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We use a new high-accuracy all-dimensional potential to compute the cross second

virial coefficient B12(T ) between molecular hydrogen and carbon monoxide. The

path-integral method is used to fully account for quantum effects. Values are calcu-

lated from 10 K to 2000 K and the uncertainty of the potential is propagated into

uncertainties of B12. Our calculated B12(T ) are in excellent agreement with most

of the limited experimental data available, but cover a much wider range of tem-

peratures and have lower uncertainties. Similar to recently reported findings from

scattering calculations, we find that the reduced-dimensionality potential obtained

by averaging over the rovibrational motion of the monomers gives results that are

a good approximation to those obtained when flexibility is fully taken into account.

Also, the four-dimensional approximation with monomers taken at their vibrationally

averaged bond lengths works well. This finding is important, since full-dimensional

potentials are difficult to develop even for triatomic monomers and are not currently

possible to obtain for larger molecules. Likewise, most types of accurate quantum me-

chanical calculations, e.g., spectral or scattering, are severely limited in the number

of dimensions that can be handled.
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I. INTRODUCTION

Mixtures containing molecular hydrogen and carbon monoxide are of significant industrial

interest. The well-known water gas-shift reaction produces H2 and CO from combining steam

with coal or another source of carbon; the resulting synthesis gas is widely used in industry.

H2 and CO are also prominent in the proposed advanced gasification power cycles that

enable capture of CO2.
1–3 In both of these cases, the primary interest for thermodynamic

modeling is in gas-phase properties at moderate pressures. Such modeling is made more

accurate if the second cross virial coefficient B12(T ), representing the first deviation from

the ideal-gas law due to the two-body interaction between H2 and CO molecules, is known

at the temperature of interest.

Experimental thermodynamic data for this mixture are scarce, largely because both H2

and CO present major safety hazards in the laboratory. The few available vapor-liquid4–6

and vapor-solid7,8 equilibrium data are at cryogenic temperatures far from the conditions of

most industrial interest. The available gas-phase data9–15 will be discussed in Section IVC.

The H2–CO molecular interaction is also of interest in astrophysics. The main reason is

that CO spectra are easy to observe, in contrast to H2 which is spectroscopically invisible,

in particular in interstellar molecular clouds. If cross-sections for collision of H2 with CO are

known, the observed intensities of CO rotational transitions can be used to infer properties

of interstellar media. H2–CO has been the subject of numerous spectroscopic investigations,

partly due to its astrophysical importance. These measurement were reviewed by Jankowski

et al.16

The importance of H2–CO has led to several efforts to produce pair potentials for this

interaction. A detailed study was published by two of the present authors with collabo-

rators,16,17 who studied the intermolecular potential on a set of points in six dimensions

(6D), i.e., the H-H and C-O bond lengths were varied. From the 6D ab initio data, two

four-dimensional (4D) analytic potential energy surfaces (PES) were derived by averaging

over the vibrations of the H2 and CO molecules, corresponding to the two lowest (ν = 0

and ν = 1) vibrational states of CO, with H2 in the ground vibrational state in both cases.

These vibrationally-averaged surfaces were used to compute infrared and microwave spec-

tra,16,17 which showed excellent agreement with experimental data and helped to interpret

such data.
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However, some question about the adequacy of the PES remained because of an apparent

disagreement16 between computed B12(T ) and an experimental datum at low temperature

(near 77 K). It was shown in Ref. 16 that this discrepancy is unlikely to be due to the

residual errors in the 4D surface. One reason for this disagreement could be the semiclassical

approximation used by Jankowski et al.16 to compute B12(T ). Another possible reason could

be an approximate description of the intramolecular degrees of freedom which were taken into

account only indirectly by using the vibrationally averaged surfaces. Thus, to investigate

these problems, one should employ both a fully quantum method to calculate the virial

coefficients and an interaction energy surface depending explicitly on all degrees of freedom.

In this work, we use the path-integral Monte Carlo method (PIMC) to fully incorporate

the quantum effects in the calculation of the second virial coefficient. A new, 6D interaction

energy surface, applied in scattering calculations and partly described by Faure et al.,18

is used in our work without any approximations, i.e., the PIMC calculations are also six-

dimensional. The uncertainty of the pair potential was carefully estimated and additional

PIMC calculations were performed to determine the uncertainty in B12(T ). The result is

values of B12, with uncertainties, covering the range from 10 K to 2000 K.

Yang and coworkers19,20 recently developed a 6D potential for H2-CO and used it in

scattering calculations. The cross-sections were generally in qualitative agreement with

experiment for low-energy scattering, but this agreement was not as good as that for cross-

sections calculated from the 4D potential of Refs. 16 and 17; see the discussion of these issues

in Ref. 18. Faure et al.18 performed similar calculations with their new 6D potential and

obtained very good agreement both with experiment and with the cross-sections from the

4D potential. In this work, we will examine whether the comparative performance between

these two potentials also extends to the predicted second virial coefficient.

The determination of the uncertainties of the 6D surface required extensive investigations

of its properties as described in Secs. II A–IIC. The PIMC calculations probe a wide range

of variables, therefore it was necessary to precisely characterize the range of variables for

which the fitted potential energy function is reliable, as described in Sec. IID. We have

also investigated, Sec. II E, characteristic points on the surface. The PIMC methodology is

described in Sec. III. The results of full-dimensional treatment are presented in Sec. IVA

and virials resulting from approximate treatments in Sec. IVB. We compare to experimental

data in Sec. IVC and to values computed with the potential of Yang et al.19,20 in Sec. IVD.
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II. H2–CO POTENTIAL

The development of a new full-dimensional interaction energy surface for H2–CO (denoted

as V15) has been partly described in Ref. 18. In the present paper, we will first briefly

summarize the most important information about this surface and then discuss some features

of the surface that were not investigated in Ref. 18. Special attention will be given to the

uncertainties of the surface which determine, together with the statistical uncertainties of

the PIMC calculations, the uncertainties of the virial coefficients.

To describe the dependence of the interaction energy of H2–CO on the geometry of the

complex, we use the intermolecular coordinates X = (R, θ1, θ2, ϕ) and the intramolecular

coordinates Y = (r, s), where R denotes the distance between the centers of mass (COM) of

monomers (the COM of H2 is placed at the origin of the coordinate system and the COM of

CO at z = R), θ1 (θ2) denote the angles between the ẑ axis and the vectors starting at the

appropriate COM and ending up in H (C), ϕ is the dihedral angle between these vectors,

whereas r and s are the interatomic separations in H2 and CO, respectively. The surface has

been fitted to the ab initio interaction energies calculated on a 6D grid of dimer geometries

applying the following hybrid approximation:21–23

Eint,hyb(X, r, s) = Eint,B(X, r, s) + (Eint,H(X, rc, sc)− Eint,B(X, rc, sc)), (1)

where Eint,H and Eint,B denote the interaction energies calculated at the “high” and “base”

levels of theory, respectively, and (rc, sc) = (1.474, 2.165) bohr (1 bohr ≈ 0.52917721×10¬10

m). Eint,B is defined as

Eint,B = EHF
int [Q] + δE

CCSD(T)
int [TQ],

where EHF
int [Q] is the interaction energy calculated at the Hartree-Fock level using the aug-cc-

pVQZ basis set (we use aug-cc-pVXZ basis sets from Ref. 24 with cardinal number X taking

values 2 (denoted by D), 3 (T), 4 (Q), and 5), whereas δE
CCSD(T)
int [TQ] denotes the correlation

contribution to the interaction energy calculated using the coupled-cluster method including

up to perturbative triple excitations, CCSD(T), with the complete basis set (CBS) 1/X3

extrapolations25 from the calculations in the aug-cc-pVTZ and aug-cc-pVQZ basis sets.

The CCSD(T) calculations performed to obtain δE
CCSD(T)
int correlated all electrons. Eint,H is

defined as

Eint,H = Eint,B +∆Eint[TQ;Q5] + δE
T(Q)
int [D], (2)
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where

∆Eint[TQ;Q5] = EHF
int [5] + δE

CCSD(T)
int [Q5]− Eint,B

is the correction obtained using an increased-size basis set, aug-cc-pV5Z, whereas

δE
T(Q)
int [D] = E

CCSDT(Q)
int [D]− E

CCSD(T)
int [D],

accounts for the electron correlation effects at the level of the coupled-cluster method with up

to perturbative quadruple excitations, CCSDT(Q), computed in the aug-cc-pVDZ basis set

using the frozen-core approximation (in this case, the CCSD(T) calculations also utilized this

approximation). The hybrid approximation defined by Eq. (1) requires one to perform the

expensive calculations of Eint,H only for the four-dimensional grid, with the intramolecular

distances frozen at the (rc, sc) values. Thus, the hybrid approximation enables us to enhance

the overall accuracy of the PES since the most important region near (rc, sc) is represented

at a very high level of theory. At the same time, the costs of calculations remain reasonable

since only a fraction of grid points are computed at the high level of theory. The analytic

form and the procedure of fitting a 6D analytic surface to the hybrid interaction energies

are discussed in more detail in Ref. 18.

If we use the full-dimensional description of the interacting complex, we need to employ

the total PES Utot(R, θ1, θ2, ϕ, r, s) to find a geometry of the complex corresponding to the

minimum energy. Thus, if we have the V surface representing only the interaction energy

of the H2 and CO molecules, we need to add the one-dimensional, monomer potentials:

Utot(R, θ1, θ2, ϕ, r, s) = V (R, θ1, θ2, ϕ, r, s) + VH2(r) + VCO(s). (3)

We used the VH2 potential for H2 from Ref. 26 and the VCO potential for CO from Refs. 27

and 28. These monomer potentials have minima at r = 1.4011 bohr and s = 2.1322 bohr,

respectively. We will use the symbol Utot,15 to denote the PES that includes V15.

In this paper, we will also discuss four-dimensional approaches to calculating virial co-

efficients that require the interaction energies averaged over the vibrational motion of both

molecules. We could have averaged the 6D potential on a set of intermonomer grid points

and then fit a 4D surface to averaged interaction energies at these points, but instead we have

performed the averaging on the fly, i.e., in each step of PIMC. Since the direct procedure

would be time consuming, we have employed an approximate method based on the Taylor
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expansion of the interaction energy with respect to the intramolecular degrees of freedom,

as described in Refs. 16 and 29.

To estimate uncertainties of computed observables, one has to know the uncertainties

of the fitted surfaces. The latter uncertainties come from the following sources: (a) un-

certainties of ab initio interaction energies at the highest level of theory; (b) uncertainties

due to the use of the hybrid approximation; (c) uncertainties due to fitting. The source (a)

has already been analyzed in Ref. 16, but only near equilibrium intramonomer separations.

We will extend this analysis for large extensions of intramonomer separations where single-

determinant-based methods that we use may converge poorly. The source (b) was analyzed

in Ref. 18 and we will only recapitulate the results. The source (c) will be investigated in

the present work.

A. Accuracy of computed interaction energies

The accuracy of the ab initio calculations at the Eint,H level has been estimated in Ref. 16

to be about 0.6 cm−1 (relative to the exact interaction energies for a given nuclear config-

uration) in the vicinity of the global minimum with the monomers at (⟨r⟩0, ⟨s⟩0) = (1.449,

2.14) bohr. To get the estimates, calculations were performed for 8 grid points in inter-

molecular coordinates: two distances and four combinations of the angles (one of the points

was close to the global minimum and another one to the local minimum). For each point,

CCSD(T) interaction energies were computed in several basis sets, including the basis set

aug-cc-pV6Z withX larger by one than used in calculations of Eint,H and bases with midbond

functions. Analysis of basis set convergence including the convergence of CBS extrapolated

values gave estimates of uncertainties of EHF
int [5] + δE

CCSD(T)
int [Q5] resulting from basis set

truncations amounting to 0.4 cm−1 in the well region and 0.6% for the whole PES. For

the δE
T(Q)
int contribution, the basis convergence was investigated by performing calculations

with all electrons correlated in the aug-cc-pVDZ basis and extending the basis set to the

aug-cc-pVTZ size at the frozen-core level. The effect of freezing the core was found to be

completely negligible. The extension of basis set size gave changes of the order of 0.1 cm−1.

The authors of Ref. 16 also computed the contribution of the iterated quadruple excitations

to the interaction energy at four grid points. They found that the effect of such iterations

on interaction energies, δEQ
int = ECCSDTQ

int − E
CCSDT(Q)
int , is below 0.1%. Accounting for the
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uncertainties due to basis set incompleteness of δE
T(Q)
int and the neglect of δEQ

int, the overall

uncertainties of the Eint,H interaction energies were estimated as 0.5 cm−1 in the well region

and 0.7% for the whole surface. Since the total quadruples contribution to the interaction

energy is of the order of only 1%, whereas that of triples is 19%, clearly the effects of higher

excitations are well below the estimated uncertainties. Similarly, the adiabatic corrections

and relativistic effects, evaluated in Ref. 30, are of the order of 0.1 cm−1. The authors of

Ref. 16 concluded that the uncertainties of Eint,H relative to exact interaction energies at

the adiabatic level with inclusion of relativistic effects are 0.6 cm−1 or 0.8%.

While the investigations of Ref. 16 were performed for (⟨r⟩0, ⟨s⟩0), the estimates should

be valid for (rc, sc) used in calculations of Eint,H since these coordinates differ by only about

0.02 bohr. However, the estimates will likely not hold if Eint,H were computed for (r, s)

departing significantly from this range. Information about such uncertainties is needed in

order to obtain estimates of the accuracy of interaction energies in 6D. The authors of

Ref. 18 computed Eint,H for the intermonomer coordinates fixed at the near minimum values

(R,θ1,θ2,ϕ)=(8.0,0◦,180◦,0◦) and sweeping the whole range of (r, s). We now will estimate

the uncertainties of these values. The convergence in basis set should not change with (r, s),

but the convergence in the number of excitations may. This is due to the well-known fact

that methods based on a single-reference determinant start to converge more slowly for

stretched chemical bonds. To examine this issue, we have performed calculations of the

interaction energy at the CCSDTQ level for the set of grid points with R = 8 bohr used in

Ref. 18. The results are presented in Table I. The δEQ
int correction, calculated in the aug-

cc-pVDZ basis set with frozen core, is compared to the other post-CCSD(T) corrections,

δET
int = ECCSDT

int − E
CCSD(T)
int and δE

(Q)
int = E

CCSDT(Q)
int − ECCSDT

int , and the total interaction

energy ECCSDTQ
int calculated in the same basis set. One can see that for (r, s) ≈ (rc, sc),

the value of δEQ
int is −0.051 cm−1, which amounts to 2% of the δE

T(Q)
int contribution and

0.07% of ECCSDTQ
int . This is only slightly larger than the corresponding contribution of 0.06%

at (⟨r⟩0, ⟨s⟩0) computed in Ref. 16. The contribution is even smaller for smaller values of

r and s. However, for the most stretched intramolecular distances, (2.05, 2.45) bohr, the

value of δEQ
int is as large as −0.89 cm−1 which amounts to 1.4% of ECCSDTQ

int . Thus, for

this configuration the uncertainty of Eint,H has to be increased to about 2%, more than a

factor of two compared to the region near equilibria of (r, s). For most points in Table I,

the original estimate of 0.8% holds and only for points in the lower right corner of this table
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[and the point (0.95,2.45)] must it be increased to some value between 0.8% and 2%. Table I

shows that it is the increase of r that is mainly responsible for the increase of δEQ
int. This is

partly due to the fact that the H-H bond is maximally stretched by 46% versus only 15% for

the C-O bond. As an aside, one may mention that for the isolated H2, the CCSD method

is equivalent to the full configuration interaction method, i.e., is exact in a given basis set

for any r. Thus, it may be surprising that δEQ
int depends so strongly on r. This is partly

accidental, due to the fact that δEQ
int crosses zero around r = 1.2 bohr and therefore relative

changes are large. The absolute changes related to r and s are not that different: 0.98 cm−1

for r changing from 0.95 to 2.05 bohr at s = 2.45 bohr and 0.58 cm−1 for s changing from

1.90 to 2.45 bohr at r = 2.05 bohr.

The analysis presented above shows that if the whole 6D PES were computed at the Eint,H

level, the accuracy of the predictions from this surface would be determined by uncertainties

of PES for near-equilibrium intermonomer separations since this uncertainty extends to quite

a broad range of (r, s) coordinates and the regions where uncertainties become large is only

lightly sampled in typical applications in spectroscopy, scattering, and thermodynamics.

However, Eint,H was computed only at (rc, sc), whereas for other (r, s) the hybrid approx-

imation was used. The error of Eint,B is mainly due to the neglect of the post-CCSD(T)

contributions and is therefore of the order of 3% for near-equilibrium monomers. The hybrid

approximation makes the PES accurate to 0.8% near (rc, sc), but is not guaranteed to reduce

errors at large monomer deformations. This issue was investigated in Ref. 18 on the same

set of grid points discussed above and in addition for an analogous set located in the region

of the local minimum with R = 7 bohr (see Sec. I and Table I in Supplementary Information

of that work). It was shown there that the hybrid approximation reduces uncertainties at

78% of the grid points, i.e., the errors of Eint,hyb relative to Eint,H are smaller than the errors

of Eint,B. In the region where both r and s are large, the errors of Eint,hyb are about 3%, i.e.,

are larger than the uncertainties of Eint,H (due to the neglect of δE
(Q)
int ) in this region. Thus,

the final conclusion from these investigations is that the reduced rate of convergence for

stretched bonds leads to smaller additional uncertainties than those that result from the use

of the hybrid approximation in this region. One may also notice in Table SI-I of Ref. 18 that

the CCSD(T) approximation deteriorates with increasing r and s similarly as CCSDT(Q)

does. At R = 8 bohr, the error of less than 3% near equilibrium values becomes as large

as 6% at (2.05,2.45). The 78% “success rate” listed above for the hybrid approximation is
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partly due to this deterioration since Eint,B inherits this deterioration.

B. Accuracy of fitting

The analytic form of the fit should be at the same time flexible enough to describe subtle

features of the potential and not too flexible to prevent undulating behavior between grid

points. Clearly, the fitting errors should be smaller than the errors originating from the

ab initio calculations. The errors of the V15 fit with respect to the training set of ab initio

interaction energies were briefly discussed in Ref. 18. The root-mean-square error (RMSE)

is 0.63 cm−1 for all 27 132 grid points used in the final fit. For the 22 668 energies belonging

to the interaction potential well, the RMSE is 0.16 cm−1, and for the 4464 positive energies

smaller than our threshold of 1000 cm−1, the RMSE is 1.51 cm−1. We will now present

a more detailed description of this issue. Figure 1 shows the average, signed average, and

RMSE errors of the V15 surface with respect to the ab initio data computed for several energy

intervals. One can see that the average “+” and “−” errors have a rather stable amplitude

in all intervals within the potential well and only slightly exceed 0.2 cm−1. Moreover, these

errors cancel each other to a great extent and the average error is close to zero. For the

(−10, 0) cm−1 interval of the energy, the errors are especially small, which is due to the large

number of small energies calculated for geometries belonging to this interval with relatively

large values of R. The values of RMSE are also very similar for all energy intervals within

the potential well and barely exceed 0.2 cm−1. This finding shows that the accuracy of the

fit in terms of RMSE is very uniform for all negative energies and the overall RMSE of

0.16 cm−1 is a good representation of the accuracy of the fit everywhere in this region. For

the positive energies, the absolute values of the averaged energies increase, but the relative

ones still remain at a very reasonable level. The cancellation of the “+” and “−” errors

is also very good, e.g., for the (50, 100) cm−1 interval their difference is −0.11 cm−1 which

is less than about 0.2% of the energies in this range. The RMSE in this interval is 0.36

cm−1, which amounts to 0.7% of the smallest energies from this interval. As one can see, the

value of RMSE behaves linearly for increasing values of energies. This is consistent with our

weighting function (see Ref. 18), which enforces the fit to be of uniform accuracy within the

whole potential well and to have a stable relative error in the repulsive part of the surface.

This function included the product of three factors depending on the interaction energy and
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on the deformation of the H2 and CO molecules. The latter two factors were introduced to

enhance the quality of the fit for the grid points with intramolecular distances in the vicinity

of the monomer’s equilibrium separations.

The dependence of the fit accuracy on intramonomer separations is presented in Table II,

which shows the values of RMSE separately for each (r, s) pair used and divides them into

three energy ranges: (−∞, 0), (0, 1000), and (−∞, 1000) cm−1. As already seen in Fig. 1,

RMSEs for negative energies are small: 3-6 times smaller than the ab initio uncertainty

of about 0.6 cm−1 in the van der Waals minimum region. This demonstrates that the fit

is more than sufficiently accurate there. The increase of RMSE for (r, s) far from (rc, sc),

imposed by our weighting function, is fairly weak, only up to 44% for negative energies and

up to a factor of 4 for the positive ones. In fact, for some values of (r, s), RMSEs are slightly

smaller than for (rc, sc), most likely just due to numerical fluctuations. While RMSEs either

increase slowly with s or fluctuate, there is an overall clear increase with r. One reason is,

of course, the greater variation of r as discussed earlier. Another reason can be an increase

of the anisotropy of the interaction energy as r increases. The anisotropy is governed by the

electrostatic component of the interaction energy, and the leading term in the asymptotic

expansion of this component depends on the quadrupole moment of H2, equal to 0.256,

0.483, and 0.770 a.u.31 at r = 1.0, 1.4, and 2.0 bohr, respectively, a rather large increase.

We will use in calculations of virials a 4D surface denoted as V15(r0) obtained from V15 by

setting the intramolecular distances at the vibrationally averaged values r0 = ⟨r⟩0 = 1.4487

bohr and s0 = ⟨s⟩0 = 2.1399 bohr for H2 and CO, respectively. We cannot directly evaluate

the accuracy of this surface since no calculations have been done at (r0, s0). However, we

computed the full set of ab initio intermolecular energies at (rc, sc) = (1.474, 2.165) bohr,

very close to (r0, s0). Clearly, based on the evidence in Sec. IIA, the accuracy of the V15(r0)

surface should be very close to that of V15 calculated at (rc, sc). The appropriate values of

RMSE are given in the caption of Table II and are 0.16, 0.81, and 0.35 cm−1 for the (−∞, 0),

(0, 1000), and (−∞, 1000) cm−1 ranges of the interaction energy, respectively.

It is more difficult to estimate the uncertainty of another 4D PES that will be used

in calculations of virial coefficients, the ⟨V15⟩0 surface obtained by averaging V15 over the

ground-state vibrations of the monomers. However, this surface should be very similar to

the 4D V12 surface16,17. While the value of ⟨V15⟩0 at an arbitrary point X = (R, θ1, θ2, ϕ)

is obtained by integrating out the (r, s) coordinates from the 6D PES (no 4D fitting is
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involved), V12 was fitted to the set of averaged ab initio interaction energies at all X grid

points. The average used interaction energies Taylor expanded around (rc, sc), with the

values at the expansion point computed at the Eint,H level and the derivatives computed at

the Eint,B level, which is equivalent to using our hybrid approach. Therefore, we can evaluate

the errors of ⟨V15⟩0 on this set of points. Such RMSEs are presented in Table III for both

PESs. To make a fair comparison with V12, the intervals (−∞, 400) cm−1 and (0, 400) cm−1

used in Ref. 16 are also included. Table III shows that the RMSE of ⟨V15⟩0 for negative

interaction energies is very small, 0.2 cm−1, showing that the 6D fitting did not introduce

any spurious errors. However, in all intervals below 400 cm−1, V12 has about twice smaller

RMSE than ⟨V15⟩0. This could be expected, since the reference data set is the training set

for V12. The larger RMSE of ⟨V15⟩0 does not indicate, however, that it is the inferior of

the two 4D surfaces. In fact, it is likely that the opposite is true, since ⟨V15⟩0 employed a

much wider range of (r, s) in the averaging over intramonomer distances than V12. One has,

however, to also admit an (unlikely) possibility that the increased errors of ab initio points

at extreme values of (r, s) might have had a negative effect on the accuracy of ⟨V15⟩0. For

the intervals containing energies larger than 400 cm−1, the relations are opposite and the

RMSEs of V12 are about twice as large as those of ⟨V15⟩0. The obvious reason is the neglect

of such energies in fitting V12.

C. Overall uncertainty of fitted surface

The overall uncertainty of our fit surface V15 is a combination of the uncertainties from

sources (a)–(c) discussed earlier in this section. The uncertainty (a) of Eint,H, i.e., the most

accurate of our interaction energies computed only at (rc, sc) (and at a few test points) is 0.6

cm−1 in the region of the potential well and 0.8% in all other regions. The source (b), the use

of the hybrid approximation, introduces only negligible errors in a fairly broad range of (r, s)

around (rc, sc), whereas the errors at the maximally stretched bonds are about 3% relative

to the Eint,H level. The deterioration of the CCSDT(Q) approximation as intramonomer

bonds are stretched was estimated to amount to only 1.4%, increasing the total basis set

and theory level truncation uncertainty to 2%, so it is of secondary importance. Source (c),

the errors of the fit, are about 0.2 cm−1 for negative interaction energies (for all values of r

and s) which gives 0.2% error near the bottom of the well. If we add the uncertainties in
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quadrature for the region around (rc, sc), i.e., 0.6 and 0.2 cm−1, the overall uncertainty is

still 0.6 cm−1. At largest (r, s), simply adding the relative errors mentioned above: 2%, 3%,

and 0.2%, we get an overall uncertainty of about 5%. We approximated this uncertainty (in

percent) by the function 0.8 + 8|r − rc|+ 15|s− sc| − 10|r − rc||s− sc|. For the maximally

stretched configuration (r, s) = (2.05, 2.45) bohr, this expression gives a relative uncertainty

of 8%. We interpret this uncertainty in the potential as an expanded uncertainty with

coverage factor k = 2, roughly corresponding to a 95% confidence interval.

D. Validity ranges of coordinates

The analytic form of the surface is constructed from the long- and short-range parts,

which ensure the proper physical behavior of the resulting surface, i.e., the inverse-power

dependence on R at long range and the exponential growth of the interaction energy for

small R. The long-range part is damped, but the damping is not perfect and all surfaces of

such form suffer problems when the values of R are very small since the negative 1/Rn terms

tend to dominate the positive exponential terms in this region. To test the performance of

the V15 surface for small R, we calculated values of V15 on the same grid of (θ1,θ2,ϕ,r,s)

points as used in the ab initio calculations18. The angular part is composed of 241 points

and the intramolecular part of 26 points, giving 6266 points total. We used three values

of R: 4.00, 3.75, and 3.50 bohr, and for each point (θ1,θ2,ϕ,r,s) from the grid, we checked

whether the interaction energy increases as R decreases. In only three cases, the interaction

energy slightly decreased when R changed from 3.75 to 3.50 bohr. Thus, we can assume

that the V15 interaction energy potential has no “holes” for R ≥ 3.5 bohr and can be used

for such intermolecular distances. It should also be stressed that the smallest value of the

interaction energy calculated for the test grid at R = 3.5 bohr was 7894 cm−1, so this value

of R corresponds to the highly repulsive part of the interaction energy surface.

The range of the r and s variables is defined by the intervals of values used in the ab initio

calculations, i.e., (0.95, 2.05) and (1.90, 2.45) bohr, respectively. Outside of these ranges, the

interaction energy is extrapolated by our PES, but one cannot expect that the extrapolated

values are reliable far outside the ranges. Thus, the potential should not be used for r or s

far from the recommended region. This should not be needed for most physical applications,

since these intervals include the classical turning points for the v = 2 (v = 3) vibrational
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state of H2 (CO) (for H2, the outer v = 2 classical turning point is slightly outside the

range). Although quantum mechanical wave functions do probe the region beyond classical

turning points, the probabilities of particles to penetrate far into these regions are negligible,

so the reduced accuracy of the PES there is inconsequential. Thus, V15 can be used with

full confidence in applications where the vibrational excitations of H2 and CO include states

with v = 2 and v = 3 states, respectively. This means that the constraints on the values of

(r, s) do not introduce limitation for a wide range of prospective applications.

E. Features of potential energy surface

The positions and values of the global and local minima on the Utot,15 PES are given in

Table IV. We use two ways of specifying the depth at a minimum. One is the vertical inter-

action energy (Vmin) which is computed with respect to monomers at the same intramonomer

separation as in the dimer. The other one is the stabilization energy32 (Utot,min) which is

the difference between the total energy at the minimum and the sum of the monomer en-

ergies at their equilibria. Thus, the two definitions differ by the energies needed to deform

monomers from their equilibrium configuration to that assumed in the minimum dimer.

Table IV shows that, at the global minimum found for the linear HH–CO arrangement, the

vertical interaction energies are very close to the stabilization energies. The reason is that

even small departures from (re, se) give large positive contribution to the interaction energy

from the monomer energies in Eq. (3). Thus, at the global minimum such deviations are

only of the order of 0.001 bohr and the sum of deformation energies is only 0.055 cm−1. The

local minimum of the PES has been found for the linear HH–OC arrangement with R 0.76

bohr shorter than for the global minimum, which is partly due to the COM of CO being

closer to O than to C. This minimum is 19 cm−1 shallower than the global minimum. The

deformation energies are even smaller than in the case of the global minimum.

The positions and values of the minima of V15 cannot be directly compared with the

corresponding values of V12,
16 since the latter surface was fitted to the interaction energies

averaged over the vibrations of the monomers. However, one can compare the V12 and

⟨V15⟩0 surfaces. Such a comparison is presented in Table V. We have also included the V04
29

potential. As we can see, the positions of the global minima for ⟨V15⟩0 and V12 are very close

to each other and differ by only 0.002 bohr. The interaction energy at the minimum is higher

14



by 0.162 cm−1 in the case of ⟨V15⟩0. This difference is consistent with the uncertainties of

the two fits discussed in Sec. II B. For the local minimum, the relations are similar.

Comparison of Tables IV and V shows that the vertical minimum interaction energy of

the 6D potential is smaller in magnitude by 2.77 cm−1 than the minimum interaction energy

of ⟨V15⟩0. This happens at almost identical values of intermonomer coordinates. Such a

large energetic difference is due to the fact that the monomer coordinates are very close to

(re, se) in the former case whereas the average performed in the latter case tends to favor

larger (r, s) which correspond to more negative interaction energies. The latter interaction

energy is very close, within 0.3 cm−1, to the minimum energy of V15(r0), for the same reason.

Interestingly, the difference is larger for the local minimum, where it amounts to 0.6 cm−1.

Thus, the potentials ⟨V15⟩0 and V15(r0) are quite similar near the minima. However, we

will see that ⟨V15⟩0 performs slightly better in calculations of virial coefficients, so that the

significantly larger effort needed to obtain this PES is not wasted.

We have also computed the minima for the Yang et al.19,20 PES using the (original)

intermonomer potential subroutine from the Supporting Information of Ref. 20 and adding

to it the same intramonomer potentials as used in Utot,15. The results presented in Table IV

show that these minima are significantly above our minima: by 10.77 and 2.90 cm−1 for the

global and local minimum, respectively. The value of the global minimum on Utot,Y may

appear to be in contradiction with the interaction energy equal to −85.937 cm−1 published

by Yang et al.19 The reason is that this value is an ab initio computed interaction energy.

The Utot,Y fit gives −79.626 cm−1 for this point on the surface.

III. PATH-INTEGRAL CALCULATIONS OF THE SECOND VIRIAL

COEFFICIENT

We calculated the second virial coefficient of the H2–CO system using the path-integral

formulation of quantum statistical mechanics. In this section, we will briefly summarize the

principal ideas behind this calculation. Our method has been described in detail in previous

papers both for rigid-rotor22,33 and fully flexible34 models for the molecules.

From statistical mechanics, the second virial coefficient B(T ) is given by

B(T ) = −V

2

 2Q
(ab)
2

Q
(a)
1 Q

(b)
1

− 1

 , (4)
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where Q
(a)
1 is the partition function of monomer a, Q

(ab)
2 is the partition function of the

dimer, and V denotes the volume of the box enclosing the system, with the limit V → ∞

to be taken at the end of the calculations. Starting from Eq. (4), one can derive the general

expression

B(T ) = −2π
∫ ⟨

e−βVeff(...) − 1
⟩

R2dR, (5)

where the meaning of the effective potential Veff(. . .) as well as the meaning of the average

⟨· · ·⟩ and the coordinate R depend on both the assumed description of the molecules involved

(e.g., rigid or flexible) and the level of theory used to calculate the virial coefficient (e.g.,

classical or quantum mechanics).

If the molecules are considered to be classical rigid linear rotors, then the effective po-

tential Veff(. . .) appearing in Eq. (5) is the actual intermolecular potential, R is the distance

between the centers of mass of molecules a and b, and the average is performed over molecular

directions uniformly distributed on a sphere.35 If the molecules are assumed to be quantum

rigid linear rotors, then it is convenient to evaluate the partition functions in Eq. (4) using

the path-integral method. This procedure results in a mapping of the quantum partition

function of two linear rigid rotors into an equivalent classical partition function of two ring

polymers with P monomers. Each replica of a monomer, identified by an index p = 1, . . . , P ,

is a rigid rotor whose center of mass is connected by a harmonic potential to the centers

of mass of two adjacent neighbors, those labeled by the indices p − 1 and p + 1, with the

ring condition implying that p = P + 1 is equivalent to p = 1. The orientational degrees of

freedom between adjacent monomers are also coupled via a quasi-harmonic potential. The

path-integral formulation provides an expression for the spring constant connecting the cen-

ters of mass, as well as a (numerical) expression of the potential that couples the rotational

degrees of freedom. At the end, it can be shown22,33 that the path-integral expression for

B(T ) also has the form of Eq. (5) where:

1. The coordinate R is the relative distance between the centers of mass of two beads

with the same index (p = 1, say) on the molecules a and b.

2. The effective potential appearing in the exponential is the average of the original

intermolecular potential V (· · ·) performed on the pairs of beads of the two molecules

having the same index p.
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3. The average ⟨· · ·⟩ is performed on the configurations that the two ring polymers cor-

responding to molecules a and b have when they do not interact.

A fully flexible model also results in an expression for B(T ) in the form of Eq. (5). In the

classical case, the average in Eq. (5) is taken over the distribution of bond lengths of isolated

molecules, as well as their orientations. When the two-body partition function of flexible

molecules is calculated according to the path-integral formulation of quantum-statistical

mechanics, one again obtains a mapping of the quantum system into an equivalent classical

system of ring polymers.34 In this case, a ring polymer is associated with every atom of

both molecules and, again, the quantum expression for B(T ) has the form of Eq. (5). The

average ⟨· · ·⟩ is now performed on configurations of isolated molecules where each atom is

substituted by a P -bead ring polymer. The ring polymers corresponding to atoms within

the same molecule interact among themselves with a potential energy that is the average of

the intramolecular potential on the P configurations characterized by the same value of the

index p. Analogously to the rigid-rotor case, the effective potential Veff(. . .) appearing in

Eq. (5) becomes the average of the original intermolecular potential on the P configurations

with the atoms of both molecules having same index p.

As is well known, molecular hydrogen exists in two types, depending whether the nuclear

spins are in a singlet state (para-H2) or in a triplet state (ortho-H2). Their thermodynamic

properties are only significantly different at very low temperatures (where the para form is

energetically favored). Since the simulation of ortho-H2 is plagued by a sign problem that

would make Monte Carlo sampling much more laborious, in this work we limited ourselves

to considering para-H2 only. Details on the method can be found in Ref. 22 for the rigid

case and in Ref. 34 for the flexible case.

In our calculations, we evaluated the integral in Eq. (5) using the VEGAS algorithm36

with 10 000 integration points. In evaluating the average ⟨· · ·⟩ for each value of the sampled

coordinate R, we used 12 independent ring-polymer configurations for each of the molecules

a and b. These configurations were sampled with a dedicated Monte Carlo routine, which

included uniformly distributed random overall rotations. The path-integral mapping is exact

in the limit P → ∞. In practice, however, a finite value of P is sufficient to reach converged

results. The value of P for which convergence is reached depends on the specific system

and model under consideration, as well as on the temperature of the simulation and the

required accuracy of the calculation; P is in general higher when quantum effects are more
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pronounced (usually, when the temperature decreases and for smaller masses).

In the case of rigid rotors, we observed well converged results by choosing P as a function

of the temperature T according to the relation P = (2800 K)/T + 7. In the case of flexible

molecules, however, the “quantumness” of the system is largely determined by the fact that

atoms are confined in molecules. In the H2–CO system, the requirement to properly describe

the quite extensive zero-point motion of hydrogen atoms confined in H2 molecules makes

the dependence of P on the temperature less pronounced. We observed convergence in the

results by taking P = 48, independent of the temperature. In all cases, B(T ) was calculated

by analyzing the results of 16 independent simulations at each temperature.

The Utot,15 PES described in Section II was used in PIMC calculations. Since a calculation

of virial coefficients (unlike the scattering calculations reported in Ref. 18) requires evaluation

of the potential at all values of R, care had to be taken regarding the short-range behavior

of V15 (and, consequently, Utot,15), which may become unphysical at very small values of R.

V15 was developed using grid points down to R ≥ 4.5 bohr, but as described in Sec. IID, it

behaves reasonably (increasing positive values with decreasing R) for R > 3.5 bohr. Further

investigation revealed that if r and s are close to rc and sc, respectively, which is the case

in construction of all 4D surfaces derived from V15 and studied here, the resulting surfaces

can be used for any point with R ≥ 0.15 nm ≈ 2.8 bohr. At shorter R, we imposed a hard

core. For the fully flexible calculations, criteria based on atomic positions are necessary; our

cutoffs in this case were 0.1 nm for the C-H distance and 0.09 nm for the O-H distance, with

a hard core imposed if either distance was smaller than the cutoff.

IV. RESULTS AND DISCUSSION

A. Virials from full-dimensional calculations

In Table VI, we give values of B12 calculated from Utot,15 as described above over the

temperature range from 10 K to 2000 K. The expanded uncertainty U(B12) (coverage factor

k = 2, approximately corresponding to a 95% confidence interval) has two contributions.

The first results from the uncertainty in the pair potential. To get this contribution, we

calculated B12 for the “plus” and “minus” perturbations of V15, obtained by adding and

subtracting the uncertainty described in Sec. II C. We assume these perturbed potentials
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to correspond to an expanded (k = 2) uncertainty. The contribution to the expanded

uncertainty is then simply half the difference between B12 calculated from the “plus” and

“minus” potentials. The second contribution comes from the statistical uncertainty in the

PIMC calculations. These two contributions are added in quadrature to obtain U(B12).

At the conditions investigated here, the uncertainty in the pair potential is the dominant

contribution to the overall uncertainty.

B. Virials from approximate treatments

In previous work on hydrogen,34 we described several levels of approximation to the full

6D PES that one might consider to simplify the calculation of B12. Results from these

approximations are given in Table VI.

First, we consider a rigid-rotor model in which flexibility is completely ignored by fixing

the intramolecular bond lengths at their equilibrium values re and se. We denote this

potential as V15(re) and the resulting B12 are tabulated in Table VI.

Second, we consider the potential V15(r0), in which we fix the bond lengths at the values r0

and s0 obtained as the expectation values over the ground-state rovibrational wave functions.

As argued for the first time in Ref. 37, monomers are on average in their average geometries,

rather than in their equilibrium geometries, so a better agreement with experiment or with

all-dimensional theory should be obtained using such averaged geometries.

Third, we consider the surface ⟨V15⟩0, proposed originally in Ref. 38, obtained by averaging

the full-dimensional interaction energy over the product of ground-state rovibrational wave

functions of the two monomers. ⟨V15⟩0 is a 4D potential (same dimensionality as rigid-rotor

potential), but it does not correspond to any fixed values of (r, s). A PES averaged in this

way was shown in Ref. 38 to perform better compared to full-dimensional calculations than

a reduced-dimensionality potential computed at r0.

Finally, we consider the“improved rigid rotor” surface ⟨V15⟩T , which we have used pre-

viously22,34 for the H2 dimer. This surface is like ⟨V15⟩0, except that the monomer wave

functions used in averaging over intramonomer coordinates are not only the ground-state

wave functions, but instead are the full set of monomer rovibrational wave functions (more

accurately, all those contributing beyond a small threshold of significance) weighted accord-

ing to their Boltzmann factors at the temperature of the calculation. In the low-temperature
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limit, ⟨V15⟩T reduces to ⟨V15⟩0, but it should be more accurate at higher temperatures where

excitations above the ground state become important.

In order to examine the magnitude of quantum effects and the adequacy of a first-order

treatment of those effects, the last two columns of Table VI contain results from a classical

calculation and from a semiclassical calculation of B12(T ). For the semiclassical calculation,

we use the effective potential approach of Takahashi and Imada,39 implemented as described

by Schenter,40 the same methods as used in the calculations of Ref. 23. Both the classical

and semiclassical calculations are performed with the potential ⟨V15⟩0, so it is that column

in the table to which those approximations should be compared.

In Table VI and in Fig. 2, we see that the three 4D approaches that incorporate flexibility

in some way, V15(r0), ⟨V15⟩0, and ⟨V15⟩T , give virials very close to each other and to the

rigorous 6D calculation at most of the temperatures studied. Below about 125 K, the

approximations begin to underestimate the fully flexible result, but in relative terms these

errors are still small, reaching a maximum at 10 K of about 5% for ⟨V15⟩0 and ⟨V15⟩T and

a little over 6% for V15(r0). These deviations at lower temperatures are probably due to

increased importance of quantum effects. Quantum calculations explore PESs globally and

can be expected to be sensitive to actual couplings of inter- and intramolecular degrees of

freedom which are only present in Utot,15. As expected, the “improved rigid rotor” approach

⟨V15⟩T is better at high temperatures where excited rovibrational states are more populated,

but the improvement over ⟨V15⟩0 and even over the rigid-rotor surface V15(r0) is only slight,

because those simpler 4D surfaces already produce quite accurate B(T ) as can be seen in

Fig. 2. Also as expected, the error of B(T ) computed from the potential V15(re), in which

vibrational motion in monomers is completely ignored by fixing the bond lengths at their

equilibrium values, is larger than the errors of the approximations that incorporate these

vibrations in some way.

The classical approximation with the ⟨V15⟩0 potential agrees very well with the full-

quantum calculations using the same potential for T > 1000 K. For lower T , the agreement

gradually deteriorates, but it is still good down to about 500 K, and is reasonable down

to perhaps 200 K. The semiclassical approach is much better, with near-perfect agreement

above 200 K and still very good agreement (within about 1 cm3/mol) down to about 50 K,

finally producing large errors below about 30 K.

We have also compared with virials computed from the 4D potentials V04 from Ref. 41 and
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V12 of Ref. 16, fully accounting for quantum effects with PIMC. The agreement with values

obtained from our present rigid-rotor potential V15(r0) is excellent (within 0.5% except near

where B(T ) crosses zero) throughout the entire range of temperatures. This shows that

the improvements of the level of ab initio theory since 2004 lead to negligible changes of

virials. The improvement made since that time was almost entirely due to the increased

dimensionality and complete accounting for quantum effects.

Finally, we note that, to our knowledge, the semiclassical approach can only be applied to

the 4D potentials; see a derivation of this approach in Ref. 23. Incorporation of flexibility,

which is inherently a quantum effect, requires the PIMC method. Therefore, the semi-

classical approach is only a viable simplification if the ⟨V15⟩0 approximation or the ⟨V15⟩T
approximation is considered to be adequate.

C. Comparison with experimental data

B12 cannot be measured directly; it is inferred from experiments with mixtures and

knowledge of the pure-component values B11 and B22. When necessary in our data analysis,

we used values of B from the equation of state of Leachman et al.42 for H2 and of Lemmon

and Span43 for CO.

Brewer12 measured the “excess” second virial coefficient at 0 ◦C, defined as the difference

between B12 and the arithmetic mean of the pure-component second virials:

Bex
12 = B12 −

1

2
(B11 +B22) . (6)

Bex
12 can be obtained by measuring the pressure change upon mixing equal volumes of pure

gases at constant temperature (or the volume change upon mixing at constant temperature

and pressure). Brewer converted his measured value of Bex
12 = 10.24 cm3 mol−1 to B12 =

10.13 cm3 mol−1, but current values of the pure-component virials yield B12 = 9.7 cm3 mol−1.

Between the uncertainty of the experiments and of the pure-component virials, the uncer-

tainty of this value of B12 is probably on the order of 1–2 cm3 mol−1. Michels and Boer-

boom11 performed a volume-of-mixing experiment at 25 ◦C whose result is equivalent to Bex
12

= 9.8 cm3 mol−1, yielding B12 = 12.6 cm3 mol−1; the uncertainty in B12 is probably similar

to that for Brewer’s result.

Dymond and Smith44 analyzed the volumetric data for H2–CO mixtures of three different

compositions taken by Scott9 at 25 ◦C and by Townend and Bhatt10 at 0 ◦C and 25 ◦C. The
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resulting values of B12 scattered over approximately 2 cm3 mol−1; we used the average in

our comparisons.

Schramm et al.13 used an expansion technique to derive B12 at four temperatures from

77.3 K to 213.15 K. It appears that their values were obtained by a relative technique with

the room-temperature results of Townend and Bhatt10 as derived by Dymond and Smith44

used as a baseline.

It is also possible to extract B12 from data for the solubility of solid CO in gaseous

H2 at moderate pressure, as described previously for the He–H2 system.45 The solubility

measurements of Dokoupil et al.8 were analyzed by Reuss and Beenakker,46 who derived B12

at seven temperatures from 36 K to 60 K. The measurements of Verschoyle7 were mostly at

pressures too high for analysis at the second virial level to be appropriate, but we were able

to derive three values at approximately 63 K and one value at approximately 58 K.

In principle, the measurements of hydrogen fugacity in H2–CO mixtures of varying com-

positions by Bruno and Schroeder14 from 403 K to 463 K could yield B12. However, our

analysis of these measurements found widely different B12 at different compositions, which

is unphysical and indicates that these data are not precise enough to use for the purpose of

deriving B12. The density data of Cipollina et al.15 are at pressures too high to be able to

extract virial coefficients.

In Fig. 3, we plot our calculated results along with the available experimental data at

cryogenic temperatures. Error bars are plotted for those data sources where uncertainties

were reported or could be estimated from the information given in the reference. The

uncertainties in our results (see Table VI) are smaller than the symbols on the plot for all

but the four lowest temperatures. We do not plot the various simplifying approximations

discussed above, because the differences would be too small to see on the scale of the plot.

Agreement with the B12(T ) data of Dokoupil et al.8 and Schramm et al.13 is excellent, and

the calculated results are at least consistent with the more scattered data of Verschoyle.7

The B12 datum near 77 K reported by Schramm et al.13 has been problematic for theory.

Although estimates both from theory and from comparisons with spectral data suggested

uncertainties of the V04 PES of the order of 1 cm−1 in the well region, in order to get

agreement with this datum (which was the lowest temperature experimental virial used in

that comparison), the PES had to be scaled by a factor of 1.042 which implies a 4 cm−1

error at the minimum. In 2012, Chefdeville et al.47 had to use a similar scaling to obtain
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agreement with their scattering data. However, at about the same time, two of us and

coworkers demonstrated16,17 that the estimate of the uncertainty of the V04 PES was correct

and no scaling was needed. Indeed, later it was found48 that the discrepancies seen in Ref. 47

were due to an experimental error. The authors of Ref. 17 wrote that the difference between

their B12 calculated semiclassically and the datum of Schramm et al.13 near 77 K may be

due to inadequacy of the semiclassical calculation of quantum effects at low temperatures.

This opinion was supported by the fact that for the H2–H2 dimer at 75 K the fully quantum

result is by a factor 1.25 larger in magnitude than the semiclassical one.33 Our results do

not support that conjecture. In Table VI, it can be seen that the difference between the

semiclassical result and the fully quantum PIMC result is still small at 77 K, only about

1 cm3/mol, and in fact that fully incorporating quantum effects shifts the calculated B12

slightly further away from that datum, resulting in a discrepancy of about 5 cm3/mol. In

conjunction with the other results shown in Fig. 3, we believe it is likely that this reported

experimental point was slightly too low, and/or had greater uncertainty than the authors

estimated. However, the two results are consistent to within mutual uncertainties.

Figure 4 similarly compares our calculations to experimental data at higher temperatures,

including near room temperature where there have been several investigations. Once again,

our results are consistent with the experimental data but have smaller uncertainties. In

Fig. 4, we did not plot the curves for the virials obtained with the V15(r0), ⟨V15⟩0, and ⟨V15⟩T
PESs, since these curves would be indistinguishable from the one shown in the plotted range

of temperatures (cf. Fig. 2).

D. Comparison with potential of Yang and coworkers

We also attempted to perform calculations of B12(T ) with the recent VY pair potential

of Yang et al.19,20 We found this to be impossible for two reasons. The first problem is with

the long-range behavior of that potential, which fails to decay to zero at long range if the

intramolecular distances r and s differ from their equilibrium values.

The second issue is more subtle. The potential of Yang et al.19,20 was fitted for values of r

between 1.01 and 1.81 bohr, which was adequate for their scattering calculations. However,

the flexible calculation of B12(T ) requires evaluating the potential over the entire probability

distribution for the bond lengths of the H2 and COmolecules. Because of the highly quantum
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nature of the H atom, even for the ground-state vibration the fraction of states outside the

limits of the VY potential is several percent (a similar issue arises with the 6D potential of

Ref. 16; this was part of the motivation for developing V15 which covers a wider range of

r). In order to avoid evaluating the potential of Yang et al. at conditions where it is not

valid, we consider it in a four-dimensional form similar to our V15(r0), as rigid rotors with

the intramolecular distances fixed at r0 and s0, denoted as VY(r0).

The problem with the long-range behavior of the potentials of the type used by Yang et al.

is well known.49 In order to correct it, we constructed a combination potential in which VY(r0)

was used at short and medium distances, but V15(r0) was used when the intermolecular

distance R exceeded 9 bohr. We refer to this asymptotically corrected potential as VY,AC(r0).

Points calculated with the PIMC method from VY,AC(r0) are plotted on Figs. 3 and 4.

It can be seen that VY,AC(r0) overestimates B12 throughout the temperature range by an

amount that, while not too large, is clearly inconsistent with our results and with the avail-

able experimental data. The discrepancy is not due to the approximation of the potential of

Yang et al. by a 4D form; comparison of the V15 and V15(r0) columns in Table VI shows that

full inclusion of flexibility would make B12 slightly more positive (less negative), which is

the opposite direction from that needed to reconcile the VY,AC(r0) results with experiment.

After analyzing the behavior of VY,AC(r0) in comparison to V15, cf. Table IV, we believe

the reason for the discrepancy is that the potential of Yang et al.19,20 gives interaction

energies that lie too high (too positive or insufficiently negative) at most configurations.

This was already noted by Faure et al.18 for the minimum-energy configuration, where the

difference was attributed to the lower level of theory used by Yang et al. Now we see

from Table IV that inaccuracy in the fit also contributes to this deviation. The relative

differences between our B(T ) and that calculated from Yang’s et al. potential are larger

than the comparison of Table IV might suggest. The reason is that in the region very close

to the minimum the agreement is better than in other regions (there are points with negative

interaction energies where discrepancies exceed 30 cm−1.)

V. CONCLUSIONS

A flexible (six-dimensional) potential for the interaction of H2 and CO developed at a

high level of theory [up to CCSDT(Q)] and with large basis sets has been analyzed to deter-
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mine its uncertainties. Using the results from Ref. 16, performing additional calculations,

and analyzing the errors of the fit, we determined the uncertainties to be about 0.8% for the

monomers near equilibria, increasing to about 8% for monomers at their maximum defor-

mations. The range of monomer bond lengths included in the set of grid points for the ab

initio calculations was sufficiently wide to support the quantum-mechanical probability dis-

tribution of intramolecular distances (which is wider than that of the corresponding classical

vibration, especially for H2). This feature is important to avoid spurious results in PIMC

calculations that incorporate flexibility. Similarly, the range of R values that the analytic

fit is valid for was determined.

The agreement of full-dimensional calculations with most of the available experimental

virial coefficients is excellent, and theoretical virials have generally smaller uncertainties than

virials from these experiments. For all the experimental virials published with uncertainties,

the experimental and theoretical error bars overlap or nearly overlap. We believe that the

theoretical virials can be the benchmark data for modeling gas-phase thermodynamics in

these systems. The few experimental data points that do not agree well with theory also

disagree with other data, and probably have unrecognized errors. The excellent agreement

with a large subset of data also confirms the high accuracy of the V15 potential.

We have examined the performance of various approximations of our procedures. The

low-energy scattering results reported for V15 by Faure et al.18 established that the four-

dimensional ⟨V15⟩0 potential was adequate to reproduce low-energy scattering data. In the

present work, we have established a similar result for the interaction second virial coefficient

B12. The ⟨V15⟩0 potential produces second virial coefficients that remain within uncertainties

of the fully flexible quantum treatment except at very low (below 50 K) temperatures. We

explain the larger discrepancies at very small T by the overwhelming quantum character of

virials in that regime. The use of the simpler 4D potentials V15(r0) and V15(re) result in larger

discrepancies, but V15(r0) performs almost as well as ⟨V15⟩0, in contrast to the performance

on spectra.38 The fact that the reduced dimensionality approaches give satisfactory agree-

ment with experiment is an important finding, since for larger molecules full-dimensional

treatment is not possible at the present time. We have also compared our virials to those

computed using the potentials V04
29 and V12

16 and found that the latter virials are in very

good agreement with those computed from ⟨V15⟩0. This shows that the increased levels of ab

initio theory applied in development of consecutive potentials do not bring significant im-
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provements in accuracy of virials with the present accuracies of experiments. Furthermore,

a semiclassical calculation of the second virial coefficient from ⟨V15⟩0 is sufficient to account

for quantum effects as long as the temperature is not below approximately 50 K.

SUPPLEMENTARY MATERIAL

See supplementary material for a FORTRAN routine that calculates the V15 PES and a

sample program using it.
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TABLE I. Values of the δET
int, δE

(Q)
int , δE

T(Q)
int , and δEQ

int contributions compared with the

total interaction energy E
CCSDT(Q)
int , calculated for the intermolecular geometry defined by

(R,θ1,θ2,ϕ)=(8.0,0◦,180◦,0◦) and the grid of values of the intramolecular geometries (r, s). For one

more intramolecular geometry tested, (rc, sc) = (1.474, 2.165) bohr, the values of E
CCSD(T)
int , δET

int,

δE
(Q)
int , δE

Q
int, and ECCSDTQ

int are equal to −74.399, −1.804, −0.835, −0.051 and −77.089 cm−1,

respectively. The aug-cc-pVDZ basis set and frozen core has been used in these calculations. The

distances are given in bohr, energies in cm−1.

r\s 1.90 1.99 2.13 2.30 2.45

0.95 -48.693 -46.317 -42.259 -36.761 -31.421 E
CCSD(T)
int

-0.868 -0.858 -0.831 -0.780 -0.718 δET
int

-0.335 -0.395 -0.498 -0.638 -0.772 δE
(Q)
int

+0.005 +0.013 +0.032 +0.060 +0.092 δEQ
int

-49.892 -47.556 -43.557 -38.119 -32.819 ECCSDTQ
int

1.20 -69.012 -65.118 -58.521 -49.685 -41.222 E
CCSD(T)
int

-1.224 -1.223 -1.212 -1.180 -1.133 δET
int

-0.442 -0.515 -0.640 -0.807 -0.963 δE
(Q)
int

-0.014 -0.006 +0.010 +0.033 +0.053 δEQ
int

-70.691 -66.861 -60.363 -51.640 -43.266 ECCSDTQ
int

1.40 -86.460 -81.123 -72.114 -60.115 -48.702 E
CCSD(T)
int

-1.592 -1.605 -1.618 -1.619 -1.598 δET
int

-0.538 -0.619 -0.756 -0.934 -1.097 δE
(Q)
int

-0.042 -0.038 -0.029 -0.024 -0.027 δEQ
int

-88.633 -83.384 -74.517 -62.691 -51.423 ECCSDTQ
int

1.67 -109.620 -101.998 -89.177 -72.197 -56.154 E
CCSD(T)
int

-2.267 -2.313 -2.384 -2.466 -2.519 δET
int

-0.685 -0.769 -0.906 -1.073 -1.215 δE
(Q)
int

-0.112 -0.119 -0.135 -0.176 -0.243 δEQ
int

-112.685 -105.198 -92.602 -75.911 -60.130 ECCSDTQ
int

2.05 -136.289 -124.787 -105.507 -80.108 -56.259 E
CCSD(T)
int

-3.725 -3.863 -4.096 -4.401 -4.664 δET
int

-0.936 -0.994 -1.075 -1.143 -1.169 δE
(Q)
int

-0.311 -0.356 -0.452 -0.637 -0.887 δEQ
int

-141.262 -130.000 -111.130 -86.289 -62.980 ECCSDTQ
int
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TABLE II. The values of the RMSE of the fit with respect to to ab initio energies calculated for the
given values of the intermolecular coordinates (r, s) and for three intervals of the interaction energy.
The only point from the intermolecular grid not given in the table is (rc, sc) = (1.474, 2.165) bohr.
In this case the calculated RMSE values are 0.16, 0.81, and 0.35 cm−1 for (−∞, 0], (0, 1000),
and (−∞, 1000) ranges of the interaction energy, respectively. All energies are given in cm−1 and
distances in bohr.

r\s 1.90 1.99 2.13 2.30 2.45
energy range (−∞, 0)

0.95 0.16 0.13 0.11 0.11 0.15
1.20 0.14 0.13 0.12 0.11 0.11
1.40 0.16 0.15 0.14 0.13 0.12
1.67 0.19 0.19 0.18 0.17 0.16
2.05 0.24 0.23 0.22 0.22 0.23

energy range (0, 1000)
0.95 0.97 0.91 1.00 0.93 1.07
1.20 1.13 1.12 1.11 1.12 1.09
1.40 1.15 0.95 0.82 0.78 0.74
1.67 1.48 1.54 1.61 1.49 1.44
2.05 2.32 2.03 2.26 2.53 3.29

energy range (−∞, 1000)
0.95 0.41 0.39 0.42 0.39 0.46
1.20 0.48 0.47 0.46 0.47 0.46
1.40 0.49 0.41 0.36 0.34 0.32
1.67 0.62 0.65 0.67 0.62 0.60
2.05 0.98 0.85 0.96 1.05 1.34

TABLE III. The values of RMSE calculated for several intervals of interaction energy for the
⟨V15⟩0 surface with respect to the set of the ab initio vibrationally averaged interaction energies
used to fit the V12 surface.16,17 For comparison, the values of RMSE calculated for V12 are also
given. All energies are in cm−1 and distances in bohr.

range ⟨V15⟩0 V12

(0, 1000) 0.935 2.320
(0, 400) 0.394 0.156
(−∞, 0) 0.145 0.077

(−∞, 400) 0.193 0.090
(−∞, 1000) 0.373 0.865
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TABLE IV. Comparison of some characteristic points of the H2–CO PES. The distances are given
in bohr and energies in cm−1.

R rH2 rCO VH2(rH2) VCO(rCO) Vmin Utot,min

(θ1,θ2,ϕ)=(0◦,180◦,0◦)
Utot,15

a 7.8977 1.4021 2.1319 0.0419 0.0139 -91.1649 −91.1091
Yang et al.b 8.0000 1.4011 2.1359 −85.937
Utot,Y

c 8.0000 1.4011 2.1359 0.0000 1.8023 −79.626
Utot,15 8.0000 1.4011 2.1359 0.0000 1.8023 -90.2631 −88.4607
Utot,Y

a,c 7.9156 1.4025 2.1319 0.0814 0.0139 -80.4394 −80.3441

(θ1,θ2,ϕ)=(0◦,0◦,0◦)
Utot,15

d 7.1398 1.4016 2.1325 0.0108 0.0103 -72.1001 −72.0789
Utot,Y

c,d 7.1858 1.4015 2.1325 0.0070 0.0103 -69.1956 −69.1782

a The global minimum.
b The ab initio computed value reported by Yang et al., Ref. 19.
c The value computed by us from the original Yang et al.19 intermonomer potential using the
same monomers’ potentials as in Utot,15.

d The local minimum.

TABLE V. The positions, Rmin, and values, Vmin, of the global and local minima of the ⟨V15⟩ and
V15(r0) surfaces. The corresponding values obtained for the earlier surfaces V04

41 and V12
16,17 are

also given for comparison. The distances are given in bohr and energies in cm−1.

(θ1,θ2,ϕ)=(0◦,180◦,0◦) (θ1,θ2,ϕ)=(0◦,0◦,0◦)
Rmin Vmin R′

min V ′
min

V04 7.918 -93.049 7.171 -72.741
V12 7.911 -94.096 7.168 -73.738
⟨V15⟩0 7.913 -93.934 7.169 -73.930
⟨V15⟩0a 7.898 -93.921 7.140 -73.881
V15(r0)

b 7.950 -94.234 7.156 -74.522

a Computed for the listed value of R corresponding to the minima
of the full-dimensional surface (Table IV).

b Computed for r0 = 1.44874 bohr and s0 = 2.13989 bohr16.
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TABLE VI. Calculated values of B12 (in cm3/mol) as a function of temperature T , calculated
with the fully flexible model Utot,15 = V15 + VH2 + VCO and at various levels of approximation. All
calculations use PIMC except for the classical (cl) and semiclassical (semi) results reported in the
last two columns. The expanded uncertainty U(B12) in the third column, in cm3/mol and reported
with coverage factor k = 2, is for the fully flexible calculation and incorporates both contributions
from the uncertainty of the pair potential and the statistical uncertainty of the PIMC calculation.

T (K) V15 + VH2 + VCO U(B12) V15(re) V15(r0) ⟨V15⟩0 ⟨V15⟩T ⟨V15⟩0 (cl) ⟨V15⟩0 (semi)
10 −4296 313 −4132 −4572 −4518 −4519 −101765 −1325
15 −1364 68.2 −1343 −1445 −1434 −1434 −5819 −616
20 −722.9 30.5 −712.0 −757.6 −752.4 −752.0 −1684.4 −491.0
25 −470.9 17.2 −461.6 −487.6 −485.3 −485.0 −834.2 −387.4
30 −339.2 11.4 −331.8 −349.4 −347.8 −347.8 −521.5 −307.0
40 −207.2 6.5 −202.3 −212.4 −211.4 −211.5 −277.8 −203.3
50 −142.8 4.6 −138.7 −145.5 −144.9 −144.9 −179.2 −143.7
60 −104.3 3.7 −101.3 −106.4 −105.9 −105.9 −126.9 −106.3
80 −61.61 2.46 −59.50 −62.80 −62.52 −62.51 −72.78 −63.37
100 −38.67 1.85 −36.98 −39.35 −39.17 −39.17 −45.38 −39.82
125 −21.68 1.47 −20.32 −22.04 −21.86 −21.91 −25.78 −22.33
150 −11.04 1.15 −9.88 −11.20 −11.09 −11.10 −13.81 −11.40
175 −3.81 1.00 −2.84 −3.89 −3.80 −3.81 −5.80 −3.99
200 1.44 0.88 2.24 1.37 1.46 1.41 −0.15 1.30
225 5.38 0.74 6.03 5.28 5.37 5.33 4.06 5.24
250 8.40 0.69 8.93 8.30 8.38 8.33 7.28 8.29
275 10.75 0.62 11.22 10.69 10.76 10.71 9.84 10.68
300 12.70 0.59 13.06 12.60 12.68 12.64 11.86 12.61
350 15.51 0.50 15.82 15.47 15.53 15.50 14.88 15.48
400 17.48 0.46 17.75 17.46 17.52 17.49 17.01 17.49
450 18.91 0.41 19.13 18.92 18.96 18.94 18.53 18.94
500 20.00 0.38 20.16 19.99 20.04 20.01 19.66 20.01
600 21.43 0.32 21.53 21.42 21.46 21.45 21.17 21.45
700 22.27 0.31 22.33 22.28 22.31 22.29 22.10 22.30
800 22.79 0.28 22.81 22.78 22.82 22.81 22.65 22.82
900 23.10 0.26 23.09 23.09 23.12 23.12 22.96 23.12
1000 23.28 0.27 23.24 23.26 23.30 23.28 23.15 23.28
1200 23.39 0.23 23.30 23.35 23.37 23.39 23.26 23.37
1400 23.30 0.20 23.19 23.26 23.27 23.29 23.20 23.28
1600 23.09 0.22 22.99 23.07 23.09 23.12 23.01 23.09
1800 22.87 0.22 22.75 22.83 22.85 22.90 22.78 22.85
2000 22.64 0.20 22.48 22.58 22.59 22.65 22.54 22.59
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FIG. 1. The average and RMS errors of the interaction energies of H2–CO predicted by V15

calculated with respect to the ab initio values for 27 132 geometries with R ≤ 12 bohr. The errors
are calculated in the intervals of energy indicated by the vertical dotted lines, except that the points
corresponding to the lowest energy range represent the errors calculated for all energies lower then
−100 cm−1. The abscissas of the symbols are taken in the middle of these intervals. There are
also plotted, for both surfaces, the average values of the positive and the negative errors.
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FIG. 2. Deviations of approximate virials from the virials computed using the full-dimensional
approach with flexible potential Utot,15.

34



FIG. 3. Values of B12 for H2 with CO at low temperatures, calculated with full consideration of
flexibility and quantum effects with the PIMC approach, and compared with experimental data.
Uncertainties for the calculations are smaller than the size of the symbols except for the four lowest
temperatures. The virials computed from the V15(r0) potential are not shown since they would be
nearly indistinguishable from those computed from the Utot,15 potential.
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FIG. 4. Values of B12 for H2 with CO at high temperatures, calculated with full consideration
of flexibility and quantum effects with the PIMC approach, and compared with experimental
data. The virials computed from the V15(r0) potential are not shown since they would be nearly
indistinguishable from those computed from the Utot,15 potential.
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