
2016 IEEE International Conference on Big Data (Big Data)

978-1-4673-9005-7/16/$31.00 ©2016 IEEE 2014

Evaluation of a PMML-Based GPR Scoring Engine on a Cloud Platform and
Microcomputer Board for Smart Manufacturing

Max Ferguson and Kincho H. Law
Civil and Environmental Engineering

Stanford University
Stanford, CA, USA

{maxferg, law}@stanford.edu

Jinkyoo Park
Industrial and Systems Engineering

Korea Advanced Institute of Science and Technology
Daejeon, South Korea

jinkyoo.park@kaist.ac.kr

Raunak Bhinge and David Dornfeld
 Mechanical Engineering

 University of California, Berkeley
 Berkeley, CA, USA

raunakbh@berkeley.edu

Yung-Tsun Tina Lee
Systems Integration Division

 National Institute of Standards and Technology (NIST)
 Gaithersburg, MD, 20899, USA

yung-tsun.lee@nist.gov

Abstract— The use of data-driven predictive models is becoming
increasingly popular in engineering and manufacturing sectors.
This paper discusses the deployment of Gaussian Process
Regression (GPR) predictive models for smart manufacturing.
A scoring engine is developed based on the Predictive Model
Markup Language (PMML) standard to illustrate the
portability of predictive models among different statistical tools
and different platforms. Specifically, we evaluate the tradeoffs
between embedding GPR-based predictive models on a physical
device and executing the predictive models on a managed cloud
platform like the Google Compute Engine. We compare the
performance of the two deployment strategies with two
predictive models, namely an energy consumption model and a
milling tool condition model, that are built with data from a
Mori Seiki CNC milling machine. We describe how the response
time of the two deployment strategies is related to the network
latency and computational speed of the scoring machine
hardware. It is shown that the time required to calculate model
predictions is a significant factor in the overall response time of
the embedded scoring engine. We demonstrate that the scoring
engine on the cloud platform can achieve a lower response time
and higher prediction rate than the microcomputer, due to the
superior computational performance of the cloud-based
hardware.

Keywords— scoring engine; predictive model markup
language; energy prediction model; milling machine.

I. INTRODUCTION

The rise of the Industrial Internet will inevitably be
accompanied by an increased usage of machine learning
algorithms for the monitoring and control of manufacturing
machines [1]. Modern factories will utilize predictive models
for a range of tasks, from identifying manufacturing defects
to optimizing chemical processes [2]. The predictive models
may be evaluated on embedded circuits located within the
manufacturing machines. However, modern predictive
models are increasingly demanding, both in terms of
computational and storage requirements, to train and to
evaluate [3, 4]. While using dedicated hardware to evaluate

the predictive models is desirable for certain applications, an
alternative approach is to evaluate the predictive models on a
managed cloud platform. In this scenario, manufacturing
machines send operating data to dedicated servers in the
cloud, which evaluate the data according to the predictive
models, and send back the results.

With the development and adoption of the Predictive
Model Markup Language (PMML), it is now much easier to
train and evaluate predictive models on separate computers.
PMML is an XML-based language that enables the definition
and sharing of predictive models between applications [5]. It
provides a clean and standardized interface between the
software tools that produce predictive models, such as
statistical or data mining systems, and the consumers of
models, such as applications that depend upon embedded
analytics [6]. With PMML it is easy to train a model with a
statistical package such as R, and save the model in a
standardized format for use in a real engineering application.

For deployment, predictive models are normally
evaluated by a scoring engine. A scoring engine is a piece of
software specifically designed to load a model in a
standardized format, and use it to evaluate new observations
or data points. Scoring engines are responsible for executing
the mathematical operations that transform model inputs into
model outputs. To promote interoperability, scoring engines
are normally written in languages such as Python or Java [7],
which are supported by most embedded systems and
computing environments. Therefore, it is feasible to run the
same scoring engine on a development computer, a cloud
server, or an embedded device, without modifying the
scoring engine code. The development of standards-
compliant scoring engines allows PMML models to be
reliably evaluated on a range of devices.

In a smart manufacturing setting, the throughput and
response time of the scoring engine can be critical to the
performance of the manufacturing process. One way to meet
the computational requirements of modern predictive models
is to install the scoring engine on a managed cloud platform

2015

like the Google Compute Engine [8]. In this scenario, the
scoring engine is transferred to the cloud system along with
the relevant PMML model files. A network connection is
established between the manufacturing machine and the
cloud server. Data from the manufacturing machine is
streamed to the cloud server, and passed to the scoring
engine. The scoring engine evaluates the data and sends the
relevant information back to the manufacturing machine. The
advantage of this method is that cloud computing services
provide scalable memory and compute power, which
facilitate real-time evaluation of complex machine learning
models. However, the network connection between the
manufacturing machine and the cloud server adds latency to
the prediction process.

An alternative solution is to install the scoring engine on
an embedded device located near or within the manufacturing
machine. With this solution the scoring engine is installed on
the embedded device and the model is transferred using the
PMML format. Data from the manufacturing process is sent
to the scoring engine across a local area network (LAN)
connection. The scoring engine evaluates the data and sends
the relevant information back to the manufacturing machine.
The advantage of this solution is that the network latency
between the manufacturing machine and the scoring engine
is minimized. However, the effectiveness of this approach
relies heavily on the capability of the embedded system.
There is uncertainty whether an embedded system can
provide sufficient memory and computational power to
evaluate a predictive model in real-time.

In this work we examine the tradeoffs of deploying a GPR
predictive model on a microcomputer board and on a cloud
platform. We develop a PMML-based scoring engine for the
evaluation of Gaussian Process Regression (GPR) models.
We then install the scoring engine on a Raspberry Pi
microcomputer and a virtual server on the Google Compute
Engine. The performance of the scoring engine is evaluated
using two examples, namely an energy consumption model
and tool condition model, that are drawn from automated
manufacturing. The paper is concluded with a brief summary
and discussion for future work.

II. GAUSSIAN PROCESS REGRESSION

Recently, a range of predictive modelling techniques have
been proposed for use within automated manufacturing. We
choose to focus on Gaussian Process Regression (GPR), as
we have demonstrated how this technique can be applied to
manufacturing problems [9, 10]. In this section, we briefly
introduce the basic procedure for constructing a GPR model.
We then discuss how a trained Gaussian Process (GP) model
can be used to evaluate (score) new unseen data points.

A. Gaussian Process Regression (GPR) Modeling

GPR is a supervised machine-learning method that
performs particularly well with noisy data [11]. The aim is to
approximate an unknown target function = () in a
probabilistic manner. In general, we denote the inputs as ∈ and the target value as ∈ . The function values : = (,… ,) corresponding to the input : = (,… ,) are treated as random variables, where ≔ ().

GPR uses GP as a prior to describe the distribution on the
target function (). A GP is a generalization of the Gaussian
probability distribution for which any finite linear
combination of samples has a joint Gaussian distribution. As
the GP is a multivariate Gaussian distribution over the
function (⋅), it can be fully specified by its mean function (⋅) and covariance function (⋅,⋅).	 (:) = ((⋅), (⋅,⋅)) (1)

In a GP, (⋅) and (⋅,⋅) are not constant parameters but
functions incorporating prior knowledge about the target
function [11]. The mean function (⋅) captures the overall
trend in the target function value. The kernel function (⋅,⋅),
is used to approximate the covariance between the two
function values and .

In GPR, the type of kernel function chosen can strongly
affect the representability of the GPR model, and influence
the accuracy of the predictions. One widely used kernel
function is the Automatic Relevance Determination (ARD)
squared exponential covariance function: , = exp −12 − diag() − (2)

An ARD kernel provides the flexibility to adjust the
relevance (weight) of each parameter in the feature vector. In
the ARD squared exponential kernel, the parameter vector = (,… ,… ,) quantifies the relevancy of the input
features in = ,… ,… , , where m denotes the
number of input variables, for predicting the response . The
parameter is generally referred to as the signal variance,
and quantifies the overall magnitude of the covariance value.

It is assumed that the observed value is measured with
some random Gaussian noise , such that = () + .
It is common to assume that the noise term is independent
and identically distributed Gaussian 	~	 (0,), in which
case the noise variance , quantifies the amount of noise
that is assumed to exist in the response. In short, the GPR
model can be fully parameterized by the hyperparameters = (, ,) for the case that the ARD squared
exponential kernel is employed.

2016

B. Training Procedure

The GPR training procedure involves selecting a set of
hyperparameters so as to maximize the marginal likelihood
of the training data. The marginal distribution of the
observations can be expressed as: (: |) = (: | : ,) (: |)	 : (3)

The unknown function can be marginalized out of (3)
to obtain the marginal likelihood of the training observations.
An optimization equation is then formed to maximize the
marginal likelihood, and obtain the optimum
hyperparameters ∗ [11]: ∗ = arg	max

θ
log (: |) (4)

 				= 	 arg	max − (:) (+) : 																															− 12 log + 2 − n2 log2 	
(5)

where K is the covariance matrix whose (,)th entry is given
by 	= 	 (,).
The process for obtaining the optimum hyperparameters is
well documented in the literature [11]. In this work, the
MATLAB GPML library [12] is used to optimize the
hyperparameters.

C. Scoring a Gaussian Process Regression Model

Suppose a new data point, denoted as , is observed.
The task at hand is to predict the posterior distribution on the
response for the newly observed input . In the case
where the mean function is zero, the (hidden) response value

and the observed outputs : = { , … , } are given
as: : ~ , (+) (,) (6)

where 	= 	 (,), . . . , (,) .

Suppose the training dataset is denoted as = {(,) = 1,… , }. The posterior distribution on the
response for the newly observed input given the
historical data can then be expressed as a Gaussian
distribution: ~ (|), 	 (|) (7)

As the posterior distribution is 1D Gaussian, the posterior
mean (|), and the associated variance (or standard
deviation) 	 (|) , are sufficient to fully describe the
posterior distribution. That is, the posterior distribution can
be calculated directly [11]: 	 (|) = (+) : (8)

	 (|) = (,) − (+) (9)

The scoring procedure for the GPR model thus involves the
operations as depicted in (8) and (9).

III. TEST CASES FOR GPR MODELS

In this section we describe the two cases that were used to
test the use of GPR for the development of predictive models.
For both cases, the models are trained using the data recorded
on a milling machine. We first introduce an energy
consumption model built to predict the energy usage of a
Mori Seiki NVD1500DCG milling machine, based on
features extracted from the NC machining operations and
power data. We then describe the tool condition model built
to predict the condition of the milling machine tool, based on
acceleration and acoustic features.

A. GPR Energy Consumption Model

Over 22% of energy and 30% of electricity in the United
States is consumed by the industrial sector. While the
efficiency of the US manufacturing sector continues to
increase due to improved manufacturing tools and processes,
the industrial sector remains a major energy consumer in the
US [13]. Advances in sensor technology and data processing
now allow continuous measurements of the operating
parameters and energy consumption of manufacturing
machines. With modern machine learning techniques, it is
possible to further optimize manufacturing techniques to
reduce energy consumption.

1) Data Collection and Processing

The first step when constructing an accurate predictive
model for a manufacturing device is to collect and process the
data from that device. For the milling machine, a systematic
approach has been developed to extract the features necessary
for constructing the energy prediction model [14]. The energy
consumption of the machine was measured under a range of
different operating conditions. The machining data, such as
the process parameters and the tool position, was recorded
from the FANUC controller. The power time series data was
collected using a High Speed Power Meter (HSPM). The
machine parameters and power consumption times series
were synchronized using a MTConnect agent [14].

2) Feature identification and energy consumption model

A GPR model is developed to predict the energy
consumption of the milling machine based on the machine
parameters. The raw MTConnect data is parsed to extract
useful parameters for the model. In particular, the average
feed rate, average spindle speed, cut strategy and direction,
and cut length and depth are extracted from the MTConnect
data. The energy consumption ∈ ℝ is obtained by
numerically integrating the power time series over the
duration of each cut.

In this work we restrict the model to face-milling
operations, but the same technique has been shown to be
applicable to other milling operations [9, 10]. The input
features for the model are defined as follows:

2017

• Feed rate, ∈ ℝ: the average velocity at which the
tool is fed material

• Spindle speed, ∈ ℝ: rotational speed of the tool
• Depth of cut, ∈ ℝ: depth of material that the tool

is removing
• Active cutting direction, ∈ 	 {1, 2, 3, 4}: 1 is for -

axis, 2 for y-axis, 3 for z-axis, and 4 for - axes
• Cutting strategy, ∈ {1, 2, 3}: The method for

removing material, which controls the relationship
between the rotation direction and the feed direction.
1 is for conventional, 2 for climb, and 3 for both
conventional and climb milling

For the predictive model, we choose to use all of the
measured input features and denote the input feature vector, = { ,… , }. We define a new parameter as the energy
consumption per unit length, such that: = /	 	 (10)

where 	is the energy consumption for cut with length .
To construct the GPR model, we assume that the output = () + is measured with noise 	~	 (0,). We

choose the ARD squared exponential function for the
covariance kernel function and assume the mean function to
be a zero function.

Each new prediction 	is represented by a mean energy
density function (|)	 and associated standard
deviation function (). The estimated energy
consumption and the corresponding standard deviation
can then be calculated as: = () × (11) = 	 () × (12)

The GPR model is trained using the procedure described
in Section II. A number of experiments were carried out to
obtain enough data to develop a comprehensive energy
prediction model [9, 10]. Test parts were manufactured with
the milling machine, using a range of different operating
parameters. In total, 18 parts were machined to provide
operational data for 196 face-milling operations. Figure 1
shows the predicted energy consumption as a function of the
feed rate, along with some recorded observations. It can be
seen that the trained GPR model predicts quite accurately the
energy consumption for the face milling operations.

B. Recursive GPR Tool Condition Model

Reliable tool-condition monitoring can provide a number
of benefits for the manufacturing industry, such as improved
product quality and the prevention of tool breakage.
Researchers have previously demonstrated that the condition
of the machine tool can be inferred from features of the
vibration and audio time series [15, 16]. A number of
researchers have attempted to use the skew and kurtosis
coefficients of the audio and acceleration time-series to

predict the condition of the tool, with mixed results [17, 18].
In this case study, we develop a GPR model to predict the
condition of a CNC milling machine tool.

1) DATA COLLECTION AND PROCESSING

The Mori Seiki milling machine was programmed to
produce a number of simple parts by removing material from
a solid steel block. Each part consisted of 18 separate cutting
actions performed by the milling machine. The machine was
instructed to produce parts until the cutting tool became
severely damaged.

For the experiments, the operating parameters of the
machine were adjusted to artificially increase the rate of tool-
wear. In a normal manufacturing environment, cutting tools
generally last several days. To expedite the data collection
process in the experiments, the operating lifetime of the
cutting tool was reduced to about 30 minutes by increasing
the feed rate and reducing the rotational speed.

A sensor from Infinite Uptime was used to measure the
audio and acceleration signals inside the milling machine
while the machine was operational. The acceleration
(vibration) signals were recorded for each cut for all three
(x-, y- and z-) directions. The acceleration signal was
recorded at 1000 Hz while the audio signal was recorded at
8000 Hz. Welch’s method [19] is used with a Hann window
to estimate the periodogram for each time series signal.
Welches method provides an estimation of the periodogram
at equally spaced points , in the frequency domain.

The condition of the milling machine, denoted by ∈ [0,1], is defined based on the remaining lifetime of the
tool, as estimated after manually examining the tool with a
microscope. The scale is defined such that 100% indicates a
new tool in perfect condition, and 50% indicates the
condition at which the tool would be replaced in a
commercial manufacturing setting. Figure 2 illustrates four
different states of the tool.

Hereafter, we use the symbols () and () to

denote, respectively, the acoustic periodogram and the

Figure 1. Predicted energy consumption density for generic test
parts machined using face milling with y-direction cut, 2,400 RPM
spindle speed, conventional cutting strategy, and 1mm cut depth. The
shaded area shows one-standard deviation bounds for the prediction.

2018

acceleration periodogram measured during cut . The
subscript ∈ {0,1,2} indicates the x-, y- and z-, directions.
Figure 3 and Figure 4 show how the acceleration and acoustic
periodograms are influenced by the condition of the tool.

Figure 2. Tool flute in different states of condition. The top-left image

shows a new tool with = 1 , the top-right image shows the tool at 	 = 0.7, the bottom-left image shows the tool at = 0.5 and bottom-right
image shows the tool at = 0.3.

Figure 3. Periodogram computed using the recorded acceleration signal

from a sharp tool, and that from a worn tool, for a single cutting operation.

Figure 4. Periodogram computed using the recorded acoustic signal

from a sharp tool, and that from a worn tool, for a single cutting operation.

2) Featurization and tool condition monitoring model

One important step for constructing a predictive model is
to identify the relevant features that, in this case, are
correlated with the condition of the milling machine tool. In
this study, we identify a set of 5 features, 	= { , … } for the tool condition monitoring model.
The first four features, , , and ,	are derived from the
acceleration and acoustic periodograms, while the fifth
feature represents the condition of the tool at the previous
time step.

In each experiment, a periodogram is calculated for the
first three cuts, and subsequently referred to as the reference
periodogram. The reference periodogram represents the
acceleration and acoustic frequency content produced by a
sharp tool. We use the symbol () to represent the
reference acoustic periodogram and () to represent the

reference acceleration periodogram. The subscript ∈ {0,1,2} is used to indicate the direction of the measured
acceleration signal.

For each cut i, two input features are defined as the
increase in signal power with respect to the reference cut:

= () − ()	 (13)

= () − ()			 (14)

where is a feature describing the increase in acoustic signal
power and is a feature describing the increase in
acceleration signal power.

Two additional features are defined as the maximum
distance between the measured and the reference
periodograms: = max[,] () − ()	 (15) = max, [,] () − ()	 (16)

where is a feature describing the maximum increase in
acoustic signal power and is a feature describing the
maximum increase in vibration signal power.

There is a strong correlation between the tool condition of
two sequential cuts. An additional feature , is defined as
the tool condition during the previous cut. During the training
process the feature , is defined as follows:

() = 1 	 	 = 0									ℎ 								 (17)

In a real manufacturing setting, the previous tool
condition will not be available when making real-time
predictions. Thus, for the testing process, the previous

2019

prediction , is used in place of the previous tool
condition	 :

	() = 	1												 	 = 0																				 ℎ 													 (18)

3) Training and testing

The milling machine was used to produce a total of 52
parts using 14 tools. Each tool was used to manufacture parts
until it became heavily worn or broken. The tool condition
was manually labeled after each part was produced. Linear
interpolation was used to estimate the tool condition for
each cut. The data set was divided into a training set with data
from 11 tools and a testing set with data from 3 tools. The
training set contained 738 individual cuts and the testing set
contained 216 individual cuts.

To construct the GPR model, we assume that the output = () + is measured with noise 	~	 (0,) . We
choose the ARD squared exponential function for the
covariance kernel function and assume the mean function to
be a zero function. The MATLAB GPML library is used to
optimize the model hyperparameters, as described in
Section II.

The model is used to predict the condition of the tool for
entire testing data set. Predictions are made in the order that
the testing set data was recorded. The predicted tool condition
for the testing set is shown in Figure 5. The tool condition
prediction is plotted against manually labelled observations.
The shaded area shows one-standard deviation bounds for the
prediction. It can be observed that the trained model predicts
the tool conditions comparable to the human labelled results,
particularly for tool conditions above the 50%. Under normal
circumstances, a tool would have been replaced with less than
30% wearing (i.e. around 70% tool condition).

IV. PMML SCORING ENGINE FOR GPR MODELS

To use a predictive model in a real manufacturing setting,
a computer program must be designed to evaluate (score) new
data points as they are observed. This type of software is
commonly referred to as a scoring engine. A scoring engine
is primarily responsible for executing the mathematical
operations required to transform a new observation to a
prediction. However, it must also be able to communicate
with other devices in order to receive new observations, and
send the corresponding results. A possible network
architecture for a smart factory with a single scoring engine
is shown in Figure 6. It can be seen that the scoring engine
plays a critical role in the operation of the smart factory.

The scoring engine must either contain the optimized
model parameters, or be capable of loading the model
parameters from another source. The scoring engine
described in this work was designed to load the model

Figure 6. Network diagram showing the role of a PMML scoring machine in a smart factory. The arrows represent the flow of data over a

network connection (either a local network or the Internet). While the training and monitoring process is iterative, the numbers indicate the
timeline of data flow.

Figure 5. Tool condition prediction against manually labelled
observations for the testing set, where the tool was replaced twice. The
shaded area shows one-standard deviation bounds for the prediction.

2020

parameters and training data from a PMML file. Specifically,
we employ a PMML standard representation of the GPR
model [20] to transfer the trained model to the scoring engine.
The full architecture of the scoring engine is shown in
Figure 7. The standardized nature of the PMML format
ensures that the scoring engine can be used to load any valid
GPR PMML model, without any changes in the scoring
engine code.

It can be seen that the scoring engine consists of three
main components, a PMML parser to extract the GPR model,
a GPR scoring algorithm to generate predictions and a
webserver to communicate with other devices.

In this section, we describe how each component of the
scoring engine was built. We start by describing how a parser
was written to load the GPR model parameters from a PMML
file. We then describe the GPR scoring algorithm that was
used to compute the posterior distribution for each new
observation. Lastly, we describe how the scoring engine
connected to other devices using a simple Python webserver.

A. PMML Parser

Before performing any mathematical operations, the
scoring engine must load the GPR model parameters from a
PMML file. A PMML file is a text file that describes a
machine learning model, using a standardized XML-based
language. As the PMML format is based on XML, any
compliant XML parser can be used to extract information
from the PMML file.

The XML parser from the Python lxml library [21] was
used as the PMML parser for the scoring engine. Based on
the standard PMML representation of the GPR model [20],
the parser was used to extract the relevant parameters and
training data from the PMML file and store them in the
computer memory.

B. GPR Scoring Algorithm

The GPR scoring algorithm is designed to calculate the
posterior distribution on the response corresponding to
the new observation . As shown in (7), the posterior
distribution can be fully described by the posterior mean (|), and the variance 	 (|) . The scoring

algorithm thus involves computing the posterior mean and
variance given in (8) and (9). Therefore, the scoring
procedure requires computing the inverse of the × matrix + , where n is the number of training data points. For
models with a large number of training points, computing the
inverse of + can be computationally demanding.

As the kernel matrix K is real and symmetric positive
semidefinite, Cholesky factorization can be used in lieu of
computing the inverse. In particular, there exists a matrix L
such that: = (+) (19)

We define two new vectors and 	such that: = :

(20) and = (21)

The posterior mean and variance can then be calculated,
respectively, as: (|) = (22)

 (|) = (,) − (23)

The kernel matrix K depends only on the training data; it does
not change between predictions. Thus, the Cholesky
decomposition of (+) only needs to be performed
once. To reduce computational demand, the Cholesky
decomposition is performed immediately after the training
data is loaded from the PMML model file.

The GPR scoring algorithm is written using the Python
numerical computing library NumPy [22], and is similar to
the algorithm used by the machine learning library, Scikit-
learn [23]. The NumPy library uses LAPACK [24] to
perform the linear algebra calculations efficiently.

C. Network Webserver

In a manufacturing environment, the scoring engine must
be able to communicate with the manufacturing devices. A
network connection is established between the scoring engine
and each manufacturing device, allowing the device to send

Figure 7. Architecture of the PMML scoring engine developed as part of this work.

2021

new data observations to the scoring engine. This can be
facilitated by either a Local Area Network (LAN) or an
Internet connection.

The Python webserver Tornado [25], is used to connect
the scoring engine to the local network. New data
observations are sent to the scoring engine in the JSON
format via the HTTP protocol. The scoring engine computes
the relevant scores and returns them with the HTTP response.
Figure 8 provides an example of the JSON-encoded data that
is transferred over the network.

V. SCORING ENGINE PERFORMANCE

The performance of the scoring engine is critical to its
value in a real manufacturing application. We choose to
quantify the performance in terms of the scoring engine
response time and request throughput. The scoring engine
must be able to make fast predictions (response time) at a
high rate (throughput), while maintaining very high accuracy.

In this section, we describe how the performance of the
scoring engine is evaluated. We start by describing how the
scoring engine is installed on a Raspberry Pi microcomputer,
which represents the type of computing environment that
could be embedded in a manufacturing device. We then
install the scoring engine on a virtual server on the Google
Compute Engine for comparison. Lastly, we comment on the
performance of the two scoring engines.

A. PMML Scoring Engine on Raspberry Pi

Numerous authors have discussed how predictive models
can be evaluated on an embedded system or programmable
microcontroller. In this scenario, the scoring engine is
installed on computing hardware which is embedded within,
or attached to the manufacturing device.

Due to space and cost restrictions the compute power and
memory capacity of the microcontroller is often restricted. To
simulate this scenario we installed the PMML scoring engine
on a Raspberry Pi 3 Microcomputer [26] running the Ubuntu
16.04 operating system. The Raspberry Pi microcomputer
has a 1.2GHz quad core central processing unit (CPU) and
1GB random access memory (RAM). A desktop computer is
connected to the microcomputer board via a Wireless Local
Area Network (WLAN) connection, to simulate the data
stream produced by a manufacturing machine. An additional
heat sink was fitted to the CPU to prevent it from overheating,
as shown in Figure 9.

Figure 8. New observation encoded in the JSON format (left) and
resulting prediction also encoded in the JSON format (right). Both the
observation and the prediction are encoded and sent over the network in this
format.

B. PMML Scoring Engine on Google Compute Engine

Cloud infrastructure services, such as the Google
Compute Engine, provide significant amount of compute
power for a relatively low cost. These services provide virtual
machines for a fixed hourly cost. Virtual machines allow
multiple users to share the computing resources within a data
center, while ensuring that resources are shared securely.

The PMML scoring engine was installed on a Google
Compute Engine virtual machine. The virtual machine was
assigned two virtual processors (vCPUs) and 1.8 GB of
RAM. A desktop computer was connected to the virtual
machine over the Internet, and used to simulate the data
stream produced by a manufacturing machine.

C. Scoring Engine Accuracy and Performance Tests

The performance of the scoring engine is evaluated by
load testing it with real manufacturing data. In a load test,
new observations are sent to the scoring engine at a
predefined rate. The new observations are sent from a
desktop computer referred to as the client. The client
represents an operational manufacturing device, in a real
manufacturing setting.

The rate of new observations is referred to as the
throughput. The amount of time required for the scoring
engine to compute a response is measured, averaged, and
subsequently referred to as the response time. We define the
response time as the total time taken to generate a prediction,
from the point in time when the client starts sending the
observation to the point when the prediction response is fully
returned to the client.

The throughput is gradually increased at regular intervals,
until the scoring engine is unable to respond in a reasonable
amount of time. In this work, the throughput is increased at
60 second intervals. The initial throughput is chosen based on
the complexity of the model.

The performance of scoring engine was measured on both
the microcomputer and cloud-based platforms. Figure 10
demonstrates the prediction response time obtained from the
energy consumption prediction model. Figure 11
demonstrates the response time for predictions made with the
tool condition model.

Figure 9. Raspberry Pi 3 Microcomputer running Python GPR scoring

engine on Ubuntu 16.04. An additional heat sink (blue) was fitted to the CPU
to allow it to operate at maximum capacity for a long duration of time.

2022

Figure 10. Response time of both scoring engines with the energy

consumption model, including network latency.

Figure 11. Response time of both scoring engines with the tool

condition model, including network latency.

It can be seen that the performance of the scoring machine
on the cloud server greatly exceeds that of the scoring engine
on the microcomputer, with respect to both response time and
throughput capacity. In both manufacturing examples, the
time required to perform the linear algebra operations for the
scoring process was non-trivial. The experimental results
demonstrate that the response time and throughput capacity
of a GPR scoring engine on a microcomputer board can be
severely limited by the computational power of the device.

The response time remains reasonably constant as
throughput increases, until the point where the computational
demand of evaluating the model exceeds the computational
capacity of the scoring engine hardware, as shown in Figure
10 and Figure 11. In all four cases the response time
dramatically increases when the request throughput exceeds
the capacity of the scoring engine.

VI. DISCUSSION

In this work we demonstrated the performance of a GPR
PMML scoring engine when installed on a Raspberry Pi
microprocessor and a managed cloud service. The aim was to
investigate the advantages and limitations of each strategy,
using two examples derived from real manufacturing
problems.

Purpose-built scoring engines will become increasingly
important in the smart manufacturing industry, especially as
internet-connected manufacturing machines become more
mainstream. The response time and throughput capacity of
these scoring engines are critical to the adoption of predictive
modeling in smart manufacturing. For many real-time
applications, the response time of the scoring machine must
be sufficiently low to avoid manufacturing devices becoming
idle whilst waiting for feedback from the scoring engine.

Both cloud-based and embedded scoring engines have
their own advantages and limitations. Firstly, if a hardware
failure occurs on the cloud-based system the scoring engine
can be copied to another virtual machine quickly and easily.
In contrast, if a hardware failure occurs on an embedded
scoring engine, the faulty hardware must be manually
replaced.

An embedded microcomputer scoring engine will excel
when network reliability is considered important. Embedded
scoring engines do not rely on wireless communication
protocols such as Wi-Fi or Bluetooth, so they are less prone
to network issues.

Whilst the cloud-based scoring engine outperformed the
microcomputer in this study, the minimum response time of
a cloud-based scoring engine will always be limited by
network latency. The average response time of a cloud-based
scoring engine will never be lower than the average round-
trip network latency between the manufacturing machine and
the virtual server.

Large manufacturing operations will likely need to
evaluate predictive models at much higher rates than
demonstrated in this work. One way to increase the prediction
rate is to run multiple PMML scoring engines in parallel.
Future studies could investigate how virtual machines in the
cloud could be used in parallel to achieve the high throughput
required for a modern predictive-model driven
manufacturing plant.

The GPR scoring algorithm is computationally
demanding for datasets with a large number of training data
points. A more efficient algorithm such as Sparse Gaussian
Process Regression could provide faster predictions with a
similar prediction accuracy [27].

In conclusion, the development of standards-compliant
scoring engines is critical to the widespread adoption of
predictive models for smart manufacturing. The throughput
capacity and response time of such scoring engines is
dependent on a number of factors, including the deployment
strategy and the complexity of the predictive model.

ACKNOWLEDGMENT

The authors acknowledge the support by the Smart
Manufacturing Systems Design and Analysis Program at the
National Institute of Standards and Technology (NIST),
Grant Numbers 70NANB12H225 and 70NANB12H273
awarded to University of California, Berkeley, and to
Stanford University respectively. In addition, the authors
appreciate the support of the Machine Tool Technologies

2023

Research Foundation (MTTRF), System Insights and Infinite
Uptime for the equipment used in this research. Last but not
least, the authors would like to acknowledge the valuable
contributions by the late Prof. David Dornfeld of UC
Berkeley and his support and collaboration on this research.

DISCLAIMER

Certain commercial systems are identified in this paper.
Such identification does not imply recommendation or
endorsement by NIST; nor does it imply that the products
identified are necessarily the best available for the purpose.
Further, any opinions, findings, conclusions, or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of NIST or
any other supporting U.S. government or corporate
organizations.

REFERENCES

[1] S. Wang, J. Wan, D. Li and C. Zhang, “Implementing smart
factory of industrie 4.0: an outlook,” Int. J. Distrib. Sens.
Netw., vol. 2016, p. 7, 2016.

[2] J. Davis et al., “Smart Manufacturing,” Annu. Rev. Chem.
Biomol. Eng., vol. 6, pp. 141–160, 2015.

[3] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola and
J. M. Hellerstein, “Distributed GraphLab: a framework for
machine learning and data mining in the cloud,” Proc. VLDB
Endow., vol. 5, no. 8, pp. 716–727, 2012.

[4] J. Dean et al., “Large Scale Distributed Deep Networks,” in
Advances in Neural Information Processing Systems 25, F.
Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
Eds. Curran Associates, Inc., 2012, pp. 1223–1231.

[5] A. Guazzelli, M. Zeller, W.-C. Lin and G. Williams, “PMML:
An open standard for sharing models,” R Journal, vol. 1, no.
1, pp. 60–65, 2009.

[6] D. Gorea, “Dynamically integrating knowledge in
applications. an online scoring engine architecture,”
Proceedings of the International Conference on
Development and Application Systems, 9th Edition, Suceava
Romania, 2008, vol. 3.

[7] J. Chaves, C. Curry, R. L. Grossman, D. Locke and S. Vejcik,
“Augustus: the design and architecture of a PMML-based
scoring engine,” Proceedings of the 4th international
workshop on Data mining standards, services and platforms,
2006, pp. 38–46.

[8] S. Krishnan and J. L. U. Gonzalez, “Google compute engine,”
in Building Your Next Big Thing with Google Cloud
Platform, Springer, 2015, pp. 53–81.

[9] J. Park et al., “A generalized data-driven energy prediction
model with uncertainty for a milling machine tool using
Gaussian Process,” ASME 2015 International Manufacturing
Science and Engineering Conference, 2015, pp.
V002T05A010–V002T05A010.

[10] R. Bhinge et al., “An intelligent machine monitoring system
for energy prediction using a Gaussian Process regression,”

2014 IEEE International Conference on Big Data, 2014, pp.
978–986.

[11] C. E. Rasmussen and C.K. I. Williams, Gaussian processes for
machine learning, MIT Press, 2006.

[12] “Documentation for GPML Matlab Code.” [Online].
Available:
http://www.gaussianprocess.org/gpml/code/matlab/doc/.
[Accessed: 18-Aug-2016].

[13] U.S. Energy Information Administration, U.S. EIA Monthly
Energy Review, May-2016.

[14] M. Helu, S. Robinson, R. Bhinge, T. Bänziger and D.
Dornfeld, “Development of a machine tool platform to
support data mining and statistical modeling of machining
processes,” Proc MTTRF 2014 Annual Meeting, San
Francisco, CA, 2014.

[15] E. Kannatey-Asibu and D. A. Dornfeld, “A study of tool wear
using statistical analysis of metal-cutting acoustic emission,”
Wear, vol. 76, no. 2, pp. 247 – 261, 1982.

[16] R. Silva, R. Reuben, K. Baker and S. Wilcox, “Tool wear
monitoring of turning operations by neural network and
expert system classification of a feature set generated from
multiple sensors,” Mech. Syst. Signal Process., vol. 12, no. 2,
pp. 319–332, 1998.

[17] A. Diniz, J. Liu and D. Dornfeld, “Correlating tool life, tool
wear and surface roughness by monitoring acoustic emission
in finish turning,” Wear, vol. 152, no. 2, pp. 395–407, 1992.

[18] D. E. Dimla, “Sensor signals for tool-wear monitoring in metal
cutting operations—a review of methods,” Int. J. Mach.
Tools Manuf., vol. 40, no. 8, pp. 1073–1098, 2000.

[19] P. Welch, “The use of fast Fourier transform for the estimation
of power spectra: A method based on time averaging over
short, modified periodograms,” IEEE Trans. Audio
Electroacoustics, vol. 15, no. 2, pp. 70–73, Jun. 1967.

[20] Data Mining Group, “PMML 4.3 - General Structure.”
[Online]. Available:

 http://dmg.org/pmml/v4-3/GeneralStructure.html.
[21] lxml - XML and HTML with Python. [Online]. Available:

http://lxml.de. [Accessed: 28-October-2016].
 [22] S. Van Der Walt, S. C. Colbert, and G. Varoquaux, “The

NumPy array: a structure for efficient numerical
computation,” Comput. Sci. Eng., vol. 13, no. 2, pp. 22–30,
2011.

[23] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,”
J. Mach. Learn. Res., vol. 12, no. Oct, pp. 2825–2830, 2011.

[24] E. Anderson et al., LAPACK Users’ Guide, Third.
Philadelphia, PA: Society for Industrial and Applied
Mathematics, 1999.

[25] M. Dory, A. Parrish, and B. Berg, Introduction to Tornado.
O’Reilly Media, Inc., 2012.

[26] E. Upton and G. Halfacree, Raspberry Pi User Guide, 3rd
Edition, Wiley, 2014.

[27] N. Lawrence, M. Seeger, and R. Herbrich, “Fast sparse
Gaussian Process methods: The informative vector
machine,” Proceedings of the 16th Annual Conference on
Neural Information Processing Systems, Vancouver, BC,
2003, pp. 609–616.

