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Abstract 13 

As feedstocks transition from conventional oil to unconventional petroleum sources and biomass, it will be 14 

necessary to determine whether a particular fuel or fuel blend is suitable for use in engines. Certifying a 15 

fuel as safe for use is time-consuming and expensive and must be performed for each new fuel. In 16 

principle, suitability of a fuel should be completely determined by its chemical composition. This 17 

composition can be probed through use of detailed analytical techniques such as gas chromatography-mass 18 

spectroscopy (GC-MS). In traditional analysis, chromatograms would be used to determine the details of 19 

the composition. In the approach taken in this paper, the chromatogram is assumed to be entirely 20 

representative of the composition of a fuel, and is used directly as the input to an algorithm in order to 21 

develop a model that is predictive of a fuel’s suitability. When a new fuel is proposed for service, its 22 

suitability for any application could then be ascertained by using this model to compare its chromatogram 23 

with those of the fuels already known to be suitable for that application. 24 

In this paper, we lay the mathematical and informatics groundwork for a predictive model of hydrocarbon 25 

properties. The objective of this work was to develop a reliable model for unsupervised classification of the 26 

hydrocarbons as a prelude to developing a predictive model of their engine-relevant physical and chemical 27 

properties. A set of hydrocarbons including biodiesel fuels, gasoline, highway and marine diesel fuels, and 28 

crude oils was collected and GC-MS profiles obtained. These profiles were then analyzed using multi-way 29 

principal components analysis (MPCA), principal factors analysis (PARAFAC), and a self-organizing map 30 

(SOM), which is a kind of artificial neural network. It was found that, while MPCA and PARAFAC were 31 

able to recover descriptive models of the fuels, their linear nature obscured some of the finer physical 32 

details due to the widely varying composition of the fuels. The SOM was able to find a descriptive 33 

classification model which has the potential for practical recognition and perhaps prediction of fuel 34 

properties. 35 
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1 Introduction 39 

The development of alternative fuels has been identified by the United States Office of Science 40 

and Technology Policy (OSTP) as a critical need for the transportation industry [1]. It is expected 41 

that feedstocks for fuels will transition to some combination of conventional sources, 42 

unconventional sources such as tar sands and shale oil [2], and biomass [1]. The substances that 43 

are produced from refining these different feedstocks differ in their composition and therefore their 44 

suitability for use as fuel may not be known. 45 

Determining whether a fuel is suitable for use in a particular application can be a lengthy and 46 

expensive process. This is especially true in aviation, due to the certification required by regulatory 47 

bodies such as the United States Federal Aviation Administration (FAA) [1]. In order to certify a 48 

new fuel for service, full-scale engine tests must be performed that can consume millions of liters 49 

of fuel. In principle, these tests must be conducted for each new fuel that is produced. 50 

Use of technologies such as electric or hybrid powertrains may reduce or eliminate the need for 51 

exhaustive fuel certification.  However, the OSTP does not anticipate that these technologies will 52 

be usable for aviation in the foreseeable future. Furthermore, the same pressures on the aviation 53 

industry also affect other transportation industries, even if to a lesser degree. Aviation is, therefore, 54 

well-placed to be an industry leader in alternative fuels research and applications. 55 

The FAA has begun a program for new means of certification for alternative jet fuels called the 56 

National Jet Fuels Combustion Program [1]. One of the goals of this program is to develop 57 

computational models that can be used to certify fuels without the expense of the current process. 58 

This research program currently advocates the use of detailed, computationally expensive, 59 

numerical simulations to predict engine performance when using a proposed fuel. 60 



 

 

In this paper, we propose a different approach: the use of an algorithm to predict performance 61 

based on a detailed physiochemical analysis of the fuel. A fuel’s performance is in principle 62 

entirely determined by its composition, and that composition can be readily determined, or at least 63 

probed, by analysis methods such as nuclear magnetic resonance spectroscopy, mass spectrometry, 64 

and gas or liquid chromatography. Usually, the output from such an analysis is examined by an 65 

expert and then the features of the output are assigned to components of the mixture. In our 66 

approach, however, there is no need to identify and quantify each component. Instead, the raw or 67 

minimally-processed output from these analysis methods is used directly as an input to an 68 

algorithm, trained against a library of known fuels, that will predict the circumstances under which 69 

the fuel will be usable.  70 

For the study presented here, a set of hydrocarbons including gasoline, kerosene, highway diesel 71 

fuel, marine diesel oil, and biodiesel fuel were collected. Gas chromatography coupled with mass 72 

spectrometry (GC-MS) was used to characterize the fuels and the resulting chromatogram was 73 

used as input to three chemometric algorithms in order to classify and group the fuels. It was found 74 

that the fuels fell into roughly three classes, which were the diesel fuels, kerosenes, and biodiesels. 75 

The model generated in this study could be used to determine the similarity of a new fuel to any 76 

of these three classes and therefore its suitability for these applications. As the library of suitable 77 

fuels grows, the power of the model to classify new substances will grow commensurately. 78 

2 Methods 79 

2.1 Chemometric methods for fuel analysis  80 

GC-MS and its more sophisticated alternative, comprehensive two-dimensional gas 81 

chromatography coupled with time-of-flight mass spectrometry (GCxGC-TOFMS), have been the 82 



 

 

methods of choice for the analysis of fuels. The spectra generated contain a wealth of data about 83 

the composition of the fuel. Multivariate analysis methods can help to extract information from 84 

the GC-MS [3-6] and GCxGC-TOFMS [7-9] results, and these methods can be used for rapid 85 

analysis of fuels [10-13]. 86 

Due to the number of compounds present in most fuels and the limited capacity of the 87 

chromatographic columns, there is a tendency for GC-MS chromatograms to exhibit raised 88 

baseline humps known as unresolved complex mixtures (UCM). This effect has motivated the use 89 

of GCxGC-TOFMS for petroleum analysis [14-18]. GCxGC-TOFMS has its disadvantages, 90 

however. The instrumentation required is expensive and complex, limiting the number of facilities 91 

with access to it. Furthermore, the analysis of GCxGC-TOFMS data is not nearly as mature as GC-92 

MS. Both methods, therefore, remain popular. 93 

Several literature studies have used GC-MS and/or GCxGC-TOFMS as input to advanced 94 

analysis algorithms. Pierce and Schale [13] used partial least squares (PLS) to quantify the 95 

composition of blends of biodiesel and conventional diesel using GC-MS and GCxGC-TOFMS, 96 

discussing the advantage and disadvantage of each method of analysis. Johnson et al. [19] used 97 

multi-way chemometric tools to characterize fuel blends by GC-MS, obtaining qualitative and 98 

quantitative features for a series of diesel fuel and heavier heating oil blends. Parastar et al. [20] 99 

used GCxGC-TOFMS combined with chemometric methods to resolve and quantify mixtures of 100 

compounds such as polycyclic aromatic hydrocarbons (PAHs) in heavy fuel oil. Cramer et al. [21] 101 

used parallel factor analysis (PARAFAC) and GC-MS to develop an improved peak selection 102 

strategy to automatically detect minute compositional changes in fuels. Kehimkar et al. [22] and 103 

Freye, et al. [23] applied PLS to rocket kerosene data obtained using GCxGC-TOFMS and GCxGC  104 



 

 

coupled with flame ionization detection, respectively, to develop multivariate predictive models 105 

of fuel composition and engine-relevant fuel properties. 106 

 Others studies have used other chemometric techniques to analyze fuel. Dupuy et al. [24] used 107 

PCA and soft independent modeling of class analogy classification (SIMCA) combined with near 108 

infrared (NIR) spectroscopy to study heavy marine fuels. Pasquini and Bueno [25] used PLS and 109 

NIR spectroscopy to predict the true boiling point curve and to estimate the specific gravity of 110 

petroleum in refineries.  Feng et al. [26] used the least square support vector machine (LS-SVM) 111 

and PLS, and NIR spectroscopy for analysis of six diesel fuel properties (i.e., boiling point, cetane 112 

number, density, freezing temperature, total aromatics, and viscosity). Yousefinejad et al. [27] 113 

classified three types of oil with the use chemometric methods and attenuated total reflectance 114 

fourier transform infrared (ATR-FTIR) spectroscopy. Da Silva et al. [28] used near infrared (NIR) 115 

and medium infared (MIR) spectra of distillation residue to classify gasoline as with or without 116 

additives using PLS, PCA, and linear discriminant analysis. 117 

 However, these studies have all relied on a small sets of samples that may not be readily 118 

obtainable by researchers wishing to repeat that work. To improve reproducibility, therefore, we 119 

would encourage the use of a standard library of fuel samples. Ideally, such a library would be 120 

composed of petroleum and unconventional Certified Reference Materials (CRMs) with well-121 

characterized chemometric data. The set of substances used in this study do not necessarily 122 

represent such a library, but it is intended to show what such a library might look like. 123 

2.2  Chemometric methods used in this paper 124 

Chemometric methods such as those used in this paper are intended to aid in the analysis and 125 

visualization of complex data sets. In such data sets, the variation in the data can often be explained 126 

by a relatively few factors within the data space. This is expressed mathematically by the data 127 



 

 

existing in some low-dimensional subspace. Chemometric methods therefore are designed to find 128 

this subspace in order to make the data easier to interpret. In all cases, data with hundreds or 129 

thousands of variables are reduced to a few dimensions, usually two or three in order to aid human 130 

pattern recognition. The methods used in this study are multi-way principal components analysis 131 

(MPCA), parallel factor analysis (PARAFAC), and Kohonen’s self-organizing map (SOM). 132 

MPCA and PARAFAC are linear classifiers, while SOM is a nonlinear classifier. Each method 133 

presents a different way of visualizing the data. MPCA determines those directions in the data 134 

space that are responsible for differences between the samples, but does not necessarily help assign 135 

physical interpretations to those differences. PARAFAC identifies physical components that are 136 

responsible for separating the samples, although these will not correspond to pure substances in 137 

this case due to the complexity of the hydrocarbon mixtures. SOM fits a low-dimensional manifold 138 

to the data that captures the most variability, but the manifold is nonlinear and therefore the results 139 

of the SOM are more difficult to interpret. 140 

2.2.1 Multi-way principal components analysis (MPCA) 141 

Principal components analysis [29] (PCA) reduces the dimensionality of complex data sets by 142 

identifying those directions in which the data have the greatest variance. The most common 143 

algorithm uses the singular value decomposition, which decomposes an observation matrix X into 144 

a set of scores T and loadings W such that T XW . Each component of W will then describe one 145 

of the dimensions of the low-dimensional subspace and will be interpretable as, for instance, a 146 

chromatogram. Dimensionality is reduced by retaining only those L components of W that 147 

describe more than a certain amount of variance in the data, where L is strictly less than the rank 148 

of X. 149 



 

 

PCA requires that the data be expressed as a two-way (alternatively, order two) array, meaning 150 

a matrix. In order to use PCA on data of higher order, the data must be recast into a two-way array. 151 

Employing PCA on such a recast array is multi-way PCA. As a three-way array, X has dimension 152 

I × J × K, so it must be unfolded into the two-way array X′ with dimension I × JK. For instance, 153 

the GC-MS data considered here are three-way arrays, where the first way represents differing 154 

profiles, the second represents the mass spectra, and the third is the elution times. Recast as a two-155 

way array, the first way still represents the differing profiles, while the second has the mass spectra 156 

and chromatograms interleaved together. Each component of W, if it is suitably reshaped and 157 

added to the sample mean, can be interpreted as a GC-MS profile. 158 

2.2.2 Parallel factor analysis (PARAFAC) 159 

PARAFAC is a multidimensional analogue to PCA [30], decomposing the multiway 160 

observation array X into a set of matrices. In the three-way case, each element of X can be 161 

expressed in terms of three matrices A, B, and C as 
ijk if jf kff

x a b c , with appropriate 162 

generalizations to higher orders. The matrix A is of dimension I × F, B is J × F, and C is K × F, 163 

where F is the number of factors and is less than the minimum of I, J, and K. The matrices can 164 

then be interpreted as a scores matrix, a matrix corresponding to the chromatographic loadings and 165 

a matrix corresponding to the mass spectral loadings. The number of factors F in PARAFAC plays 166 

the same role as the number of components L in MPCA, and is strictly less than the rank of X. 167 

PARAFAC has an additional advantage over PCA in that, because it is usually solved using a 168 

nonlinear optimizer such as alternating least squares, additional constraints can be added such as 169 

requiring that all components of A, B, and C be positive. 170 



 

 

2.2.3 Kohonen's Self-Organizing Map (SOM) 171 

A self-organizing map [31] is a type of neural network that will project the data into a two-172 

dimensional space based on some notion of closeness. Each node is assigned to a physical location 173 

in the two-dimensional map and also to a location in the data space. As with all neural networks, 174 

the map is trained on the data using an iterative process. As the learning algorithm runs, each node 175 

that is already close to a sample in data space is moved closer to that sample, and nodes close in 176 

the map space to that node are moved with it. As long as there are more nodes in the map than 177 

there are samples in the training set, each sample will then be assigned to a neighborhood of nodes 178 

in the map. The proximity of any two samples on the map corresponds to how similar they are. 179 

The SOM has the ability to capture nonlinear relationships among the samples, because a straight 180 

line on the map may correspond to a convoluted and nonlinear path through the data space. As a 181 

result, however, distances on the map do not translate into distances in the data space except in a 182 

nonlinear and integrated sense. Essentially, flexibility is gained at the expense of ease of 183 

interpretation. 184 

The nodes in the map can be described by an L × N grid, and each node has a point in the data 185 

space assigned to it, in this case a GC-MS profile. Therefore, the SOM can be described as a three-186 

way array M, described by L × N × S elements, with any particular elements Mlns. Because the map 187 

represents two spaces, there are two distances that are meaningful between nodes. The first is the 188 

Euclidean distance dE on the map, which for two nodes Mln and Mop with locations (l,n) and (o,p) 189 

is just      
2 22

E ,ln opd l o n p   M M . The other distance is the distance in the data space, 190 

which here we take to be the Hellinger distance, dH, which for the same two nodes Mln and Mop is 191 

defined as  2

H , 1ln op lns opss
d M M M M . Note that for this expression to be valid, the two 192 

spectra must each be normalized so that they sum to 1. The Hellinger distance is 0 if Mln and Mop 193 



 

 

have equal values for each component and it is 1 if Mln is zero everywhere Mop is positive and vice 194 

versa. 195 

A SOM is usually interpreted in terms of its unified distance matrix or U-matrix U [32], which 196 

is a visual representation of the distance in data space between adjacent nodes on the map. Each 197 

element in U is defined as  2 1,2 H 1,,i j ij i jd U M M ,  2 ,2 1 H , 1,i j ij i jd U M M , and 198 

   1 1
2 22 1,2 1 H 1, , 1 H , 1, 1, ,i j i j i j i j i jd d      U M M M M . The even elements 

2 ,2i jU  are not defined 199 

[32], and here we define them to be the minimum of their eight adjacent elements. 200 

2.3  Chemometric methodology used for the analysis of data 201 

The methodology used in the paper is summarized in Fig. 1. The three-way data array is shown 202 

in Fig. 1a. MPCA is then used to determine scores (shown in Fig 1b) and loadings (in Fig. 1c). 203 

The results of MPCA are used for variable selection to reduce the computational complexity of 204 

the PARAFAC and SOM models, as shown in Figs. 1d (Stage II a) and 1f (Stage II b). Components 205 

with the highest loading are chosen for these models. PARAFAC is applied to the reduced data 206 

array and used to determine chromatographic loadings, mass spectral loadings, and PARAFAC 207 

scores, shown in Fig. 1e, and the SOM is used to generate the two-dimensional map, shown in Fig. 208 

1g. 209 

2.4 Experimental procedure 210 

2.4.1 Samples and Materials 211 

The National Institute of Standards and Technology (NIST) provides a number of petroleum-212 

related Certified Reference Materials (CRMs) characterized for various constituents. CRMs 213 

provided by NIST are known as Standard Reference Materials (SRMs). Samples of a number of 214 

these SRMs were obtained. In addition, gasoline (87 octane) was purchased from a local service 215 



 

 

station, and three jet fuel samples were provided by the Air Force Research Laboratory. Table 1 216 

lists the sample materials. 217 

SRM 1494 Aliphatic Hydrocarbons in 2,2,4-Trimethylpentane and SRM 2269 Perdeuterated 218 

PAH I Solution in Hexane/Toluene were used as internal controls. HPLC grade hexane was used 219 

as sample diluent. 220 

2.4.2 Sample preparation 221 

The petroleum samples and SRM 1494 were diluted as follows: 2 mL of hexane, 100 µL of 222 

SRM 2269, and 100 µL of the petroleum sample were volumetrically transferred to 4 mL amber 223 

vials and sealed. Approximately 1.5 mL of each mixture was then transferred to individual amber 224 

autosampler vials for analysis. One vial was prepared for each fuel sample. 225 

2.4.3 GC-MS analysis 226 

The GC-MS analysis was performed using a 0.25 mm (id) × 60 m DB-17MS column (50 % 227 

phenylmethylpolysiloxane, 0.25 µm film, [17] (Agilent Technologies, Wilmington, DE). The 228 

column was held isothermally at 60 °C for 1 min, ramped at 45 °C per min to 100 °C, held for 10 229 

min, then ramped at 2 °C per min to 290 °C and held for 60 min. All injections were done on-230 

column (1 µL) with helium as the carrier gas at a constant flow rate of 1.2 mL/min. The injection 231 

port temperature was held in an oven-track mode (3 °C above the oven temperature), and the 232 

auxiliary line temperature was held at 290 °C. Following an 8 min solvent delay, the MS scanned 233 

from 50 u to 350 u at 2.48 scans per second with the electron multiplier voltage set to 2000. 234 

SRM 1494 (diluted as described above with SRM 2269 and hexane) was the first sample run to 235 

obtain retention times for the aliphatic compounds present in that SRM and for the deuterated 236 

compounds present in SRM 2269. Each fuel sample was run in triplicate with one run of hexane 237 

after each fuel sample to ensure that there was no carryover. 238 



 

 

2.4.4 GC-MS data processing 239 

The retention time for fluoranthene-d12 (one of the components in SRM 2269) was used to check 240 

for any retention time shifting over the course of the runs, and the peak area based on the 241 

integration of ion 212 was used to assess the dilution of the samples. The retention time and peak 242 

area for this deuterated compound remained fairly constant (within 5 %) over the days that it took 243 

to run all of the petroleum samples. The Agilent data system was used to generate text files 244 

containing retention time, scan, and signal information used in the predictive schemes. Prior to 245 

creating the arrays, automated peak integrations were checked and corrected manually to baseline. 246 

2.5 Data analysis and data construction 247 

The data was arranged as a three-way array with dimension 60 x 23248 x 301, for the samples, 248 

GC elution times, and mass spectra respectively. This three-way array was then analyzed using a 249 

MPCA and PARAFAC models. For the SOM, to reduce computational complexity, principal 250 

components analysis was used to reduce the number of active data elements. More details of this 251 

selection process can be found in Section 3.3. This results in a two-way array with dimension 60 252 

x 768.  253 

For the construction of the MPCA and PARAFAC models, the PLS toolbox version 3.51 254 

(Eigenvector Research, Manson, WA) was used, running in MATLAB R2015b. Construction of 255 

the SOM was performed with the PyMVPA 2.4.2 package, running in Anaconda 4.0.0 with Python 256 

2.7.11. No preprocessing was used beyond the peak alignment verification and manual baseline 257 

correction described in Section 2.4.4. 258 



 

 

3 Results and Discussion 259 

This study focused on using GC-MS data for the analysis of a wide range of petroleum-based 260 

fuels (Table 1) as well as two biodiesels. As suggested in the study by Hupp et al [33], alignment 261 

of the chromatograms was checked using the retention time of fluoranthene-d12, a component in 262 

SRM 2269 which was added to all samples. 263 

3.1 Multi-way principal components analysis (MPCA) 264 

The data were loaded into PLS-toolbox software as a 23,248 x 301 x 60 array, representing the 265 

23,248 elution times, the 301 masses in the mass spectra, and the 60 samples (20 samples each run 266 

in triplicate). For the construction of the MPCA model, the number of principal components was 267 

chosen to capture more than 80% of the explained variance [29]. Other methods have been 268 

proposed, but generally do not give very different results [29, 34-41]. 269 

The samples fall into two superclasses, which essentially splits the biofuels from the petroleum-270 

derived substances. This split is shown in Fig. 2a, which plots the samples with respect to the first 271 

three principal components. The confidence ellipse [42] represents the 95% confidence limit for 272 

the petroleum class based on the Hotelling T2 [43, 44] distance. These substances lie essentially 273 

on a two-dimensional surface within this three-dimensional PCA space, and the two biofuels lie 274 

along a line extending perpendicularly from this surface. This separation makes chemical sense 275 

because biofuels tend to have a relatively invariant composition (composed primarily of fatty acid 276 

methyl esters), as compared to petroleum derivatives which can vary significantly depending on 277 

the source of the petroleum. 278 

Within the petroleum superclass, the jet fuels (JP8, JP5 and Jet Fuel A) can be readily identified 279 

as a subclass, as shown in Fig. 2b. This figure shows the score plot using the second and fourth 280 



 

 

principal components. In the figure, the jet fuels can be seen as a tightly-bundled group surrounded 281 

by the ellipse of confidence. In addition to the jet fuels, SRM 1617b, SRM 1616b, and SRM 2299 282 

fall within the ellipse of confidence. This grouping again makes sense because SRM 1616b and 283 

SRM 1617b are kerosenes, composed primarily of aliphatics in the C12 to C15 range, and the jet 284 

fuels are kerosene-based fuels [45] and consist mostly of aliphatic and aromatic hydrocarbons 285 

ranging from C8 to C17 or greater [45]. SRM 2299 is a gasoline composed of short aliphatics from 286 

C7 through C11, which is most similar to the jet fuel subclass. 287 

Another point of interest is the proximity of SRM 2770 and SRM 1624d in principal component 288 

space. These substances are both diesel fuels with varying amounts of sulfur. SRM 2770 was made 289 

by mixing SRM 1624d and SRM 2723a [46-48] to achieve a target sulfur concentration. Thus, the 290 

chemical and physical properties of the SRM 2770 are similar to chemical and physical properties 291 

of these two substances. It should be noted that SRM 2723a was not available for the GC-MS 292 

analysis because it had been superseded by SRM 2723b [49]. If a sample of SRM 2723a had been 293 

available, it is likely that the three substances would have fallen essentially on a line. However, 294 

SRM 2723b is in the grouping of samples near the origin in the loadings plot in Fig. 2b, suggesting 295 

that it is less related to SRMs 1624d and 2770 than might be predicted. All four of these substances 296 

are labelled as No. 2 diesel fuels, but this definition is based on physical properties, such as 297 

viscosity, flash point, and cetane index, rather than composition [50]. The differences in the 298 

classifications highlights the potentially wide chemical variation among petroleum fuels. 299 

3.2  Parallel factor analysis (PARAFAC) model 300 

A limitation of the MPCA model is that the loadings do not have an easy interpretation in terms 301 

of chromatographic and mass profiles. The PARAFAC algorithm was designed to generate a 302 

model that would have a more straightforward physical interpretation. In principle, PARAFAC 303 



 

 

would be able to extract GS-MS profiles for the pure components that make up the mixtures, 304 

although the complex nature of petroleum distillates makes this ideal state impossible. Even so, 305 

PARAFAC is able to isolate a set of basis components, even if that basis set does not actually 306 

correspond to a pure substance. 307 

The speed of the algorithm scales poorly with the size of the data matrix and so any amount of 308 

variable reduction will have great benefits in computational time. Here, the loadings obtained by 309 

the MPCA model, which can be found in Supporting Information Fig. S1, were used for selection 310 

of variables. The first four principal components are plotted; there is little information present at 311 

elution times greater than about 100 minutes. Removing these elements allowed an increase in 312 

computational speed for the construction of the PARAFAC model. 313 

The PARAFAC model was generated using PLS-toolbox. Non-negativity constraints were 314 

imposed in the three PARAFAC dimensions, since the true GC-MS values should be strictly 315 

positive. A convergence criteria value of 10−6 and a maximum number of 10000 iterations were 316 

used. 317 

According to Skov and Bro [51], PARAFAC will provide a unique solution, but only when the 318 

proper number of factors is determined will the unique solution be chemically meaningful. Thus, 319 

this step is fundamental to the construction of the model [30]. Various methods are proposed for 320 

this choice [52-55]. In this work, the core consistency (CORCONDIA) test [53-55] was used for 321 

determining the number of factors, along with heuristics based on chemical knowledge about the 322 

problem. The CORCONDIA test provides information about degeneracy between factors, that is, 323 

whether two or more factors may be fitting the same feature which would be better described using 324 

only one factor. Heuristics must then be applied to determine whether the potential loss of 325 

uniqueness in the model is worth the additional degrees of freedom. The core consistencies and 326 



 

 

the explained variances of the models are seen in Table 2, and a four-factor model was chosen as 327 

best representative of this dataset. The core consistency of 99.0% for this model indicates there is 328 

no degeneracy in the recovered fuel classes. When five or six factors were used for model building, 329 

more than one fuel class was described by the same factor revealing degeneracy in the recovered 330 

factors. 331 

The PARAFAC model divides the substances in a similar manner as the MPCA model. Fig. 3 332 

shows the score plot with respect to the 2nd through 4th factors in the PARAFAC model. As was 333 

the case for the MPCA model, the biofuel SRMs 2772 and 2773 are separated from the other 334 

substances along the 3rd factor. SRM 1848, which is an additive to lubricating oil, is separated 335 

from the other substances along the 2nd factor. SRM 1623c, a heavy fuel oil, is separated along the 336 

4th factor, as are the jet fuels and the gasoline SRM 2299. Most other substances lie near the origin 337 

of this plot, meaning they are not represented by these three factors. 338 

In order to show how well the PARAFAC model actually captures these substances, Fig. 4 339 

shows the chromatographic loadings for 2nd through 4th factors obtained by the PARAFAC model 340 

with experimental chromatograms for SRM 1848, SRM 2773, and SRM 1623c. The corresponding 341 

mass spectral loadings are shown in Fig. S2. The results were normalized by the maximum value. 342 

The experimental results shown in the figure are the total ion chromatograms averaged over the 343 

three replicates for a particular substance. As a measure of goodness-of-fit, the similarity was 344 

calculated between the experimental elution profiles and the calculated loading for each factor, as 345 

recommended by Amigo et al.[56]. This was calculated as follows: 346 

𝑓𝑖𝑡 (%) = 100 × (1 − √
∑(𝑥𝑖 − 𝑥𝑖̂)2

∑ 𝑥𝑖
2 ) 347 



 

 

where 𝑥𝑖 corresponds to the ion intensity and 𝑥𝑖̂ corresponds to the corresponding loading. SRM 348 

1848 showed similarity of 92.9%. SRM 2773 and SRM 1623c showed similarity of 83.3% and 349 

81.4%, respectively. In the case of SRM 1623c, only that part of the chromatogram from 0 to about 350 

80 minutes of elution time was used because there is a deviation from the baseline in the 351 

experimental response at longer elution times. The PARAFAC model developed was able to 352 

properly capture the chromatographic profile for these three classes. 353 

Since the 2nd through 4th PARAFAC factors essentially describe singleton classes. the first 354 

PARAFAC component must therefore describe the remaining samples. To help determine whether 355 

this is the case, the scores with respect to the first PARAFAC factor for each sample are shown in 356 

Fig. 5. The first factor is responsible for the separation of SRM 2770 and SRM 1624d from the 357 

other substances. The total ion chromatograms for these substances are shown in Fig. 6, along with 358 

the PARAFAC loading for the first factor. Mass spectral loadings are shown in Fig. S3. The 359 

loading is constructed from essentially a combination of these two chromatograms, which explains 360 

why these two substances have the similar scores for this factor. Again, this result is not terribly 361 

surprising, due to the similarities between these two substances as discussed in Section 3.1. 362 

It should be noted, however, that the four PARAFAC components fail to describe most of the 363 

substances in the sample set. At first examination, this would appear to be due to underfitting the 364 

model, which could be solved by adding more factors. However, as discussed earlier in this section, 365 

adding more factors does not add to the model’s predictive ability. The loadings for the six-factor 366 

are shown in Fig. S4. The fifth factor describes the kerosenes and jet fuels, which was not 367 

recovered in the four-factor model, but the sixth factor begins to describe fine differences between 368 

the biodiesels. Many samples such as the gasolines and diesels are not recovered even by the six-369 

factor model. 370 



 

 

The mass-spectrum loadings obtained by the PARAFAC model can be found in Supporting 371 

Information Figs. S2 and S3. 372 

3.3 Kohonen's Self-Organizing Map (SOM) 373 

As mentioned earlier, the MPCA and PARAFAC are linear classifiers, whereas the SOM is a 374 

nonlinear classifier that will capture a low-dimensional manifold representing the fuel samples. 375 

After the algorithm is complete, the map will represent, albeit in an abstract way, the manifold on 376 

which the samples lie. 377 

Using the full data set, each node in the network has, in principle, a complete chromatogram 378 

assigned to it, meaning that the self-organizing map will require approximately seven million 379 

scalars per node times the number of nodes in the map. In order to reduce the computational 380 

complexity, the data space is first reduced using the results from an MPCA model. In this case, the 381 

MPCA model is constructed using 10 components and the GC-MS component with the greatest 382 

loading is found. Those GC-MS components with loadings greater than 30% of the maximum are 383 

selected as active. This reduces each chromatogram from seven million scalars to 786. In this 384 

study, the map was chosen to be 60 by 60 nodes, with an initial radius of 60 and a learning rate of 385 

0.5. 386 

The U-matrix for the SOM is shown in Fig. 7a, where the separation among the classes can be 387 

seen. This plot shows the distance in the chromatographic space between adjacent nodes and also 388 

shows the location of the training samples on the map. Because there are many more nodes in the 389 

map than there are samples, each sample is assigned to its own region of the map where each node 390 

is very similar to it. The borders between the regions are darker or lighter depending on how 391 

different are the samples associated with the regions. 392 



 

 

As with the other separation models, the biodiesel samples (SRMs 2772 and 2773) are strongly 393 

separated from the other samples by the SOM, as evidenced by the dark border that separates their 394 

associated region of the map from the rest. In addition, the motor oil additive SRM 1848 is strongly 395 

separated into another group. The remaining samples fall into one large group, which is essentially 396 

petroleum-derived fuels, with a weak separation between the diesel fuels and kerosene fuels. 397 

To further elucidate these broad categories, we plot the Hellinger distance to every point in the 398 

map from three samples in a false-color image in Fig. 7b. The samples are SRM 2273, which is 399 

taken to be representative of the biodiesels, SRM 2771 of the kerosenes, and SRM 1616b of the 400 

diesels. In this image, the separation among the classes is quite visible, with the biodiesels starkly 401 

separated from petroleum fuels and the kerosenes clearly distinct from the diesels. SRM 1848 402 

forms an additional group separate from these three, and the gasolines form a subgroup that is 403 

related to, but not entirely the same as, the kerosenes. 404 

The purpose of using a dimensional reduction technique such as MPCA, PARAFAC, or SOM 405 

is that the data are presumed to lie on some low-dimensional manifold within the data space. PCA 406 

and PARAFAC require that this manifold be linear. If the manifold is not linear, then projections 407 

into the PCA or PARAFAC space will not be able to identify patterns and the reduction is unlikely 408 

to reveal additional information. For instance, the PARAFAC model discussed in Section 3.2 does 409 

not adequately describe many of the fuels, and simply increasing the degrees of freedom available 410 

to the model cannot allow it to do so. As discussed in Section 2.3, the SOM fits a manifold to the 411 

data that is locally two-dimensional but is able to capture arbitrary structure in the data. 412 

4 Conclusion 413 

A set of petroleum-derived fuels and biofuels were analyzed using gas chromatography coupled 414 

with mass spectrometry (GC-MS). The resulting GC-MS chromatograms were analyzed using 415 



 

 

unsupervised classification algorithms, in particular multiway principal components analysis 416 

(MPCA), principal factors analysis (PARAFAC), and a self-organizing map (SOM). All of the 417 

classification algorithms were able to generate models that were able to differentiate among the 418 

various fuels. In addition, chemically meaningful chromatographic and mass spectral profiles were 419 

extracted by PARAFAC. 420 

MPCA and PARAFAC are linear classifiers, while SOM is a nonlinear classifier. Due to the 421 

complex nature of the petroleum fuels, the linear classifiers proved to have some difficulty in 422 

generating a meaningful separation model. Some of the physical characteristics relevant to the 423 

distinction among the fuels proved to be obscured. The SOM, being nonlinear, proved highly able 424 

at generating a separation model. However, this flexibility comes at the cost of the model being 425 

more difficult to interpret than the linear models. 426 

The results show that GC-MS combined with unsupervised chemometric analysis can be a 427 

powerful tool to solve similar analytical problems in which complex mixtures consisting of several 428 

hundreds of compounds need to be differentiated through pattern recognition. Furthermore, the 429 

combination of GC-MS and chemometric analysis can be employed as a general tool for the 430 

differentiation of petroleum-derived and other fuels.  431 
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Table 1.  List of materials analyzed in this study 

 

Name Title Description 

SRM 1615 Gas Oil *certificate not available* 

SRM 1616b Sulfur in Kerosene (Low-Level) Special low sulfur kerosene (No.1-K) for nonflue-connected applications 

SRM 1617b Sulfur in Kerosene (High-Level) High sulfur kerosene 

SRM 1620c Sulfur in Residual Fuel Oil (4 %) Commercial “No. 6” residual fuel oil 

SRM 1623c Sulfur in Residual Fuel Oil (0.3 %) Commercial “No. 4 (light)” residual fuel oil    

SRM 1624d Sulfur in Diesel Fuel Oil (0.4 %) Commercial “No. 2 D” distillate fuel oil 

SRM 1848 Lubricating Oil Additive Additive used in manufacture of lubricating oil for gasoline engines 

SRM 2299 Sulfur in Gasoline (Reformulated) Commercial reformulated unleaded gasoline 

SRM 2721 Crude Oil (Light-Sour) Light-sour Texas crude oil 

SRM 2722 Crude Oil (Heavy-Sweet) Heavy-sweet Texas crude oil 

SRM 2723b Sulfur in Diesel Fuel Oil (10 mg/kg) Commercial “No. 2 D” distillate fuel oil 

SRM 2770 Sulfur in Diesel Fuel Oil (40 mg/kg) Commercial “No. 2 D” distillate fuel oil 

SRM 2771 Sulfur in Diesel Fuel Blend Stock Commercial diesel fuel blend stock 

SRM 2772 Biodiesel (Soy-Based) Commercial 100 % biodiesel produced from soy 



 

 

SRM 2773 Biodiesel (Animal-Based) Commercial 100 % biodiesel produced from animal products 

SRM 2779 Gulf of Mexico Crude Oil Collected from 2010 Deepwater Horizon oil site 

Gasoline  Commercial 87-octane gasoline sold in 2015 

Jet A  Jet fuel from Air Force Research Laboratory (AFRL) 

JP5  Jet fuel from AFRL 

JP8  Jet fuel from AFRL 

 

 



 

 

Table 2.  Core consistencies and the explained variances of the PARAFAC models 

Factors CORE 

consistency 

Explained variance (%) 

1 100 37.9 

2 100 42.8 

3 100 71.7 

4 99 76.6 

5 94 80.9 

6 81 82.2 

7 25 86.3 

8 0 86.7 

 

  



 

 

 

Figure 1. Schematic representation of the MPCA, PARAFAC, and SOM algorithms. 



 

 

 

Figure 2. (a) Multiway principal component scores for the first three principal components. The 

tan region is the ellipse of confidence for the petroleum fuels. (b) MPCA scores for the second 

and fourth principal components. The grey region is the ellipse of confidence for the jet and 

kerosene fuels. 

 

Figure 3. PARAFAC scores for the 2nd through 4th factors in the four-factor PARAFAC model. 



 

 

 

Figure 4. Chromatographic loadings for the 2nd through 4th factors in the four-factor PARAFAC 

model compared with total ion chromatograms for substances that are representative class 

members. 

 

Figure 5. PARAFAC scores for the first factor in the four-factor PARAFAC model. 



 

 

 

Figure 6. Chromatographic loadings for the first factor in the four-factor PARAFAC model 

compared with the total ion chromatograms for SRM 2770 and SRM 1624d. 

 

Figure 7. (a) Unified distance matrix for the self-organizing map, with corresponding locations 

for the sixty samples. (b) False-color map of Hellinger distances from each node to various 

samples on the map. The red channel corresponds to map nodes closer to SRM 2273, the green 

channel to SRM 2771, and the blue channel to SRM 1616b. Therefore, nodes that are more red, 

for instance, will be closer in data space to SRM 2273 and therefore be representative of 

biodiesels. 



 

 

 

Figure S1. Principal components loadings for the first four principal components of the MPCA 

model. The red cylinder indicates those variables that have high loadings in these four principal 

components. These variables are those which are used for variable selection for the PARAFAC 

model. 



 

 

 

 

Figure S2. Mass spectral loadings for the 2nd through 4th factors in the four-factor PARAFAC 

model compared with mass spectra for substances that are representative class members. 

 

 

Figure S3. Mass spectral loadings for the first factor in the four-factor PARAFAC model 

compared with the total ion chromatograms for SRM 2770 and SRM 1624d. 



 

 

 

Figure S4. PARAFAC scores for the all factors in the six-factor PARAFAC model. 


