successfully perform a task, the robot system needs to 
deliver the position and orientation accuracy of the tool center 
position (TCP), the trajectory of the arm, the correct speed, 
force, and torque. The robot system’s accuracy relies on the 
actual geometries of components in a robot cell. Tiny changes 
of the components, such as needed calibration of the robot 
arm, end-effectors, fixtures, and tooling in the robot cells, can 
cause inaccuracies of the robot TCP positions used in existing 
robot programs. In some systems where machine vision is 
applied to assist localizing the robot to the workpiece with 
high accuracy, the combined camera/robot system is critical 
since this drives the accuracy of the process. The degradation 
of a robot system’s positional health (position and orientation 
accuracy) can lead to a decrease in manufacturing quality and 
production efficiency. The in-process system level health 
degradation is difficult to detect compared to a complete 
system break-down. Given the use of robot systems in many 
high precision industries (e.g., aerospace, automotive), it is 
important that robot system’s positional health degradations 
be understood so that maintenance and control strategies can 
be optimized at the system level.  

Enhancing positional health within manufacturing robotic 
operations would be greatly beneficial to the manufacturing 
community in terms of improving their efficiency and product 
quality while reducing scrap. Developing, advancing, and 
integrating monitoring, diagnostic, and prognostic capabilities 
will support these enhancements. However, there are 
numerous technological challenges that must be addressed to 
increase the capability of PHM, ultimately leading to 
improved accuracy. 
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II. CHALLENGES OF THE QUICK POSITIONAL HEALTH 

ASSESSMENT FOR INDUSTRIAL ROBOTS 

Robot accuracy is defined as the measurement of the 
deviation between the commanded and attained robot position 
and orientation [6]. Accuracy can also represent the difference 
between commands and actual velocities, accelerations, forces, 
and torques. Robots are employed to accurately move, 
manipulate, and/or perform a process (e.g., welding) to certain 
specifications. The consideration of robot accuracy (static and 
dynamic) is one of the key elements when assessing the health 
state of an industrial robot used in the manufacturing process.  

There are many challenges for the positional health 
assessment (position and orientation accuracy) of industrial 
robots. Challenges include: (1) lack of sensing technology to 
quickly acquire X, Y, Z, roll, pitch, and yaw information that 
describes the robot TCP accuracy. Existing 6-D measurement 
systems include laser tracker-based systems and optical 
tracking systems [7]. These systems are expensive. The laser 
tracker-based systems need to maintain line-of-sight between 
the laser tracker and the target. The optical tracking systems 
use reflective balls as markers and the near-infrared filter 
attached to lenses to obtain images which only contain the 
markers. The optical tracker’s near-infrared cameras are 
“blind” to the environment. There is no redundancy when 
ambient light influences the reflected light from the targets 
[8]; (2) lack of test methods that can quickly and efficiently 
detect key performance metrics without interrupting 
production lines. For example, TCP accuracy needs to be 
assessed within a volumetric method because the error 
magnitudes and directions are different depending on the 
approach directions of joints. Efficient modeling and 
algorithms are needed for the test method to identify the health 
of the robot system; (3) lack of a PHM data taxonomy and 
architecture to support the interoperability between 
sensor/data formats and communication modes to capture, 
share, and analyze data across heterogeneous robot systems; 
(4) lack of PHM overall structure to enable various PHM 
technologies for robot systems, to be evaluated in an unbiased 
manner; and (5) lack of algorithms to analyze the results of the 
positional health assessment to detect the root cause of failures 
and the potential remedies to fix the problem.   

To address the broad landscape of barriers and challenges, 
measurement science is needed which includes a collection of 
performance metrics, use case scenarios, test methods, 
reference datasets, and software tools to promote unbiased 
assessment to verify and validate (V&V) position and 
trajectory accuracy health assessment strategies. One specific 
area of NIST research is the Prognostics, Health Management, 
and Control (PHMC) project, which aims to develop the 
measurement science within several manufacturing domains 
to promote the advancement of monitoring, diagnostic, 
prognostic, and maintenance strategies [9]. This work is 
supported by the development of a robot system test bed.   

The key building blocks of the test bed are shown in Fig. 1. 
The first key building block is the advanced sensing module 
for PHM (shown in the upper left of Fig. 1). Advanced sensing 
will be developed to measure and monitor the system’s health 
status and will have three sensing layers: a system layer, a 
component layer, and an add-on layer. The system layer aims 
to support the overall system’s health assessment, including 

repeatability, accuracy, velocity, force, and torque; the 
component layer extracts data from the robots’ controllers 
and/or embedded sensors to perform the on-line monitoring; 
the add-on layer promotes the inclusion of additional sensors 
to provide information that the component and system layers 
may be neglecting. The second key building block is the data 
processing module (shown as the data collection module in 
Fig. 1). This module will focus on the development of 
reference algorithms to fuse data captured from multiple 
sensors employed in the advanced sensing module. The data 
processing module will offer greater analysis capability 
through targeted data collection on top of complex and/or 
reconfigurable robotic applications. The third key building 
block is the development of algorithms for robot system health 
assessment and PHM V&V methods (collectively shown in 
the cost function module, degradation module, prognostic 
module, and visualization tools module in Fig. 1). As the 
fourth key building block, the closed-loop implementation 
(shown as the action module and the PHM remedy module in 
Fig. 1) of PHM solution within the control structure is 
reviewed. This structure serves as the back bone of use case 
development. The development and expansion of each module 
will further address elements of the measurement science. It 
also serves as the platform for reference dataset collection.   

III. QUICK POSITIONAL HEALTH ASSESSMENT 

METHODOLOGY 

Use cases are created within the overall test bed. The first 
use case is the development of a robot system quick positional 
health assessment methodology based on the increasing 
demand on industrial robot accuracy. This methodology 
contains the development of test methods, sensors used to take 
measurements, reference algorithms for data processing and 
health assessments, and V&V of PHM techniques. We will 
focus on the first three developments in this paper.  

The robot system’s positional health includes the robot 
arm’s accuracy and the accuracy of any system interacting 
with the robot arm (e.g., a conveyor moving products within 
the range of the robot arm). By checking the position and 
orientation accuracy of the TCP and the part conveyors, users 
can get a quick health evaluation of the combined 

Figure 1.  Key building blocks of the PHMC for Robotics structure 
 



conveyor/robot system since this drives the accuracy of the 
process. To assess the robot arm’s positional health, a test 
method with a fixed loop motion is developed by extending 
the existing standard methods for robot performance, as 
described in [5]. This fixed loop motion of the robot arm is 
designed such that the test method can be executed 
periodically and in a relatively short amount of time. While the 
TCP is moving to these pre-determined positions, X, Y, Z, roll, 
pitch, yaw, and time (7-D information) data are being captured 
from a 7-D measurement system. All measurements will be 
taken under a global coordinate system which is defined on the 
7-D measurement system. Analyzed position, time, and 
orientation data will provide a measure of the positional health 
of the robot system when compared to original specifications 
and prior measurements. Ideally, periodic data would be 
collected to track accuracy degradation with minimal 
disruptions to production. This accuracy degradation data 
would offer insight into the robot system’s health. 

A. Modeling and Algorithm Development for the Test 
Method 

When developing the test method model for the robot 
positional health assessment, the model should reflect error 
sources of the robot system. Thus, after the positional health 
assessment, this model can be further used for the root cause 
analysis to find the problematic individual joints. Traditional 
modeling methods assume that joint motion is ideal, and the 
geometric relationships between the joints are constant. Yet 
there are also non-geometric errors, such as the non-ideal 
motion of joints, and deflections of the structure and joints due 
to external loading or gravity, backlash, etc. Those errors are 
position dependent. It means that the errors are not constant 
with respect to joint motion, but a model with parameters that 
depend on the pose of the robot. Furthermore, since each TCP 
pose (position and orientation) in the Cartesian space could 
have multiple inverse kinematic solutions, the error magnitude 
and direction changes by choosing different solutions. This 
makes the assessment of the TCP accuracy very difficult since 
it’s hard to measure the accuracy from all directions. Given a 
measurement system that can capture the TCP’s poses, a user 
can implement a simple strategy to run a working program and 
measure the robot’s TCP movements. Deviations can be 
calculated from the measured positions to the nominal 
positions. The shortcoming of this strategy is that it cannot 
represent the overall positional health condition of the robot. 
The robot might be programmed to work in the “sweet zone” 
in the volume with the optimal approaching direction. If 
another program is called, this process would need to be 
performed again. There needs an efficient model/algorithm to 
support the test method that can calculate the robot’s overall 
positional health results through its working volume using 
limited measurements. Moreover, there is challenge of how to 
decouple the measurement instruments’ uncertainty from the 
actual robot errors. The presented modeling and algorithm 
development for the test method will solve these challenges. 

In this use case development, the robot platform is the 
Universal Robot UR3 with CB3 controller. The UR3’s serial 
kinematic structure with coordinate frames is shown in Fig. 2. 
Any error of the joint axes will be reflected in the TCP errors 
through the kinematic chain. Similar to machine tools, the 
errors of a joint axis (either a linear or a rotary axis) can be 

described as geometric errors that are functions of joint 
positions. Each of the six robot joint axes contains six errors of 
the axis: three displacements of the axis (in x, y, and z 
direction) and three rotation errors of the axis (roll, pitch, and 
yaw errors). Fig. 3 shows a rotary axis (we refer to it as the 

“i-axis” as the representation of a general situation), which 
represents the  joint of a robot. In Fig. 3, the real axis has 
deviated from its designed position. The reason for the 
deviation could be from the errors in robot geometry, axis 
motion, robot gear box degradation, backlash, thermal 
environment changes, or external loading/gravity. The errors 
of this axis are represented as: (1)  - radial error motion of 

i-axis in X direction; (2)  - radial error motion of i-axis in Y 

direction; (3)  - axial error motion of i-axis in Z direction; (4) 

 - tilt error motion around X of i-axis; (5)  - tilt error 

motion around Y of i-axis; and (6)  - angular positioning 
error (also called scale error of the rotation axis). The error 
model of the joint is described as: 

    (1) 

Where  is the transformation from frame i-1 to frame i 

and  is the  joint angle variable.  

Different from the traditional error model, the  and 
 are not constant values, but are functions of axis 

locations which we refer to as a higher order model [10]. That 
means the error model can model not only the 
position-independent geometry errors, but also the 
position-dependent axis motion errors. Another challenge for 
the traditional error model is the lack of handling of the 
measurement noise. The uncertainties coming from 
measurements are usually treated as joint errors. In that case, 
the parameter estimates may be biased. In our model, an 
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Figure 3. Six errors of a rotation axis 

Figure 2. Robot system kinematic chain 



implicit loop method is adapted to address this issue. In the 
implicit loop method, the mechanism is treated as having a 
closed loop from the first link out to the tool tip, and then back 
to the first link via a measuring device. The displacements 
around a closed loop sum to zero (or Identity matrix). With 
this convention, the measurement instrument is included in the 
loop. The measurement instrument’s uncertainty is modeled 
inside the model equation using a weight. Joint and 
end-effector measurements are on equal footing, with weights 
assigned according to the accuracy of each joint. As shown in 
Fig. 2, the 7-D measurement system is included in the loop of 
the kinematic chain. The kinematic model of the robot is: 

         (2) 

Where A is the nominal axis motion,  is the nominal 
transformation from joint 0 to joint 1, E is the error of the joint, 

 is the setup error of the robot base, and  is the 
transformation error from joint 0 to joint 1. Each E follows the 
definition shown in Equation (1). The δ(θ) and ε(θ) are high 
order Chebyshev polynomials with unknown polynomial 
coefficients to be solved by analysis algorithms. 

B. Method of Analysis  

Before calculating and deriving the error model from this 
kinematic model, there are two unknown transformations in 
the kinematic chain in Fig. 2. One is the   

transformation that is from the TCP (link (N-2)) to the smart 
target (link (N-1)). The smart target is mounted on the robot 
end effector that is tasked by the measurement system to 
determine time, x, y, z, roll, pitch, and yaw information. Since, 
for different robots, it may need different adaptors, the 
transformation from the TCP to the smart target coordinate 
frame often requires calibration. The calibration needs to 
identify the six constant parameters of the  (three 

translations and three rotations). The other unknown 
transformation is the  that is from the 7-D measurement 
system (link N) to the robot base frame (link 0). To avoid 
calibration processes as part of the setup overhead, these 
constant parameters are put in the error model to be identified 
together with the other high order parameters. This technology 
eliminates the time-consuming calibration and setup 
procedures, which are hurdles of new technologies’ 
implementation in practical industrial applications. 

Placing all measurements (joint and measuring device) in a 
single measurement vector x, Equation (2) becomes: 

f (x, p) =0               f :  ×    →                          (3) 

x , p , f  

where x is a vector of motion variables and k is the number of 
measurements taken for each pose. The vector x may include 
joint and end-effector displacements being measured, as well 
as backlashes or other small unknown displacements. p is the 
vector of parameters in the error model to be estimated and n is 
the unknown number of parameters. m is the number of 
constraints or loops. We require k ≥ m and evaluate 
( = m to guarantee that the loop can always be closed. 
The robot will be sent to various poses (a designed fixed loop 
motion), and a measurement of x for each pose will be 
obtained. For a particular pose i, let’s assume the true value of 
the measurement vector is , which we would record as 

measurement  with unknown measurement error , so that 
=  + . Throughout all of the sample poses, the 

parameters should be constant, but our initial estimates of   
parameters may be in error by , that is p =  + . For 
example,  might be the blueprint value of a link length and  
would then be the error incurred in manufacturing the part.  

f (  p) = f (  + ,  +  = 0,       i=1, …, N            (4) 

where N is the number of sample positions.  

The  error function is derived as: 

 =                                 (5)                             

The implicit loop based maximum-likelihood estimation is 
used [10] to solve this error model and minimize the error by 
fitting the parameters in Equation (1). There are two outputs 
from this modeling method. The first one is the derived errors 
from the calculation of the position and orientation accuracy 
of the robot. The advantage of this method is that the 
uncertainties of the measurements are decoupled from the true 
errors and won’t bias the analysis result. The second output is 
to find the maximum likelihood estimation of  to minimize 
the error function. Because  represents the unknown 
coefficients of the polynomials of the error terms in each of the 
E matrix, that result can be used to detect the root cause of axis 
errors. Moreover, compensation can be calculated to improve 
the accuracy of the kinematic model, which can be used in the 
future system remedy and prognostic algorithm development. 
To solve the implicit loop based maximum-likelihood 
estimation, one needs an innovative optimization algorithm 
because it’s a combinatorial problem which has no concept of 
a derivative or gradient for algorithm converging. Traditional 
Quasi-Newton methods won’t work on this problem. The 
optimization algorithms will be detailed in future publications.  

C. Fixed Loop Motion Design  

An important feature of the model (for the test method) is 
that it requires the measurements be evenly distributed in both 
joint space and Cartesian space. The even distribution in joint 
space prevents any errors from being missed or from being too 
heavily weighted. The even distribution of measurements in 
Cartesian space covers an entire workspace range of robot arm 
poses, including some that are near, far, high, and low, to 
evaluate arm accuracy and rigidity when the arm is both fully 
and minimally extended. A fixed loop motion needs to be 
designed to satisfy those requirements. 

Fig. 4 shows the designed fixed loop motion of the UR3 
robot created for the use case. The robot workspace is a 
spherical volume with a cylindrical dead zone in the center of 
the sphere. To generate this fixed loop motion, the following 
procedure is created: (1) in Cartesian space, a grid of poses is 
generated inside the robot workspace as the target poses (as 
shown in Fig.4 (a) and (b)); (2) inverse kinematic calculations 
are performed to check if the target positions are reachable by 
any configuration (if not, the target is skipped); (3) a linear 
motion path is planned between each pose. This means that 
each joint performs complicated motions to keep the TCP/tool 
on a straight line path; and (4) calculations are performed to 
check if the robot linear motion is possible. In the meantime, 
collision checking is also performed. If the linear motion is 
impossible, the algorithm will change the current joint 
configuration to a different configuration, then redo the check 



in step 4. For example, a pose of the UR3 robot in its 
workspace is represented by a 4×4 Linear Homogenous 
Transformations matrix (transforming from the robot base).  

[ -1.000000    -0.000227     0.000070   412.500000 
   -0.000070    -0.000000    -1.000000       0.000000 

     0.000227    -1.000000      0.000000    340.00000 

    0.000000     0.000000     0.000000     1.000000 ] 

Each pose in the space has multiple inverse kinematics 
solutions to convert it into joint angles. The number of 
solutions varies depending on the pose of the robot arm. In this 
example, this TCP has 20 possible options, as shown in Table 
1 (using degree as the unit). J0 could vary from -182.9 to 
176.1. J4 could vary from -176.1 to 333.5. In Step 4 of the 
procedure, when different configurations are needed, a search 
from all possible configurations is performed to select the 
satisfactory configuration for the even joint distribution 
requirement. If none of the configurations are possible, a 
curved motion path is attempted; if a curved motion path is not 
possible either (because there is a collision), this target pose is 
skipped. Otherwise, this pose is saved as one of the target 
positions in the fixed loop. This procedure is repeated until all 
of the poses in Fig. 4 (a) are evaluated. The final poses and 
paths are shown in Fig. 4 (c). In this particular example, 
because the robot is mounted on an optical table, only poses 
above the table surface clear the check procedures. After these 
initial procedures, a fixed loop of robot positions is saved that 
will be executed periodically. The reason for preferring linear 
motion paths is that extra analysis can be performed, such as 
errors from the best fit of the linear lines and square angles 
between the linear lines. While the TCP is moving to these 
pre-determined positions, the X, Y, Z, roll, pitch, yaw, and 
time data are being captured from a 7-D measurement system. 

TABLE I.  MUTLIPLE SOLUTIONS OF ROBOT INVERSE KINEMATICS 

# J0 J1 J2 J3 J4 J5 # J0 J1 J2 J3 J4 J5 

1 -183.9 -0.1 -40.2 -139.6 183.9 0 11 176.1 -0.1 -40.2 -139.6 183.9 0 

2 176.1 -37.6 40.2 177.3 -176.1 0 12 176.1 -37.6 40.2 177.3 183.9 0 

3 26.5 -142.4 -40.2 2.7 -26.5 0 13 26.5 -142.4 -40.2 2.7 333.5 0 

4 26.5 -179.9 40.2 -40.4 -26.5 0 14 26.5 -179.9 40.2 -40.4 333.5 0 

5 -183.9 -0.1 -40.2 -139.6 -176.1 0 15 -183.9 -37.6 40.2 177.3 183.9 0 

6 -183.9 -37.6 40.2 177.3 -176.1 0 16 176.1 -0.1 -40.2 -139.6 -176.1 0 

7 -333.5 -142.4 -40.2 2.7 -26.5 0 17 -333.5 -142.4 -40.2 2.7 333.5 0 

8 -333.5 -179.9 40.2 -40.4 -26.5 0 18 -333.5 -179.9 40.2 -40.4 333.5 0 

9 176.1 -37.6 40.2 -182.7 -176.1 0 19 176.1 -37.6 40.2 -182.7 183.9 0 

10 -183.9 -37.6 40.2 -182.7 -176.1 0 20 -183.9 -37.6 40.2 -182.7 183.9 0 

D. Advanced Sensing Development (a 7-D Measurement 

System) 

Advanced sensing development is an important part of the 
PHMC for robotics structure to quickly acquire the 6D 

information (X, Y, Z, roll, pitch, and yaw) that describes the 
robot TCP accuracy. Existing 6D measurement systems 
include laser tracker-based systems and optical tracking 
systems [7]. These systems are expensive. The laser 
tracker-based system needs to maintain line-of-sight between 
the laser tracker and the target. The target mounting usually 
requires changing setups or work tools. The optical tracking 
system uses reflective balls as markers and the near-infrared 
filter attached to lenses to obtain images which only contain 
the markers. The optical tracker’s near-infrared cameras are 
“blind” to the environment. There is no redundancy when 
ambient light influences the reflection light from the targets. 
The advanced sensor used to capture the 7-D information on 
the TCP needs to be a relatively low-cost solution for 
industrial implementation. The measurement system needs to 
be designed such that its integration and use does not interfere 
with the robot system’s normal operations. Considering the 
measurement requirements for the positional health 
assessment test method, a 7-D measurement system is being 
developed by NIST to support this research effort. A 
vision-based design is selected because: (1) vision-based 
systems can obtain position and orientation information 
simultaneously; (2) camera technology can deliver sub-pixel 
accuracy. After optical triangulation, the sub-pixel accuracy 
provides the measurement system with a higher degree of 
accuracy than was previously available; and (3) vision 
systems are relatively easy to integrate [11]. Instead of using 
near-infrared cameras, high speed color cameras were selected. 
With new, advanced color image stereo technology, target 
detection can be more accurate by utilizing redundant 
information from color images. The 7-D measurement system 
consists of two high-speed color cameras, a high performance 
image processing control box (computer), special targets, and 
software tools.  

Innovative target design is an important part of this work. 
Specific targets are designed as adaptors to mount on the robot 
arm’s end-effector with known offsets from the TCP. The 
purpose of designing innovative target fixtures is to avoid tool 
changes during measurement which would require a brief 
interruption of the production. The specific target design is 
currently under consideration for a patent. Differing from and 
exceeding the performance of traditional stereo technology, 
the 7-D measurement system is designed and embedded with a 
time synchronization feature, which is important for analysis 
when fusing with other sensors for robot system health 
analysis. Also, a self-calibration method is created by utilizing 
the designed features on the specific target to avoid the 
condition where a camera-based measurement system needs to 
frequently self-calibrate. Moreover, the advanced color sensor 
processing technology is utilized which uses redundant 
information from the environment conditions for more 
accurate target detection. Design of the 7-D measurement 
system and the target will be detailed in future publications. 

IV. USE CASE ANALYSIS, RESULTS, AND DISCUSSION 

A use case analysis (under the existing robot platform) was 
performed using the simulated measurements with known 
robot joint errors and measurement uncertainty. In this use 
case, each axis’s nominal forward kinematics (“A” matrix in 
Equation (2)) was constructed using the robot’s 
Denavit-Hartenbert (DH) parameters. The robot’s DH table is 

                   (a)                                  (b)                                  (c) 

Figure 4. Robot fixed loop motion for test method 



omitted here for brevity. Simulated joint errors of J0 and J1 
were added into the robot error model “E”, following the 
definition in Equation (1). As shown in Fig. 5, the  and 

 are not constant values but Chebyshev polynomials, 

which are used to represent the general position-dependent 
axis errors in industrial robots. The advantages of using 
Chebyshev polynomials are for the benefit of error model 
identification and scale invariance because of their two 
properties: (1) they are orthogonal over an interval; and (2) 
they have a similar scale over the same interval. Various 
measurement poses were generated as the fixed loop motion 
shown in Fig. 4 (c). Measurement noises with known 
uncertainty were added into simulated measurement results to 
simulate the environmental noise and instrument noise.  

The error function  is derived in the form of Equation 
(5). Two outputs come out from the analysis. The first one is 
the derived errors from the calculation of the robot position 
and orientation accuracy. The second output is the maximum 
likelihood estimation of  to minimize the error function, 
which is not the main focus of this paper. For the calculation of 
the robot position and orientation accuracy, the analysis is not 
a simple deviation calculation from commanded poses to 
measured poses, but an identification of the error model to 
solve the  error function. The advantage of this method is 
that the uncertainties of the measurements are decoupled from 
the true errors and won’t bias the analysis result. Also 
position-dependent errors are calculated more accurately 
because the advanced modeling method can model not only 
the motion error of all of the joints (both translation and 
rotation), but also the geometry error between the joints. 
Results of the position-dependent error distribution are shown 
in Fig. 6, with respect to X, Y, Z axis and 3D space under the 

world coordinates. The position-dependent error distribution 
can help to track the change of error distribution, provide a 
comparison of different robot systems’ positional health, and 
establish a baseline of a robot system’s positional health 
condition. Statistical results are also generated including 
average error, standard deviation of the error, and maximum 
error. The statistical results are more accurate because they are 
derived from the error model instead of directly calculating 
from the limited size of sample measurements.  

In summary, this use case demonstrates the utilization of 
the quick health assessment methodology by using the 
advanced sensing system (a 7-D measurement system), the 

designed test method with the robot fixed loop motion, and the 
advanced error modeling and analysis technique. With this 
technology, users can assess the robot positional health faster, 
cheaper, and with higher accuracy. This can help to quickly 
detect and decrease the manufacturing quality degradation to 
reduce scrap. This methodology can be applied when 
environmental conditions change, after the work cell has been 
reconfigured, or whenever a manufacturer wants to determine 
if they have experienced a degradation.  

V. CONCLUSION 

NIST’s development of measurement science to support 
the PHM for robotics technique is presented. A test bed is 
being constructed to provide a platform for the development. 
An advanced methodology of quick health assessment is 
developed to identify the health of the robot system, which can 
lead to reduce unexpected downtime, and ultimately improve 
a robot system’s productivity, efficiency, and quality. NIST is 
seeking to develop additional industrial use cases for further 
applications. Future efforts are also under way to add more 
complexity to the environment, such as including conveyors, 
end-effectors, and tooling. 

NIST DISCLAIMER 

Certain commercial entities, equipment, or materials may be identified 
in this document in order to illustrate a point or concept. Such identification 
is not intended to imply recommendation or endorsement by NIST, nor is it 
intended to imply that the entities, materials, or equipment are necessarily the 
best available for the purpose. 
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Figure 6. Error distribution on X, Y, Z, and 3D 
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Figure 5. The joint Ji’s simulated axis motion errors 
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