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previous schemes with such an independent reduction loss in security 
required a linear number of such lattice vectors, and even in the classical 
world, the only schemes achieving short signatures relied on non-standard 
assumptions. 
We improve on their result, providing a verification key smaller by a 
linear factor, a significantly tighter reduction with only a constant loss, 
and signing and verification algorithms that could plausibly run in about 
1 second. Our main idea is to change the scheme in a manner that allows 
us to replace the pseudorandom function evaluation with an evaluation 
of a much more efficient weak pseudorandom function. 
As a matter of independent interest, we give an improved method of 
randomized inversion of the G gadget matrix [MP12], which reduces 
the noise growth rate in homomorphic evaluations performed in a large 
number of lattice-based cryptographic schemes, without incurring the 
high cost of sampling discrete Gaussians. 
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1 Introduction 

The Boyen-Li lattice-based signature scheme [BL16] from Asiacrypt 2016, is 
a theoretical breakthrough in terms of signature schemes with tight security 
reductions in the standard model. 

Previous schemes achieving a reduction loss in security independent of the 
number of signing queries were either only proven secure in the random-oracle 
model [KW03, BLS04], required large signatures (of size at least quadratic in the 
security parameter) [BKKP15], or are insecure against quantum attacks [CW13, 
GHR99, BB08]. Their scheme manages to achieve short signatures (consisting 
of a single lattice vector in Zm) in the standard model with a loss in security q 
depending (up to a constant factor) only on the loss from the security reduction 
of the pseudorandom function family (PRF) which underlies their scheme. 

The starting point of their scheme is the Katz-Wang signature scheme, proven 
secure in the random oracle model [KW03]. Viewed at a high level, this scheme 
requires a pseudorandom function (PRF) PRFk, a hash function H modeled as a 
random oracle, and a trapdoor function f . The signer computes a signature σ by in-
verting the trapdoor at H(PRFk(µ)||µ), and the verifier accepts if f(σ) = H(b||µ) 
for some b ∈ {0, 1}. In the security proof, the random oracle is programmed so 
that it can only invert the trapdoor function f at f−1(H(PRFk(µ)||µ)), while 
learning f−1((H(1 − PRFk(µ))||µ)) would allow it to solve some hard problem. 
If the PRF is secure, the latter case will happen with probability 1/2. 

Boyen and Li notice that instead of using a random oracle, they can use the 
key-homomorphic trapdoor functions of Boneh et al. to encode the bits of the 
PRF key in the verification key [BGG+14]. To sign a message µ, they simply use 
the properties of the key-homomorphic trapdoor functions to homomorphically 
evaluate the PRF on µ, setting up the public key so they can only invert the 
trapdoor at b = PRFk,µ. This enables them to gain tight security (with loss 1/2) 
in the same manner as Katz and Wang, without having to resort to the random 
oracle heuristic. 

Evaluation of non-trivial circuits over homomorphic trapdoor functions comes 
at a price. In particular, while the Boyen-Li scheme can be instantiated with 
AES or any other block cipher as the PRF, these appear to be less than ideal 
choices. The reason for this is because block ciphers such as AES appear to 
require relatively high circuit depth to evaluate homomorphically [GHS12b], 
which forces the scheme to be based on the hardness of approximating SIS 
to within a subexponentially large factor. Unlike SIS with polynomially large 
factors, this problem can be solved in subexponential time using the BKZ 
algorithm [SE94, CN11]. 

As an alternative to assuming the subexponential hardness of SIS, they recall 
that a function with a circuit in NC1 can be evaluated using the standard lattice-
based homomorphic trapdoor constructions with only polynomial growth in the 
size of the underlying trapdoor [BV14, GV15]. Those PRFs which are known to 
have an NC1 circuit are mostly based on quantum insecure assumptions [NR99, 
NRR02]. 
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The only potentially post-quantum PRF with an NC1 circuit that we are 
aware of is the ring-LWE (RLWE) based PRF of Banerjee et al. [BPR12], and 
indeed, this PRF is used by Boyen and Li for the quantum-secure instantiation 
of their scheme. The PRF of Banerjee et al., along with the quantum-insecure 
PRFs referenced above 3, all have a linear security loss in their reduction to the 
underlying hard problem on which they are based. As a result, Boyen and Li are 
able to instantiate their signature scheme with an overall loss in security linear 
in the underlying security parameter, but independent of the number of queries 
made by the adversary, which is a first for standard model lattice-based signature 
schemes with short signatures. 

For completeness, we note that their paper also constructs a fully-secure IBE 
scheme enjoying very similar properties, where it enjoys some additional relative 
advantage to other such lattice-based schemes, as all such schemes require very 
large public keys (albeit not as large as theirs). However, our focus in this work 
is on the signature scheme only, as our main techniques do not transfer to the 
IBE setting. 

1.1 Improving the Boyen-Li Scheme 

Scheme Pub. Key 
R1×k 

q mat. 
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Rk 

q vec. 
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[Boy10] 
[MP12] 
[BHJ+14] 
[DM14] 
[Alp15] 
[BL16] 
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1 
1 
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1 
1 
1 

Q 
Q 
Q 

(Q2/�)c 

(Q2/�)c 

(Q2/�)c 

λ 

RSIS(n 3/2) 
RSIS(n 7/2) 
RSIS(n 5/2) 
RSIS(n 5/2) 
RSIS(n 7/2) 

RSIS(d2d · n 11/2) 
RSIS(w 4 n 7/2), RLWE(wnw/2) 

This work n log n 1 1 RSIS(n 7/2), LWR(n) 

To avoid clutter, we ignore constant parameters above. We write SIS(·) to specify the SIS 
parameter, and LWE(·), LWR(·) to specify the LWE noise ratio and LWR rounding ratio, 
respectively. For SIS parameters, we also ignore logarithmic parameters, i.e. we write the 
parameter in Õ notation without the Õ. The comparison is in the ring setting because as 
written, some of these schemes are only realizable in the ring setting. For those schemes 

cusing confined guessing or variants thereof, d is a value satisfying 2Q2/� < 2bc d 
for a 

constant c = 2. For the Boyen-Li Scheme, w is a parameter representing the length of 
input messages, and δ > 1 is such that the PRF of Banerjee et al. [BPR12] can be 
computed by an NC1 circuit of depth δ log w. 

Fig. 1. Comparison to other standard model lattice-based signature schemes in the ring 
setting 

While they mention a DDH-based PRF construction by Jager that achieves a poly-
logarithmic loss in security, the paper containing it has since been withdrawn. 
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Our main result is an improved version of the Boyen-Li signature scheme. 

Better Parameters and Runtime. First, we improve greatly on the size of the 
public key and the hardness assumptions required. While our public key is 
still large (compared to some other lattice-based schemes), it is nevertheless a 
significant improvement over that of Boyen and Li. Although they never explicitly 
state the size of the public key in their work, it is clear that they need to encode 
the secret key for the PRF Banerjee et al. in the public key [BPR12], and 
furthermore, that at least one matrix is required in the public key for each bit of 
the PRF secret key in order to homomorphically evaluate the PRF using the ideas 
of Brakerski and Vaikuntanathan discussed above. The nw log2 n = O(n2 log2 n) 
value we give in Figure 1.1 then follows from the conditions required of the 
modulus of the PRF scheme. 

Furthermore, we contend that while our public key is indeed large compared to 
those in [DM14, Alp15], the reduction loss in security in those schemes is so great 
as to make their proofs of security somewhat vacuous, while our reduction loss 
in security is constant (6). For an adversary making 240 queries and succeeding 
with advantage 2−40 (which would be considered a practical “break” of the 
scheme), the reduction would yield an attack on the underlying hard problems 
that succeeds with advantage only 2−280, which is almost certainly too small 
to be considered practically meaningful. By contrast, an adversary making 240 

queries and succeeding with advantage 2−40 against our scheme would yield an 
attack against the underlying hard problems with advantage 2−43, which is still 
quite meaningful. For the other known standard-model lattice-based signature 
schemes, our public key is bigger by at most a logarithmic factor. 

We also gain significantly in terms of the size required for the modulus q 
(which itself affects the size of the public key). They need to set the modulus to 
be at least 
q = ω(λ4(1+c)), where the given PRF can be evaluated in depth d = c log λ, 
and it takes time Ω(λ2c+1) to evaluate the PRF homomorphically, even in the 
ring setting. The specific values of c for pseudorandom functions known to be in 
NC1 [BPR12, BP14, NR04, DS15] are not explicitly investigated by Boyen and 
Li (or by the authors of the papers in which the PRFs appear). However, the 
paper by Banerjee et al describes three sequential steps of a multi-product of 
vectors, a discrete Fourier Transform, and a rounding step, each of which can 
be seen to require at least log n depth (since each step depends on all n input 
bits) [RT92], which suggests that c is at least 3. 

Our scheme gains even further in terms of runtime, and we discuss this point 
further below in Section 1.2. 

Tighter and Weaker Assumptions. In addition to a much smaller SIS parameter 
7/2 7/2 12)of n versus what appears to be O(n w = O(λ31/2) in the Boyen-Li 

paper (based on the apparent depth of the underlying PRF), we avoid the 
need for relying on the very strong and somewhat questionably quantum-safe4 

While no attacks on RLWE itself are known for subexponential large error ra-
tios,Cramer, Ducas and Wesolowski recently gave a quantum polynomial-time algo-
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assumptions like the hardness of RLWE for subexponentially large error ratios. 
Instead, our additional assumption is the hardness of the Learning with Rounding 
problem (LWR) over general lattices with a small (linear) rounding ratio. LWR over 
general lattices remains very plausibly quantum-hard for even for subexponential 
rounding ratios, and for the rounding ratio we require, we would expect any 
efficient (quantum) attack on LWR to be adaptable into an efficient attack 
on essentially all lattice-based cryptography; see Section 2.4 for some further 
justification. 

1.2 Our Techniques 

Our starting point is an investigation of the minimal security properties the 
function homomorphically evaluated in the Boyen-Li scheme must satisfy in order 
that the entire signature scheme be secure, i.e. existentially unforgeable against 
adaptive chosen-message attacks (eu-acma). We note that the adversary has the 
ability to choose which messages will be (homomorphically) evaluated by the 
function when computing the signature by simply asking the signing oracle to 
sign those messages. As a result, in order for the function’s output to remain 
unpredictable by any means more successful than a random guess, the function 
must indeed be a strong pseudorandom function. 

However, we recall that by hashing the message with a chamelon hash func-
tion [KR00] before signing, we can essentially eliminate an adversary’s ability to 
choose which messages will be signed. In more detail, it has been shown [ST01] 
that a signature scheme that is existentially unforgeable against an adversary 
who can only observe signatures for (uniformly) random messages, can be turned 
into an euf-acma secure signature scheme by applying a chameleon hash function 
a concatenation of the message with some auxiliary sampled randomness, signing 
the output of the chameleon hash function instead of directly signing the message, 
and including the auxiliary sampled randomness as part of the signature. 

Weak Pseudorandom Functions. Once the ability of the adversary to choose 
messages has been eliminated and the adversary is limited to observing signa-
ture on messages sampled uniformly at random, we now see that the function 
being homomorphically evaluated need only be a weak pseudorandom function 
(W–PRFs) [DN02]. In contrast to strong pseudorandom functions, the output 
must only remain unpredictable against an adversary who can observe the output 
of the function on any polynomial number of messages chosen uniformly at 
random. 

At a complexity theoretic level, there is very strong evidence that weak 
pseudorandom functions are much simpler to compute than strong PRFs. In 
particular, Razborov and Rudich [RR94] have shown that any candidate strong 
pseudorandom function family computable in the complexity class AC0(MOD2) of 

rithm for approximating the worst-case shortest vector on ideal lattices to within 
a factor of exp(Õ( 

√ 
n)) [CDW16], making the reduction from RLWE to worst-case 

ideal lattice problems essentially vacuous 
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polynomial-size (in parameter λ) constant-depth circuit families with unbounded 
fan-in AND, OR and MOD2 gates can be only superpolynomially hard. In par-
ticular, they can be attacked by an adversary of size h with advantage at least 
1/h for h = O(exp(poly(log n)). By contrast, there exist candidate weak pseu-
dorandom functions (that are plausibly exponentially hard) in this complexity 
class [ABG+14]. 

Instead of using the candidate weak pseudorandom functions in AC0(MOD2), 
we instead opt for using the Learning With Rounding (LWRn,q,2) function family, 
for modulus q = 2 ` [BPR12]. Each function in the family is indexed by a secret 
s ← Zn, and on input a ∈ Zn outputsq q 

fs(a) = bha, sie2 = b q 
2 ha, sie mod 2. 

Under the assumption that LWRn,q,2’s output is indistinguishable from a 
truly random function (when evaluated on a sampled uniformly at random), 
known as the decisional-LWRn,q,2 assumption, we can immediately see that the 
LWR function is a pseudorandom function. It is also very easy to see that it is 
not a strong PRF, because one can learn the jth most significant bit of the ith 
coordinate of s by making a query on input 2j−1ei, where ei is the ith vector of 
the standard basis. 

Efficient Homomorphic Evaluation of LWR. The main reason we opt for using 
LWR as our weak PRF is that, viewed in the above manner, it is identical to the 
decryption function for most lattice-based encryption schemes [Reg09]. Homo-
morphic evaluation of the decryption function, of course, is better known in fully 
homomorphic encryption (FHE) contexts as bootstrapping, where it is a central 
operation necessary to allow unbounded homomorphic computation [Gen09]. A 
large body of work has focused on optimizing the evaluation of this function for 
various fully homomorphic encryption schemes [GHS12a, AP13, OvdPS15, HS15], 
but for our purposes, we are particularly interested in those works focused on 
bootstrapping LWE ciphertexts using the Gentry-Sahai-Waters (GSW) [GSW13] 
encryption scheme [ASP14, HAO15, DM15, CGGI16]. 

This interests stems from the extreme similiarities between homomorphic eval-
uations over GSW ciphertexts and homomorphic evaluations over key-homomorphic 
trapdoor functions. In particular, as has been noted implicitly by Gorbunov and 
Vinayagamurthy, the cost of a given sequence of homomorphic operations in terms 
of error growth in GSW ciphertexts is essentially identical to the cost of that 
same sequence of operations in terms of trapdoor growth over key-homomorphic 
trapdoor functions [GV15]. 

As a result, algorithms using the GSW encryption scheme to boostrap LWE 
can in fact be used in our context to homomorphically evaluate the LWR function 
over key-homomorphic trapdoor functions. While FHE has generally become 
known for its inefficiency, and it is indeed very very far away from being useful 
for its main intended use, a single bootstrapping operation has recently moved 
much closer to efficiency. An implementation by Ducas and Miccancio [DM15] 
in the ring setting was notably able to implement bootstrapping for plausible 
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security parameters in about 0.6 seconds. As homomorphic evaluation of the 
LWR function should be the most computationally intensive part of signing and 
verifying, this suggests plausibly being able to sign and verify in under a second. 

We note that a more recent work by Chillotti et al. [CGGI16], to appear 
in Asiacrypt 2016, is faster than the work of Ducas and Micciancio for similar 
security parameters by a factor of 12, but does not, strictly speaking, perform its 
evaluation over full GSW ciphertexts, and hence we cannot reasonably extrapolate 
anything about the speed of our construction from it. 

In addition to the more standard primitives of chameleon hash functions 
and weak pseudorandom functions (see below), we instantiate our signature 
scheme using Puncturable Homomorphic Trapdoor Functions (PHTDFs), which 
were introduced by Alperin-Sheriff [Alp15] as an extension of the Gorbunov 
et al. definition of homomorphic trapdoor functions [GVW15b] and the Boneh 
et al. definition of key-homomorphic trapdoor functions [BGG+14]. PHTDFs 
give a formal way to encapsulate out repeatedly used properties in lattice-based 
signature schemes, and avoid having to repeat technical arguments in each new 
lattice-based signature schemes. 

Reducing Trapdoor Growth Rates. In addition to the Boyen-Li scheme, 
key-homomorphic trapdoor functions [BGG+14] have been at the heart of wide 
variety of cryptographic constructions in recent years, including attributed-based 
encryption and predicate encryption schemes [BP14, GVW15a, GVW15b]. In 
the standard lattice-based construction, a key operation is sampling a matrix 
X ∈ Zmq 

×m with small norm such that GX = U (mod q) for the so-called 
“gadget” matrix G, which we denote G−1(U). 

In all existing schemes using key-homomorphic trapdoor functions, G−1 is 
evaluated via deterministic bit decomposition. While efficient (taking linear time) 
and fully parallelizable, it has downsides when trying to limit the noise growth (or 
trapdoor growth), as each column can have length as large as m. More concretely, 
when G−1 is evaluated in this deterministic manner, for a (fixed) vector a ∈ Zm 

mand random vector u ∈ Zn, we expect that kha, G−1(u)ik ≈ kak.q 2 
However, G−1 can also be evaluated in a randomized manner (sampled). 

Indeed, Miccancio and Peikert first defined and analyzed the gadget matrix 
G [MP12] with discrete Gaussian sampling applications in mind. Using Gaussian 
sampling instead of deterministic bit decomposition to evaluate G can reduce noise √ 
growth from m to m [ASP14]. This ultimately allows for basing the security of 
the given scheme on a harder problem and allows for smaller parameters for real 
security against known attacks. 

For several reasons, this randomization technique has not been used in schemes 
utilizing key-homomorphic trapdoor functions. First, in all key-homomorphic 
trapdoor function-based schemes, the function evaluated on the master public 
and secret key by the key-generating authority when generating a given secret 
key (or signature) must correspond to the function evaluated by a user holding 
that secret key (or signature) for a ciphertext (or a set of trapdoor functions) 
that the given secret key is authorized to decrypt (or that the given signature 
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should be verifiable on). In particular, it necessary that both the key-generating 
authority and the user perform each evaluation of G−1 in the same manner. 
If a randomized version of G−1 is used, the bits used by they key-generating 
authority in evaluating G−1 will have to be transferred in some manner to the 
user holding the secret key. As many as n bits are required in order for a single 
sample to be within 2−Ω(n) distance of the actual discrete Gaussian distribution 
when using rejection sampling [GPV08]. One can also use tables to help with 
the computation (which is advisable because rejection sampling does not run 
in so-called “constant time”), but table lookups come with their own set of 
disadvantages [DG14]. 

We present a much simpler randomized method of sampling G−1 which is 
nearly as fast as bit decomposition and does not require the use of tables. We also 
discuss the manner in which the randomness is transferred to the user. In some 
schemes, one is “stuck” with using the trivial method of including the randomness 
in each signature as a separate element. While this ultimately requires a signature 
with more elements on a conceptual level, the reduction in the size of the modulus 
q and dimension n required for an equivalent level of security that the randomized 
sampling allows us will more than make up for this addition, resulting in less 
actual bits required per signature to achieve a given security level. 

However, in schemes which already use a chameleon hash function to random-
ize the input messages, including but not limited to [Alp15, MP12, Boy10, DM14], 
we show that we do not need to include any additional elements in the signature. 
Instead, it is sufficient to include the randomness in the scheme’s public key, and 
for the signing algorithm to “reuse” it on all signatures it issues, without more 
than a negligible loss in effectiveness in reducing the rate of noise growth. 

1.3 Open Problems 

While it provides massive improvements in the runtime of the signature scheme 
and improves the size of the parameters somewhat over the Boyen-Li Scheme, 
our scheme still requires a very large public key. The “holy grail” of achieving a 
standard-model signature scheme with a tight reduction to a plausible hardness 
assumption, while keeping both signatures and public keys small, remains open. 

2 Preliminaries 

We write [d] to denote the set of positive integers {1, . . . , d}. For an integer q ≥ 2, 
we use Zq to denote the ring of integers modulo q, and somewhat abuse notation 
by also using Zq to explicitly represent the integers in (−q/2, q/2]. We define 
|x| ∈ Zq by taking the absolute value of the representative in this range. 

We use ⊗ to denote the Kronecker product of two matrices. 

2.1 Signatures 

We briefly recall the standard definitions of digital signature schemes. A signature 
scheme SIG is a triple (Gen, Sign, Ver) of PPT (probabilistic polynomial time) 
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algorithms, together with a message space M = Mλ. It is correct if, for all 
messages µ ∈Mλ, Ver(vk, µ, σ) = 1 holds true, except with negligible probability 
in λ over the choice of (sk, vk) ← Gen(1λ) and σ ← Sign(sk, µ). 

We now recall the standard security definitions for digital signature schemes. 
Existential unforgeability under adaptive chosen-message attack, or eu-acma, 
is as follows: the adversary The challenger generates keys (vk, sk) ← Gen and 
sends vk to A. At this point, A can adaptively requests signatures on messages 
µ, and the challenger responds with σ = Sign(sk, µ), for each message.Finally, 
A outputs an attempted forged signature (µ ∗, σ∗). In order to satisfy eu-acma 

∗security, the probability that µ 6= µi for any i ∈ [Q] and that Ver(vk, µ∗, σ∗) = 1 
accepts should be negligible in the security parameter λ. 

Chameleon Hashing Chameleon hash functions, invented by Krawczyk and 
Rabin [KR00], have been applied to signature schemes for a number of purposes, 
notably for generic transformations from statically-secure signatures (where the 
challenger receives the messages to be signed before giving the adversary the 
verification key) to adaptively-secure signatures (where the security game proceeds 
as above). As our usage of chameleon hash functions is slightly non-standard, 
we briefly recall their definitions, following the variant definition of Ducas and 
Micciancio specialized to their lattice-based construction [DM14]. 

Definition 2.1. A chameleon hash function family is a set of three algorithms 
CH = (Gen, Hash, Hash−1) along with an efficiently computable input distribution 
Xn, Yn for each integer n, where ⊥ / . Except with negligible probability over ∈ Yn
the choice of (ek, td) ← Gen(1n), the following should hold for security. 

Uniformity: For a fixed message µ, evaluation key ek, trapdoor td, (x ← 
Xn, y ← Hashek(µ, x)) should be distributed within negligible statistical dis-
tance of (x ← Hash−1(µ, y), y ← Yn)td 

Collision Resistance: Given only access to ek and public parameters, it should 
0be hard for any PPT algorithm A to output (µ, r) 6 (µ , r0) such that = 

0Hashek(µ, r) = Hashek(µ , r 60) = ⊥. 

We also note that the Ducas and Micciancio paper provides an explicit ring-
based construction that is significantly more efficient in both space and time than 
our main construction, and that this construction has a very straightforward 
adaptation to general lattices and module lattices [LS15]. 

2.2 Lattices 

The main result of the paper in Section 3 abstracts out the concrete lattice 
details in the form of Puncturable Homomorphic Trapdoor Functions (PHTDFs); 
see Section 2.5 below. However, for our complementary result on reducing the 
trapdoor growth for signature schemes (Section 4), we do need to recall some 
very basic results. 
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Following Gentry et al. [GPV08], for integers n ≥ 1, modulus q ≥ 2, we define 
the m-dimensional lattice specified by an “arity check” matrix A ∈ Zn×m:q 

Λ⊥(A) = {x ∈ Zm : Ax = 0 ∈ Zn} ⊆ Zm ,q 

and for y in the subgroup of Zn generated by the columns of A, we define the q 
coset 

Λ⊥(A) = {x ∈ Zm : Ax = y mod q} = Λ⊥(A) + x̄,y 

where x̄ ∈ Zm is an arbitrary solution (not necessarily short) to Ax̄ = y. 

“Gadget” matrix G We recall the gadget matrix G defined by Micciancio and 
Peikert [MP12]. We focus on the case that the modulus q = 2k for ease of analysis. 

We define 
g t = [1, 2, 22 , . . . , 2k−1] ∈ Z1×k 

q 

Then we have that 
t ∈ Zn×nkG = In ⊗ g q 

While G is used by Miccancio and Peikert to sample discrete Gaussians, in 
this work we only use it for computing a simpler distribution (see Section 4 for 
details). 

The SIS problem. For β > 0, the short integer solution problem SISn,q,β is 
an average-case version of the approximate shortest vector problem on Λ⊥(A). 
Given a uniformly random matrix A ∈ Zn×m for any m = poly(n), the problem q 
is to find a nonzero vector z ∈ Zm such that Az = 0 mod q and kzk ≤ β.√ √ 
For q ≥ β nω( log n), it has been shown that solving this problem with 
non-negligible success probability over the random choice of A is at least as 
hard as probabilistically approximating the classic Shortest Independent Vectors √˜Problem (SIVP) on n-dimensional lattices to within O(β n) factors in the worst 
case. [Ajt04, MR07, GPV08]. Analogous worst-case reductions exist for the more 
general case of module lattices, where A ∈ Rd×m for some arbitrary ring of q 
integers R algebraic number field K [LS15], which essentially includes the above 
results as a special case. 

2.3 Subgaussian Random Variables 

To analyze our distribution in Section 4, we make use of the notion of subgaussian 
random variables. (For further details and full proofs, see [Ver12].) A random 
vector x is subgaussian with parameter r > 0 if for all t ∈ R and all (fixed) real 
unit vectors u, its (scaled) moment-generating function satisfies E[exp(hu, xi)] ≤ 
exp(Cr2t2) for an absolute constant C (for our application, we may take C = 1). 
By a Markov argument, for all t ≥ 0, we have 

Pr[kxk ≥ t] ≤ 2 exp(−t2/r2). (1) 

Any B-bounded centered random vector x (i.e., E[x] = 0 and |X| ≤ B always) is 
subgaussian with parameter B. 

We recall the following additional properties of subgaussian vectors x [Ver12]. 
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Homogeneity: If x is subgaussian with parameter r, then cx is subgaussian 
with parameter c · r for any constant c ≥ 0. 

Pythagorean additivity: if x1 is subgaussian with parameter r1, and x2 is 
subgaussian with parameter r2 conditioned on any value of x1 (in particular, 
if x2 is subgaussian with parameter r2 and independent of x1), then x1 + x2p

2 2is subgaussian with parameter r1 + r2. 
Euclidean Norm : Let x ∈ Rn be a random vector with independent coordi-

nates that are subgaussian with parameter r. Then for some (small) universal 
constant 0 < C, we have Pr[kxk > C · r 

√ 
n] ≤ 2−Ω(n) 

2 

2.4 Weak Pseudorandom Functions and Learning with Rounding 

Here we give a basic definition of weak pseudorandom functions [DN02]. 
More formally, a weak pseudorandom function family (outputting a single 

λ
bit) W–PRF : {0, 1} × {0, 1}m → {0, 1} is considered secure if no probabilistic 
polynomial-time adversary can distinguish a member of the family fk : {0, 1}m → 

λ{0, 1}, fk := W–PRF(k, ·) (where k ← {0, 1} uniformly at random) from a truly 
random function with advantage greater than negl(λ), given that it can observe 

(x1, fk(x1)), . . . , (xm, fk(xm)) 

for any m ∈ poly(λ), where each x1, . . . , xm is sampled uniformly at random 
from {0, 1}m 

. 
A concrete candidate weak pseudorandom function family is the learning 

with rounding function family (LWRn,Q,p) [BPR12]. Functions in the family are 
indexed by a secret key s ∈ Zn . For a given secret key s, the function is defined Q

as 
LWRn,Q,p(a) = b p ha, sie,Q 

where b·e denotes rounding to the nearest integer. 
LWR has been shown to be a weak pseudorandom function under the better-

known LWE assumption with discrete Gaussian noise terms (and hence on worst-
case shortest vector problems on lattices) in a number of different results [BPR12, 
AKPW13, ASA16, BGM+16, BLL+15]. While all of these results require the 
ratio Q/p to grow with the number of samples revealed (meaning that hardness 
for non-a-priori bounded m = poly(λ) requires assuming the shortest vector 
problem is hard to approximate to within a superpolynomial ratio), there is a 
reduction [BGM+16] with a sample loss ratio of Q/p in security from LWE with 
bounded uniform error to LWR. This latter result strongly suggests that LWR √ 
remains a weak pseudorandom function for any Q/p = Ω( n), and that the 
weaker reductions from LWE with Gaussian error are likely all artifacts of the 
proof techniques used. 

2.5 Puncturable Homomorphic Trapdoor Functions 

We recall Alperin-Sheriff’s definition of Puncturable Homomorphic Trapdoor 
Functions (PHTDFs). 
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pk ← Gen(1λ) takes as input a security parameter λ, which for a concrete instan-
tiation implictly defines parameters for a ring T representing a tag space, a 
trapdoor space R, a tagged function space A, an index space X , an input 
space U and an output space V, and then generates the public key for the 
PHTDF. R and U are associated with parameterized efficiently sampleable 
distributions DR,β , DU,s, with the distribution details depending on the 
instantiation. 

(a, r) ← GenTrap(pk, t) generates a trapdoor r ← DR for the (pk, a), with t the 
tag associated with a, r. We need the distribution of a to be statistically close 
to uniform over A. 

t ← Tag(pk, a, r) is an auxiliary function which outputs the tag t associated with 
a and r is a trapdoor for (pk, a). 

fpk,a,x : U → V is a deterministic function indexed by pk, x ∈ X , a ∈ A. 
Invertr,pk,a,x,s : V → U is a trapdoor-inverter indexed by x ∈ X , r ∈ R and 

pk, a ∈ A. If fpk,a,x is not injective, then Invert is a probabilistic function, 
and the parameter s ∈ R relates to the noise level Prop(u) of the inverse 
u output by Invert; in particular, we want Prop(u) ≤ s. We require that 
Prop(r) = β should be small enough to allow Invert to invert with parameter 
s when the tag t associated with a, r is invertible over the ring T . If t is not 
invertible, then the trapdoor is considered punctured, and Invert outputs ⊥. 

∗ ∗ ← Evalfunc r ← Evaltd (g, {ai}i∈[κ], y) are deterministic pk(g, {(ai, ri)}i∈[κ], y), a pk 
trapdoor/function homomorphic evaluation algorithms, respectively. The 
algorithms take as input some function g : T κ × T w → T , a vector y ∈ T w , 
as well as functions ai ∈ A with associated trapdoors ri ∈ R. The outputs 

∗ ∗ are r ∈ R and a ∈ A. 
Let t ∈ T κ be a vector such that ti is the tag associated with ai, ri. We refer 
to g as admissible with parameter s on t if for any v ∈ V, y ∈ T w such that 
g(t, y) is invertible, Invertr ∗,pk,a∗ ,x,s(v) successfully outputs u such that with 
overwhelming probability, Prop(u) ≤ s. 

Security Properties. The following should hold for pk ← Gen(1λ), trapdoor and 
function pair (r, a) with an invertible tag t: 

s 
(pk, r, a, x, u, v) ≈ (pk, r, a, x, u0 , v 0) 

0 0where x ∈ X is arbitrary, u ← DU,s, v := fpk,a,x(u), v ← V and u ← 
Invertr,pk,a,x,s(v

0). 
The security game between an adversary A and a challenger C is parameterized 

by a security parameter λ, as well as a function g : T κ × T w → T such that g is 
admissible with some parameter s on some subset of tags S ⊆ T κ 

1. C runs pk ← Gen(1λ) and then computes (ai, ri) ← GenTrap(pk, t) for each 
i ∈ [κ]. A is given pk and {ai}. 

2. A may make (a polynomial number of) inversion queries, sending some 
v ∈ V, x ∈ X and some y ∈ T w such that g(s, y) is invertible. C computes 
r ← Evaltd as well as a (g, {ai}, y), samples 0 

pk(g, {(ai, ri)}, y) 0 ← Evalfunc 
pk 

u ← Invertr0,pk,a0,x,s(v) and returns u to A. 
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3. A(1λ) outputs tag sets y(1), y(2) ∈ T w which satisfy 
(1) (2) (1))g(t, y) = g(t, y0) = 0, as well as u , u , x =6 x(2), and wins if 

(2)),fpk,a(1) ,x(1) (u(1)) = fpk,a(2),x(2) (u

(b) ← Evalfunc where Prop(u(1)), Prop(u(2)), Prop(x(1)), Prop(x(2)) ≤ s and a pk (g, {(ai)}, y(b)) 
for b ∈ {1, 2}. 

We say the PHTDF satisfies (� = �(λ), t = t(λ), g, S)-collision resistance when 
punctured (CRP) security if every PPT adversary taking at most time t has 
success probability at most � in this game. 

Concrete Instantiation The instantiation in [Alp15] is written in terms of 
general lattices, but as mentioned in that work, can easily be instantiated over 
rings or modules [LS15]. We briefly recall the relevant results on security, leaving 
tag instantiation descriptions to later in the paper. 

Theorem 2.2 ( [Alp15]). Let g be admissible with parameter s. If there exists 
an adversary A breaking CRP�,t,g,S security of the PHTDF, then there exists 
A0 running in time t that solves SISn,q,β with advantage � − negl(λ) for β = √

2O(s n log q). 

We will also need to recall the growth rate of the Prop(r) for the trapdoors 
used in this instantiation as a result of homomorphic operations. In particular, 
we have 

Homomorphic addition of a1 and a2 with trapdoors r1, r2 induces a new 
∗trapdoor r with Prop(r ∗) = Prop(r1) + Prop(r2) 

Homomorphic Multiplication of a1, a2 with trapdoor r1, r2, tags t1, t2 in-
∗duces trapdoor r with 

Prop(r ∗ ) = Prop(r1)G
−1(a2) + Prop(t1)Prop(r2) 

A key trick with homomorphic multiplication is to chain them together 
in a left-associative manner, causing a quasi-additive growth in the trap-
doors [BV14, ASP14]. 

3 Improved Signature Scheme With Tight Security 

In this section, we define our improved signature scheme, and prove security with 
a tight reduction. We also discuss how to homomorphically evaluate our weak 
PRF in an efficient manner. 

To avoid the clunky notation that has characterized many lattice-based 
constructions (and indeed, many cryptographic constructions in general), we 
write the scheme generically in terms of the PHTDF cryptographic primitive, as 
well as in terms of a generic weak PRF and chameleon hash function, and then 
focus on the homomorphic evaluation details in Section 3.4. 
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3.1 Parameters 

Here we discuss the basic parameters of the scheme and the requirements they 
need to satisfy. All parameters in the scheme are parameterized by an underlying 
security λ. We have that α, w = θ(λ). We will have that T = Zq. The form of 
the parameter κ ≥ 2 depends on the concrete instantiation and evaluation of the 
PHTDF. We defer details to Section 3.4. 

We need W–PRF : T κ−2 ×T w−1 → {0, 1} be an (�W–PRF, tW–PRF)-secure weak 
pseudorandom function, where T κ−2 is the keyspace and T w−1 is the input space. 

For convenience reasons, we also need the PRF to be trivial in the (negligibly 
likely) case that T k−2 = 0; formally, we need W–PRF(0, ·) = 0 for all y ∈ T w−1 . 
This property is satisfied naturally by LWR, and it and we can construct such a 
weak PRF from an arbitrary weak PRF W–PRF0 by setting 

W–PRF(s, y) := W–PRF0(s, y) ⊕ W–PRF0(0, y). 

We also need CH = (Gen, Hash, Hash−1) to be a secure chameleon hash 
function family such that the input space X is efficiently sampleable and grows 
in size as a (polynomial) function inthe underlying security parameter λ and such 
that the output space Y = T w−1. This can be achieved essentially without loss of 
generality, as long as there is an efficiently computable embedding of the output 
space Y into T w−1. We use w − 1 instead w because we will be appending a bit 
b to y ∈ T w−1 as input to the function g that will be evaluated homorphically. 

We define g : T κ × T w → T as 

g((s, z(0), z(1)), (y, b)) = (1 − z(b)) − W–PRF(s, y). (2) 

In the above equation, y ∈ T w−1 will be the output of a chameleon hash 
function, and s ∈ T κ−2 will be the secret key for the weak PRF. 

Finally, we need PHT = (PHT.Gen, PHT.GenTrap, 

pk, PHT.Evalfunc PHT.f, PHT.Invert, PHT.Evaltd 
pk ) to be an (�PHT, tPHT, g, S) CRP-

= T κ−2secure PHTDF family, where S . 

3.2 Construction 

We explicitly sample the tag encoded in the public key and add it to the signing 
key for use in signing. We also make the use of a chameleon hash function explicit, 
and we implicitly require the input space X for the chameleon hash function to 
satisfy shortness properties (and be such that |X | = 2Ω(λ), which is indeed the 
case for the Ducas-Micciancio chameleon hash function family construction. 

Encoding the PRF secret key. Often, including in the instantiation we detail 
below in Section 3.4, the way of encoding the weak PRF secret key s into the 
verification key will be something other than its “natural representation,” and 
we abstract this out with the additional utility function Encode : T κ → T ` . 

Gen(1λ) On input security parameter λ, 

13 



T κ−2 (0) (1)1. Choose v ← V, s ← . Set z = 0, z = 1. Compute z̃ = 
Encode(s, z(0), z(1)) ∈ T ` . 

2. Compute (ek, td) ← CH.Gen(1λ), pk ← PHT.Gen(1λ) 
3. Compute {(ai, ri) ← PHT.GenTrap(pk, z̃i)}i∈[`]. 
4. Output vk = (pk, a = {ai}i∈[`], ek, v), sk = (r = {ri}i∈[`], td, z) 

αSign(vk, sk, µ) On input message µ ∈ {0, 1} , secret key sk, verification key vk: 
1. Sample the input randomness to the chameleon hash function x ← X , 

compute the output y = CH.Hash(x, µ), and then evaluate the weak 
pseudorandom function at y to get b = W–PRF(s, y). 

∗2. Perform the homomorphic evaluation of g over the PHTDF to get r ← 
∗Evaltd 

pk (g, a, (y, b)).pk(g, (a, r), (y, b)), a ← Evalfunc 

3. Invert the trapdoor function to compute u ← PHT.Invertr ∗,pk,a∗ ,x,s(v). 
Output σ = (u, x, b) as the signature. 

αVer(vk, µ, σ) On input message µ ∈ {0, 1} , verification key vk, signature σ = 
(u, x, b): 
1. Compute y ← CH.Hash(x, µ). 

∗ ← Evalfunc 2. Compute a (g, a, (y, b))pk 
3. Verify that the PHT.Prop(x) 

PHT.Prop(u) ≤ s, and that PHT.fpk,a∗ ,x(u) = v. 

Correctness. Since b = W–PRF(s, y), we have that g(s, (y, b)) = 1 − b − b = 
1 − 2b = ±1 whenever b ∈ {0, 1}. Since this will always be an invertible element 
of the ring T = Rq, we have that PHT.Invert will invert successfully, and so 
verification will succeed with all but negligible probability. 

3.3 Security 

Security. We now prove that the signature scheme in Section 3.2 is secure. 

Theorem 3.1. Let A be a PPT adversary which breaks eu-acma security of the 
scheme in Section 3.2 in time t with advantage �. Then there exists an A0 which 
runs in time t + poly(λ) and breaks the security of one of the weak PRF, the 
chameleon hash function and the PHTDF with advantage at least �/3. 

Proof. We classify a successfully forging adversary into one of three mutually 
exclusive categories, and show that each category of adversary can be used for a 
successful attack on one of the cryptographic primitives underlying our scheme. 

Our reduction then proceeds by guessing uniformly at random which of 
these three categories our adversary belongs to and running the attack below 
corresponding to that category of adversary. It is easy to see that we will succeed 
in breaking one of the underlying cryptographic primitives with advantage at 
least �/3 − negl(λ). 

To complete our proof, we proceed to describe these categories of adversaries 
and how we use them to mount an attack on the underlying cryptographic 
primitives that succeeds except with probability negligible in the underlying 
security parameter λ. 
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Weak PRF. First, we consider the case that, conditioned on having forged success-
fully, the adversary outputs µ, σ = (u, x, b) such that W–PRF(z, (Hash(x, µ)) = b. 
For this case, we use A to help us succeed in the underlying W–PRF security 
game against some challenger. 

We change our behavior in the signature scheme’s security game as follows: 

1. Instead of encoding the challenger’s actual W–PRF secret key (which we do 
not know), we set the secret key z = (s, zk−1, zk) in our scheme to a dummy 
secret key of (0, 0, 0) in Gen, which will always allow us to sign regardless of 
the value of the b = W–PRF(s, y). 
Since the ai output by PHT.GenTrap are statistically close to uniform, inde-
pendent of the z encoded in them, and everything else in the public key is 
completely independent of z, this change is statistically indistinguishable. 

2. Given a query for message µ, we send a query to the W–PRF challenger, 
receiving back a uniform random y ∈ T w−1 , b = W–PRF(s, y) for some 
unknown s. We then compute x ← Hash−1(µ, y) as usual. Since y is uniform, 
this is distributed within negligible statistical distance of the manner it is 
chosen actual signature scheme. Moreover, since by our condition on W–PRF 
we will have that g(z, (Hash(x, µ), b)) = 1 − zκ−b − 0 = 1, we can invert 
successfully and sign as usual. 

As a result, our behavior in this game is statistically indistinguishable from that 
in the real game. At the end, if the adversary fails to output a valid signature, 

∗we choose a message µ and bit b∗ uniformly at random and send them to the 
W–PRF challenger as our guess. Otherwise, if the adversary is successful and 

∗outputs a valid signature σ = (u , x ∗, b∗), we send that µ ∗, b∗ to the challenger. 
Since the adversary will correctly predict b, we succeed in guessing the output of 

∗the W–PRF at µ . 
∗ ∗Otherwise, a successfully forging A outputs µ , σ∗ = (u , x ∗, b∗) such that 

∗ b∗W–PRF(z, (Hash(x , µ ∗)) 6= . In this case, we consider whether or not the 
forgery was achieved based on a hash collision. 

Chameleon Hash Collision. We consider the case that A finds a hash collision by 
∗ ∗ 0successfully outputting µ ∗, σ = (u , x ∗, b∗) such that Hash(x , µ ∗) = Hash(x , µ0) 

for some x0, µ0 it already queried on, conditioned on a successful forgery and 
an unsuccessful weak PRF prediction. We now show how to use A to break 
the collision-resistance of the chameleon hash function family. We change our 
behavior in the security game as follows: 

1. In Gen, we receive the evaluation key ek for the chameleon hash function 
from a challenger instead of generating it (along with a trapdoor) ourselves. 
The public key itself remains exactly the same (although we no longer have 
td in our secret key), so the adversary’s view does not change. 

2. In Step 1 of Sign, we instead sample x ← X , and then compute y = Hash(x, µ). 
By the uniformity property of the collision-resistance hash function, this is 
within statistically negligible distance of the manner x and y are evaluated 
in the actual scheme. 
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Since our behavior is statistically indistinguishable from that in the real game, 
∗ 0A will still output a forgery such that Hash(x , µ ∗) = Hash(x , µ0) for some 

0 0 ∗ 0previously output x , µ0. We can then send x , x , µ , µ ∗, succeeding in breaking 
the collision-resistance of the chameleon hash function. 

PHTDF Collision When Punctured. Finally, if A has forged successfully, but has 
neither successfully predicting the weak PRF output nor output a successfull 
chameleon hash collision, we can break collision-resistance when punctured 
(CRP)-security of the PHTDF. We change our behavior in the security game as 
follows: 

01. During Gen, we choose a message µ uniformly at random. Then, instead 
0 0of choosing v ← V, we invert the process, sampling u ← DU , x ← X . 

0 0 0We then let y = CH.Hash(x , µ0), b = W–PRF(s, y0), and compute a ← 
Evalfunc 0(g, a, (y , 1 − b)).pk 

0Finally, we set v ← fpk,a0,x0 (u0), and hold onto u to use in forming our 
collision. By the statisticial distributional equivalence of inversion property of 
the PHTDF, this is statistically indistinguishable from having sampled v ← V 

(0) (1)), (y0as in the real security game. Moreover, we have that g((s, z , z , (1 − 
b))) = 0. 

∗If the adversary outputs a successful forgery (µ ∗, σ∗ = (x , u ∗, b∗)), where 
∗W–PRF(s, (Hash(x , µ ∗)) = 1 − b, then because A has no knowledge of the 

∗ x0 we sampled above, with all but probability 1/|X | = negl(λ), x =6 x0. If they 
0 0 0 ∗ ∗ ∗ ∗are in fact not equal, we can output u , x , y , u , x , y = Hash(µ , x ∗) as our 

collision, breaking the CRP security of the underlying PHTDF except with 
probability negligible in λ. 

3.4 Efficient Evaluation of g 

Here we discuss how to homomorphically evaluate the function 

g(z, (y, b)) = (1 − z2−b) − W–PRF(z, y) 

using a cyclotomic ring-based instantiation of PHTDFs in a manner that is 
(somewhat) efficient in terms of both time and noise growth, for the specific 
case that W–PRF is the LWR function. This essentially boils down to efficiently 
evaluating the LWR function, as once b = lwrk,Q,2 has been homomorphically 
computed, the remaining operations consist solely of additions. Our method of 
evaluation is very close to that of Ducas and Micciancio [DM15], but avoids any 
use of the general lattice setting for efficiency. 

Lagrange Interpolation over Rq To evaluate the rounding part of the 
LWRn,Q,2 function homomorphically, we will need to be able to evaluate a 
function over Rq (where R = Om) that sends ζi to 0 when i ∈ [−Q/4, Q/4), and 
sends ζi to 1 otherwise. 
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To homomorphically evaluate LWRn,Q,2 (where Q = 2 ` = O(λ) for ` = 
dlog2(λ)e), it will be easiest to work directly over the 2 ` th cyclotomic ring 
R = O[2 ` ]; this restricts us to odd moduli q in the actual PHTDF instantiation 
over Rq. The actual evaluation process will then be as described in the work of 
Ducas and Micciancio [DM15], using q = 3α for some α. We restate the relevant 
result here for LWR, recall again that evaluating LWR homomorphically over a 
PHTDF instantiated in the ring setting. is morally equivalent to evaluating the 
decryption function. Note that the conditions on parameter s assumes the use 
of the sampling ideas found Section 4 to minimize the size of parameter s, for 
modulus q = 3α . 

Theorem 3.2 ( [DM15]). Let PHT be instantiated over Rq, where R = O[m], 
where q and m are coprime. Then LWRn,Q,2 is admissible with parameter s = 
O(n1.5 log Q), and can be evaluated with O(n log Q) homomorphic operations, 
with the secret key z ∈ Zn encoded in κ − 2 = n log Q functions a1, . . . , aκ−2 withQ 
associated tags z̃1, . . . , z̃κ−2. 

We finally have the following corollary for a concrete instantiation using the 
PHTDF of Alperin-Sheriff (see Section 2.5). 

Corollary 3.3 ( [DM15]). Let PHT be instantiated over Rq , where R = O[m], 
where q and m are coprime. Then the above signature scheme is secure as long 
as both of the following hold: 

– LWRn,Q,2 is secure for n, Q = O(λ) 
– RSIS is secure over m with parameter β = Õ(n7/2). 

4 Reducing Trapdoor Growth 

Here we give a sampling algorithm that is nearly as efficient as bit decomposition, 
has (slightly) lower rates of growth than samples generated as discrete Gaussians, 
and which requires exactly 2 random coins per element of the vector being 
sampled. 

We later show how to reduce the total number of random coins needed per 
signature/encryption etc. to O(λ). 

4.1 Distribution Definition and Properties 

Definition 4.1. Let q ≥ 2 ∈ Z. Let A ∈ Znq 
×m such that linear combination 

of its columns generate all of Zqn, and let u ∈ Zqn . We define BΛ⊥(A),s as the 
u 

distribution which outputs z ∈ Zm, where each element of z is chosen to be some q 
(s+1−|x|)integer x ∈ [−s, . . . , +s] with probability , conditioned on Az = u.(s+1)2 

kFor the remainder of Section 4, we focus only on BΛ⊥(gt ),p−1, where q = p
u 

t k−1] ∈ Z1×kand g is the “gadget” vector gt = [1, p, . . . , p q . 
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Lemma 4.2. For all u ∈ Zq , BΛ⊥(gt),p−1 is a centered subgaussian with param-√ u 

eter (p − 1) k. 

Proof. Denote by g(j) the first j vectors of g. To show that the output z ← 
BΛ⊥((g(j))t),1 is centered, we proceed by induction on the first j vectors of z, 

u 
(j)with the inductive assumption being that over the integers, hg , zi = u with 

pj −|u|probability max(0, ). It is not difficult to see that this inductive hypothesis p2j 

immediately implies centering. 
For j = 1, the condition is satisfied by the definition of the distribution. Now, 

we assume our hypothesis is true for all k < j. Let x = (x̃ ∈ Zk−1, xk), and let q 
(k) ∗ (k−1) ∗Let y = hg , xi (over the integers), and let y = hg , x̃i, so y = y + xk. Let 

k−1u = y mod p be the unique coset representative of y in Z k−1 , and let t be p

such that pk−1t + u = y. 
∗ k ∗ kThen either y = u, x = t, or y = u − sign(u)pk−1 and x = t + sign(u). As 

(k)a result, the probability over the choice of x that hg , xi = y is 

(pk−1 − |u|)(p − |t|) + (pk−1 − |u − sign(u)pk−1|)(p − |t + sign(u)|)
ρ = 

p2k 

k−1pk − u − p t pk − y 
= = . 

p2k p2k 

Thus, the inductive assumption is true for j = k, so the distribution is indeed 
centered conditioned on any u. √ 

To see that it is subgaussian with parameter (p − 1) k, it is sufficient to note √ 
that for any x in the support of B, maxkuk=1hu, xi ≤ (p − 1) k. 

By the standard properties of subgaussian distributions and the form of the 
decomposition of G, we immediately have the following corollary, which allows 

˜us to achieve noise growth rate Õ((p − 1) 
√ 
n) per multiply instead of O((p − 1)n) 

(assuming we can efficiently sample the distribution). 

kCorollary 4.3. For all u ∈ Zq, q = p BΛ⊥(G),(p−1) is a centered subgaussian √ u 

with parameter (p − 1) nk. 

The following lemma is necessary for showing how to actually sample BΛ⊥ (G),p−1 u 

in practice. 

Lemma 4.4. For x ← Bk , hg, xi is uniformly distributed modulo q. 

Proof. It is easy to see that the kth element of x randomizes the kth least 
significant mod-p digit of hg, xi + q/2 modulo q, so hg, xi must be uniform 
modulo q. 

Sampling the Distribution. The distribution can be sampled with two different 
approaches, or a hybrid of the two, in the same manner used for sampling a discrete 
Gaussian distribution over Λ⊥(G) as described in [MP12]. The advantage here is u 
that instead of having to sample any discrete Gaussians in each coordinate with 
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the various disadvantages thereof, we can sample BZ,p−1 in a very simple manner 
(and sample BZk ,p−1 by sampling each coordinate independently according to 
BZ,p−1). 

Concretely, to generate a sample BZ,p−1, we receive 2 (pseudo)random ele-
ments in [0, 1, . . . , p − 1], viewed as a single element r ∈ [0, 1, . . . , p2 − 1], and set 
the output x to be k with probability |p−k|p2, mapping values in [0, 1, . . . , p2 −1] 
in the canonical manner. In particular, (

(p−(k)−1))(p−k) (p−k)(p−k+1)−k if ≤ r < and r < dp2/2e2 2x = (p−(k)−1))(p−k) (p−k)(p−k+1)k if 2 ≤ p2 − 1 − r < and r ≥ dp2/2e2 

Given the above algorithm for sampling BZk ,p−1, as stated, we have two 
options at the extremes of storage/parallelism trade-offs, as well as various 
hybrids between the two. The first is to precompute, sampling and storing many 
independent samples x ← BZk ,p−1. Assuming that values u for which samples of 
BΛ⊥(gt ),p−1 are required are uniformly distributed modulo q (which will generally 

u 

be the case in our desired application), and that we will require tq samples overall, 
by a coupon-collecting argument, we would have to store about tq log q samples 
to ensure we have enough on average, and tq2 to ensure we have enough with 
overwhelming probability. For the second approach, we sample each coordinate 
one at a time in a randomized nearest-plane manner [GPV08, MP12]. Specifically, 
for i = 1, . . . , k: choose xi ← BpZ+u,s, and let u ← (u − xi)/p ∈ Z. This approach 
requires log q steps, but this is essentially no worse than bit decomposition because 
sampling B is so efficient. There is also a hybrid between the two approaches that 
involves choosing ` coordinates of x at a time for 1 < ` < k. For further details, 
see [MP12]. The key takeaway is that we can avoid the additional time and/or 
space costs of rejection sampling (which is potentially problematic in applications 
because it does not run in so-called “constant time”) or storing tables of results 
that are required for sampling discrete Gaussians. 

4.2 How to Inject Verifiable Randomness 

Above, we showed how randomizing the computation of the homomorphic trap-
door functions can significantly reduce noise growth without significantly increas-
ing computation time. 

Here we discuss a semi-generic method of injecting verifiable randomness 
into the homomorphic computation itself, that can be applied in essentially 
all cryptographic schemes using key-homomorphic trapdoor functions. We also 
discuss a further optimized method of randomness injection that applies to G-
based signature schemes that use chameleon hash functions to randomize the 
messages being signed. 

Generic Method The trivial method of injecting verifiable randomness into 
the homomorphic computation is to simply include all of the random bits needed 
as part of the ciphertext or signature. While this approach may be acceptable 
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for very simple functions, for more complex functions it will increase the size of 
the ciphertext or signature by an unacceptably large amount. 

Instead, it is sufficient to simply include λ bits in each signature or ciphertext, 
where λ is the desired security parameter, and to stretch those bits to the 
necessary length with a pseudorandom number generator specified as a public 
parameter of the scheme in question. 

Interestingly, a cryptographically secure pseudorandom number generator 
is not required for this purpose, as we do not need the generated bits to be 
computationally indistinguishable from random under all polynomial-time statis-
tical tests. Instead, the role of the PRG here is similar to that of the PRF used 
by Hohenberger and Waters [HW09] in their short, stateless signature scheme, 
where they simply needed the output of the PRF to be randomly distributed 
with respect to several non-adversarial statistical tests. 

Indeed, for our bounds from Section 4.1 to hold for a given pseudorandom 
number generator G, we simply need BΛ⊥(gt) to remain a centered subgaussian √ u 

with parameter k when the bits used in sampling B come from G(x), where x 
is a seed chosen uniformly at random. As a result, any heuristic pseudorandom 
number generator suitable for Monte Carlo simulations ought to be satisfactory. 

4.3 Using Chameleon Hash Functions 

While the method in Section 4.2 will already reduce the overall length of the 
outputs, it does have the downside of having to include λ bits of randomness in 
each individual signature or encryption. However, we can do better in signature 
schemes that already use chameleon hash functions to randomize the messages 
being signed. In this case, we show that it is sufficient to simply include an 
additional λ bits of randomness in the public key. We stress that the signatures 
remain stateless, as we reuse the same λ bits of verifiable randomness in the 
homomomorphic computation of each individual signature. 

We now present a (semi)-formal transformation. While the conditions required 
of the transformation seem very specific, they do apply to several previous lattice-
based signature schemes [DM14, Alp15] as well as to our scheme. 

Let SIG = (Gen, Sign, Ver) be a secure lattice-based signature scheme which 
applies a secure hash function ch = (Gen, Hash, Hash−1) to the messages and 
then deterministically evaluates a G-based key-homomorphic trapdoor function 
requiring ` invocations of G−1 (meaning a total of 2`n2k2 random bits) in the 
signing and verification algorithms. We construct SIG0 = (Gen0 , Sign0 , Ver0) as 
follows: 

Gen0(1λ) Run Gen, sample λ random bits, choose some secure pseudorandom 
generator PRG and output the λ random bits b along with a description of 
the pseudorandom generator. 

Sign0(µ) Run Sign, but evaluate the G-based key-homomorphic functions using 
the 2`n2k2 bits output by PRG(b). Output signature σ. 

Ver0((µ, SIG)) Run Ver, but evaluate the G-based key-homomorphic functions 
using the 2`n2k2 bits output by PRG(b). Output the result of Ver. 
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For stating our result, it will be convenient to view the signature scheme as 
being instantiated by a PHTDF which evaluates some function g admissible with 
parameter s. All standard model lattice-based signature schemes that we are 
aware of which use G-based trapdoors can be described in this manner. 

Theorem 4.5 (Informal). If SIG is evaluates a function admissible with pa-
rameter s, then SIG0 = (Gen0 , Sign0 , Ver0) evaluates a function admissible with √ 
parameter s. 

Proof. That the scheme remains secure is straightforward. The only change is 
the manner in which G−1 is evaluated, and this depends only on the extra λ 
bits b in the public key and the pseudorandom generator PRG. In particular, the 
evaluation is performed entirely independently of the scheme’s secret key. As a 
result, this change leaks no additional information, and so the scheme remains 
secure. √ 

It remains to show that the function is admissible with parameter s. If 
G−1 were evaluated with truly random bits, this would informally follow by 
noting the growth rate of G−1 in Corollary 4.3 versus the growth rate from bit 
decomposition. 

First, consider an individual message query µ by the adversary. Since the 
scheme uses chameleon hash functions, the actual (hashed) messages being signed 
are randomized, and in particular, chosen in a manner independent of the λ 
random bits in the public key. 

As a result, we may view the message as having been chosen first, and the 
λ random bits as having been chosen subsequently and uniformly at random 
and independently. As a result, as above, the probability that the function is √ 
admissible with parameter s using PRG(b) as our source of randomness is at 
most negligibly smaller than the probability that the function is admissible with √ 
parameter s using truly random bits as our source of randomness. To reiterate, 
this is because a noticeable difference in the probabilities would mean that we 
have a statistical test that is entirely independent of the seed b, and would thus 
break the assumed pseudorandomness of PRG. 

A simple union bound over the Q = poly(λ) message queries means that the 
scheme remains correct except with negligible probability. 
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