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Abstract— The use of data-driven predictive models is becoming 
increasingly popular in engineering and manufacturing sectors. 
This paper discusses the deployment of Gaussian Process 
Regression (GPR) predictive models for smart manufacturing. 
A scoring engine is developed based on the Predictive Model 
Markup Language (PMML) standard to illustrate the 
portability of predictive models among different statistical tools 
and different platforms. Specifically, we evaluate the tradeoffs 
between embedding GPR-based predictive models on a physical 
device and executing the predictive models on a managed cloud 
platform like the Google Compute Engine.  We compare the 
performance of the two deployment strategies with two 
predictive models, namely an energy consumption model and a 
milling tool condition model, that are built with data from a 
Mori Seiki CNC milling machine. We describe how the response 
time of the two deployment strategies is related to the network 
latency and computational speed of the scoring machine 
hardware. It is shown that the time required to calculate model 
predictions is a significant factor in the overall response time of 
the embedded scoring engine. We demonstrate that the scoring 
engine on the cloud platform can achieve a lower response time 
and higher prediction rate than the microcomputer, due to the 
superior computational performance of the cloud-based 
hardware. 

Keywords— scoring engine; predictive model markup 
language; energy prediction model; milling machine.  

I. INTRODUCTION  

The rise of the Industrial Internet will inevitably be 
accompanied by an increased usage of machine learning 
algorithms for the monitoring and control of manufacturing 
machines [1]. Modern factories will utilize predictive models 
for a range of tasks, from identifying manufacturing defects 
to optimizing chemical processes [2]. The predictive models 
may be evaluated on embedded circuits located within the 
manufacturing machines. However, modern predictive 
models are increasingly demanding, both in terms of 
computational and storage requirements, to train and to 
evaluate [3, 4]. While using dedicated hardware to evaluate 

the predictive models is desirable for certain applications, an 
alternative approach is to evaluate the predictive models on a 
managed cloud platform. In this scenario, manufacturing 
machines send operating data to dedicated servers in the 
cloud, which evaluate the data according to the predictive 
models, and send back the results. 

With the development and adoption of the Predictive 
Model Markup Language (PMML), it is now much easier to 
train and evaluate predictive models on separate computers. 
PMML is an XML-based language that enables the definition 
and sharing of predictive models between applications [5]. It 
provides a clean and standardized interface between the 
software tools that produce predictive models, such as 
statistical or data mining systems, and the consumers of 
models, such as applications that depend upon embedded 
analytics [6]. With PMML it is easy to train a model with a 
statistical package such as R, and save the model in a 
standardized format for use in a real engineering application.   

For deployment, predictive models are normally 
evaluated by a scoring engine. A scoring engine is a piece of 
software specifically designed to load a model in a 
standardized format, and use it to evaluate new observations 
or data points. Scoring engines are responsible for executing 
the mathematical operations that transform model inputs into 
model outputs. To promote interoperability, scoring engines 
are normally written in languages such as Python or Java [7], 
which are supported by most embedded systems and 
computing environments.  Therefore, it is feasible to run the 
same scoring engine on a development computer, a cloud 
server, or an embedded device, without modifying the 
scoring engine code. The development of standards-
compliant scoring engines allows PMML models to be 
reliably evaluated on a range of devices. 

In a smart manufacturing setting, the throughput and 
response time of the scoring engine can be critical to the 
performance of the manufacturing process. One way to meet 
the computational requirements of modern predictive models 
is to install the scoring engine on a managed cloud platform 
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like the Google Compute Engine [8]. In this scenario, the 
scoring engine is transferred to the cloud system along with 
the relevant PMML model files. A network connection is 
established between the manufacturing machine and the 
cloud server. Data from the manufacturing machine is 
streamed to the cloud server, and passed to the scoring 
engine. The scoring engine evaluates the data and sends the 
relevant information back to the manufacturing machine. The 
advantage of this method is that cloud computing services 
provide scalable memory and compute power, which 
facilitate real-time evaluation of complex machine learning 
models. However, the network connection between the 
manufacturing machine and the cloud server adds latency to 
the prediction process.  

An alternative solution is to install the scoring engine on 
an embedded device located near or within the manufacturing 
machine. With this solution the scoring engine is installed on 
the embedded device and the model is transferred using the 
PMML format. Data from the manufacturing process is sent 
to the scoring engine across a local area network (LAN) 
connection. The scoring engine evaluates the data and sends 
the relevant information back to the manufacturing machine. 
The advantage of this solution is that the network latency 
between the manufacturing machine and the scoring engine 
is minimized. However, the effectiveness of this approach 
relies heavily on the capability of the embedded system. 
There is uncertainty whether an embedded system can 
provide sufficient memory and computational power to 
evaluate a predictive model in real-time. 

In this work we examine the tradeoffs of deploying a GPR 
predictive model on a microcomputer board and on a cloud 
platform.  We develop a PMML-based scoring engine for the 
evaluation of Gaussian Process Regression (GPR) models. 
We then install the scoring engine on a Raspberry Pi 
microcomputer and a virtual server on the Google Compute 
Engine. The performance of the scoring engine is evaluated 
using two examples, namely an energy consumption model 
and tool condition model, that are drawn from automated 
manufacturing. The paper is concluded with a brief summary 
and discussion for future work. 

II. GAUSSIAN PROCESS REGRESSION 

Recently, a range of predictive modelling techniques have 
been proposed for use within automated manufacturing. We 
choose to focus on Gaussian Process Regression (GPR), as 
we have demonstrated how this technique can be applied to 
manufacturing problems [9, 10]. In this section, we briefly 
introduce the basic procedure for constructing a GPR model. 
We then discuss how a trained Gaussian Process (GP) model 
can be used to evaluate (score) new unseen data points.  

 
 
 

A. Gaussian Process Regression (GPR) Modeling 

GPR is a supervised machine-learning method that 
performs particularly well with noisy data [11]. The aim is to 
approximate an unknown target function = ( )  in a 
probabilistic manner. In general, we denote the inputs as ∈  and the target value as ∈ . The function values  : = ( ,… , )  corresponding to the input : = ( ,… , )  are treated as random variables, where ≔ ( ). 

GPR uses GP as a prior to describe the distribution on the 
target function ( ). A GP is a generalization of the Gaussian 
probability distribution  for which any finite linear 
combination of samples has a joint Gaussian distribution. As 
the GP is a multivariate Gaussian distribution over the 
function (⋅), it can be fully specified by its mean function (⋅) and covariance function (⋅,⋅).	 ( : ) = ( (⋅), (⋅,⋅)) (1) 

In a GP, (⋅)  and (⋅,⋅)  are not constant parameters but 
functions incorporating prior knowledge about the target 
function [11]. The mean function (⋅) captures the overall 
trend in the target function value. The kernel function (⋅,⋅), 
is used to approximate the covariance between the two 
function values  and . 

In GPR, the type of kernel function chosen can strongly 
affect the representability of the GPR model, and influence 
the accuracy of the predictions. One widely used kernel 
function is the Automatic Relevance Determination (ARD) 
squared exponential covariance function:  , = exp −12 − diag( ) −  (2) 

An ARD kernel provides the flexibility to adjust the 
relevance (weight) of each parameter in the feature vector. In 
the ARD squared exponential kernel, the parameter vector  = ( ,… ,… , ) quantifies the relevancy of the input 
features in = ,… ,… ,  , where m denotes the 
number of input variables, for predicting the response . The 
parameter  is generally referred to as the signal variance, 
and quantifies the overall magnitude of the covariance value.  

It is assumed that the observed value  is measured with 
some random Gaussian noise , such that = ( ) + .  
It is common to assume that the noise term  is independent 
and identically distributed Gaussian 	~	 (0, ), in which 
case the noise variance , quantifies the amount of noise 
that is assumed to exist in the response. In short, the GPR 
model can be fully parameterized by the hyperparameters = ( , , )  for the case that the ARD squared 
exponential kernel is employed. 
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B. Training Procedure 

The GPR training procedure involves selecting a set of 
hyperparameters so as to maximize the marginal likelihood 
of the training data. The marginal distribution of the 
observations can be expressed as: ( : | ) = ( : | : , ) ( : | )	 :  (3) 

The unknown function  can be marginalized out of (3) 
to obtain the marginal likelihood of the training observations. 
An optimization equation is then formed to maximize the 
marginal likelihood, and obtain the optimum 
hyperparameters ∗ [11]: ∗ = arg	max

θ
log ( : | 	) (4) 

      				= 	 arg	max − ( : ) ( + ) :  																															− 12 log + 2 − n2 log2 	   
(5) 

where K is the covariance matrix whose ( , )th entry is given 
by 	= 	 ( , ). 
The process for obtaining the  optimum hyperparameters is 
well documented in the literature [11]. In this work, the 
MATLAB GPML library [12] is used to optimize the 
hyperparameters.   

C. Scoring a Gaussian Process Regression Model 

Suppose a new data point, denoted as , is observed. 
The task at hand is to predict the posterior distribution on the 
response  for the newly observed input . In the case 
where the mean function is zero, the (hidden) response value 

and the observed outputs : = { , … , } are given 
as: : ~ , ( + ) ( , )  (6) 

where 	= 	 ( , ), . . . , ( , ) .  

Suppose the training dataset is denoted as  = {( , ) = 1,… , }. The posterior distribution on the 
response  for the newly observed input  given the 
historical data can then be expressed as a Gaussian 
distribution: ~ ( | ), 	 ( | )  (7) 

As the posterior distribution is 1D Gaussian, the posterior 
mean ( | ), and the associated variance (or standard 
deviation) 	 ( | ) , are sufficient to fully describe the 
posterior distribution. That is, the posterior distribution can 
be calculated directly [11]:  	 ( | ) = ( + ) :  (8) 

	 ( | ) = ( , ) − ( + )  (9) 

The scoring procedure for the GPR model thus involves the 
operations as depicted in (8) and (9). 

III. TEST CASES FOR GPR MODELS 

In this section we describe the two cases that were used to 
test the use of GPR for the development of predictive models. 
For both cases, the models are trained using the data recorded 
on a milling machine. We first introduce an energy 
consumption model built to predict the energy usage of a 
Mori Seiki NVD1500DCG milling machine, based on 
features extracted from the NC machining operations and 
power data. We then describe the tool condition model built 
to predict the condition of the milling machine tool, based on 
acceleration and acoustic features. 

A. GPR Energy Consumption Model 

Over 22% of energy and 30% of electricity in the United 
States is consumed by the industrial sector. While the 
efficiency of the US manufacturing sector continues to 
increase due to improved manufacturing tools and processes, 
the industrial sector remains a major energy consumer in the 
US [13]. Advances in sensor technology and data processing 
now allow continuous measurements of the operating 
parameters and energy consumption of manufacturing 
machines. With modern machine learning techniques, it is 
possible to further optimize manufacturing techniques to 
reduce energy consumption.  

1) Data Collection and Processing  

The first step when constructing an accurate predictive 
model for a manufacturing device is to collect and process the 
data from that device. For the milling machine, a systematic 
approach has been developed to extract the features necessary 
for constructing the energy prediction model [14]. The energy 
consumption of the machine was measured under a range of 
different operating conditions. The machining data, such as 
the process parameters and the tool position, was recorded 
from the FANUC controller. The power time series data was 
collected using a High Speed Power Meter (HSPM). The 
machine parameters and power consumption times series 
were synchronized using a MTConnect agent [14]. 

2) Feature identification and energy consumption model 

A GPR model is developed to predict the energy 
consumption of the milling machine based on the machine 
parameters. The raw MTConnect data is parsed to extract 
useful parameters for the model. In particular, the average 
feed rate, average spindle speed, cut strategy and direction, 
and cut length and depth are extracted from the MTConnect 
data. The energy consumption ∈ ℝ  is obtained by 
numerically integrating the power time series over the 
duration of each cut. 

In this work we restrict the model to face-milling 
operations, but the same technique has been shown to be 
applicable to other milling operations [9, 10]. The input 
features for the model are defined as follows: 
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• Feed rate, ∈ ℝ: the average velocity at which the 
tool is fed material 

• Spindle speed, ∈ ℝ: rotational speed of the tool 
• Depth of cut, ∈ ℝ: depth of material that the tool 

is removing 
• Active cutting direction, ∈ 	 {1, 2, 3, 4}: 1 is for -

axis, 2 for y-axis, 3 for z-axis, and 4 for -  axes 
• Cutting strategy, ∈ {1, 2, 3}:  The method for 

removing material, which controls the relationship 
between the rotation direction and the feed direction. 
1 is for conventional, 2 for climb, and 3 for both 
conventional and climb milling 

For the predictive model, we choose to use all of the 
measured input features and denote the input feature vector, = { ,… , }. We define a new parameter  as the energy 
consumption per unit length, such that: = /	 	 (10) 

where 	is the energy consumption for cut  with length . 
To construct the GPR model, we assume that the output = ( ) +  is measured with noise 	~	 (0, ).  We 

choose the ARD squared exponential function for the 
covariance kernel function and assume the mean function to 
be a zero function.  

Each new prediction 	is represented by a mean energy 
density function ( | )	 and associated standard 
deviation function ( ).  The estimated energy 
consumption  and the corresponding standard deviation  
can then be calculated as: = ( ) ×  (11) = 	 ( ) ×  (12) 

The GPR model is trained using the procedure described 
in Section II. A number of experiments were carried out to 
obtain enough data to develop a comprehensive energy 
prediction model [9, 10]. Test parts were manufactured with 
the milling machine, using a range of different operating 
parameters. In total, 18 parts were machined to provide 
operational data for 196 face-milling operations. Figure 1 
shows the predicted energy consumption as a function of the 
feed rate, along with some recorded observations.  It can be 
seen that the trained GPR model predicts quite accurately the 
energy consumption for the face milling operations.   

B. Recursive GPR Tool Condition Model 

Reliable tool-condition monitoring can provide a number 
of benefits for the manufacturing industry, such as improved 
product quality and the prevention of tool breakage. 
Researchers have previously demonstrated that the condition 
of the machine tool can be inferred from features of the 
vibration and audio time series [15, 16]. A number of 
researchers have attempted to use the skew and kurtosis 
coefficients of the audio and acceleration time-series to 

predict the condition of the tool, with mixed results [17, 18]. 
In this case study, we develop a GPR model to predict the 
condition of a CNC milling machine tool.  

1) DATA COLLECTION AND PROCESSING  

The Mori Seiki milling machine was programmed to 
produce a number of simple parts by removing material from 
a solid steel block. Each part consisted of 18 separate cutting 
actions performed by the milling machine. The machine was 
instructed to produce parts until the cutting tool became 
severely damaged.  

For the experiments, the operating parameters of the 
machine were adjusted to artificially increase the rate of tool-
wear. In a normal manufacturing environment, cutting tools 
generally last several days. To expedite the data collection 
process in the experiments, the operating lifetime of the 
cutting tool was reduced to about 30 minutes by increasing 
the feed rate and reducing the rotational speed.  

A sensor from Infinite Uptime was used to measure the 
audio and acceleration signals inside the milling machine 
while the machine was operational. The acceleration 
(vibration) signals were recorded for each cut for all three  
(x-, y- and z-) directions. The acceleration signal was 
recorded at 1000 Hz while the audio signal was recorded at 
8000 Hz. Welch’s method [19] is used with a Hann window 
to estimate the periodogram for each time series signal. 
Welches method provides an estimation of the periodogram 
at  equally spaced points , in the frequency domain. 

The condition of the milling machine, denoted by  ∈ [0,1], is defined based on the remaining lifetime of the 
tool, as estimated after manually examining the tool with a 
microscope. The scale is defined such that 100% indicates a 
new tool in perfect condition, and 50% indicates the 
condition at which the tool would be replaced in a 
commercial manufacturing setting. Figure 2 illustrates four 
different states of the tool.  

Hereafter, we use the symbols ( )  and ( )  to 

denote, respectively, the acoustic periodogram and the 

Figure 1. Predicted energy consumption density for generic test 
parts machined using face milling with y-direction cut, 2,400 RPM 
spindle speed, conventional cutting strategy, and 1mm cut depth. The 
shaded area shows one-standard deviation bounds for the prediction. 
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acceleration periodogram measured during cut . The 
subscript ∈ {0,1,2} indicates the x-, y- and z-, directions. 
Figure 3 and Figure 4 show how the acceleration and acoustic 
periodograms are influenced by the condition of the tool.  

 

  

  
Figure 2. Tool flute in different states of condition. The top-left image 

shows a new tool with = 1 , the top-right image shows the tool at 	 = 0.7, the bottom-left image shows the tool at = 0.5 and bottom-right 
image shows the tool at = 0.3. 

 
Figure 3. Periodogram computed using the recorded acceleration signal 

from a sharp tool, and that from a worn tool, for a single cutting operation. 

 
Figure 4. Periodogram computed using the recorded acoustic signal 

from a sharp tool, and that from a worn tool, for a single cutting operation. 

2) Featurization and tool condition monitoring model 

One important step for constructing a predictive model is 
to identify the relevant features that, in this case, are 
correlated with the condition of the milling machine tool.  In 
this study, we identify a set of 5 features, 	= { , … } for the tool condition monitoring model. 
The first four features, , ,  and ,	are derived from the 
acceleration and acoustic periodograms, while the fifth 
feature  represents the condition of the tool at the previous 
time step.  

In each experiment, a periodogram is calculated for the 
first three cuts, and subsequently referred to as the reference 
periodogram. The reference periodogram represents the 
acceleration and acoustic frequency content produced by a 
sharp tool. We use the symbol ( )  to represent the 
reference acoustic periodogram and ( ) to represent the 

reference acceleration periodogram. The subscript  ∈ {0,1,2} is used to indicate the direction of the measured 
acceleration signal.  

For each cut i, two input features are defined as the 
increase in signal power with respect to the reference cut: 

= ( ) − ( )	 (13) 

= ( ) − ( )			 (14) 

where is a feature describing the increase in acoustic signal 
power and  is a feature describing the increase in 
acceleration signal power.  

Two additional features are defined as the maximum 
distance between the measured and the reference 
periodograms: = max[ , ] ( ) − ( )	   (15) = max, [ , ] ( ) − ( )	    (16) 

where  is a feature describing the maximum increase in 
acoustic signal power and  is a feature describing the 
maximum increase in vibration signal power.  

There is a strong correlation between the tool condition of 
two sequential cuts.  An additional feature , is defined as 
the tool condition during the previous cut. During the training 
process the feature , is defined as follows: 

( ) = 1 	 	 = 0									ℎ 								  (17) 

In a real manufacturing setting, the previous tool 
condition will not be available when making real-time 
predictions. Thus, for the testing process, the previous 
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prediction , is used in place of the previous tool 
condition	 : 

	( ) = 	1												 	 = 0																				 ℎ 													 (18) 

3) Training and testing 

The milling machine was used to produce a total of 52 
parts using 14 tools. Each tool was used to manufacture parts 
until it became heavily worn or broken. The tool condition 
was manually labeled after each part was produced. Linear 
interpolation was used to estimate the tool condition  for 
each cut. The data set was divided into a training set with data 
from 11 tools and a testing set with data from 3 tools. The 
training set contained 738 individual cuts and the testing set 
contained 216 individual cuts.  

To construct the GPR model, we assume that the output = ( ) +  is measured with noise 	~	 (0, ) . We 
choose the ARD squared exponential function for the 
covariance kernel function and assume the mean function to 
be a zero function. The MATLAB GPML library is used to 
optimize the model hyperparameters, as described in  
Section II.  

The model is used to predict the condition of the tool for 
entire testing data set. Predictions are made in the order that 
the testing set data was recorded. The predicted tool condition 
for the testing set is shown in Figure 5. The tool condition 
prediction is plotted against manually labelled observations. 
The shaded area shows one-standard deviation bounds for the 
prediction.  It can be observed that the trained model predicts 
the tool conditions comparable to the human labelled results, 
particularly for tool conditions above the 50%.  Under normal 
circumstances, a tool would have been replaced with less than 
30% wearing (i.e. around 70% tool condition). 

IV. PMML SCORING ENGINE FOR GPR MODELS 

To use a predictive model in a real manufacturing setting, 
a computer program must be designed to evaluate (score) new 
data points as they are observed. This type of software is 
commonly referred to as a scoring engine. A scoring engine 
is primarily responsible for executing the mathematical 
operations required to transform a new observation to a 
prediction. However, it must also be able to communicate 
with other devices in order to receive new observations, and 
send the corresponding results. A possible network 
architecture for a smart factory with a single scoring engine 
is shown in Figure 6.  It can be seen that the scoring engine 
plays a critical role in the operation of the smart factory.  

The scoring engine must either contain the optimized 
model parameters, or be capable of loading the model 
parameters from another source. The scoring engine 
described in this work was designed to load the model 

 

 
Figure 6. Network diagram showing the role of a PMML scoring machine in a smart factory. The arrows represent the flow of data over a 

network connection (either a local network or the Internet). While the training and monitoring process is iterative, the numbers indicate the 
timeline of data flow.  

Figure 5. Tool condition prediction against manually labelled 
observations for the testing set, where the tool was replaced twice. The 
shaded area shows one-standard deviation bounds for the prediction. 
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parameters and training data from a PMML file. Specifically, 
we employ a PMML standard representation of the GPR 
model [20] to transfer the trained model to the scoring engine. 
The full architecture of the scoring engine is shown in  
Figure 7. The standardized nature of the PMML format 
ensures that the scoring engine can be used to load any valid 
GPR PMML model, without any changes in the scoring 
engine code.  

It can be seen that the scoring engine consists of three 
main components, a PMML parser to extract the GPR model, 
a GPR scoring algorithm to generate predictions and a 
webserver to communicate with other devices. 

In this section, we describe how each component of the 
scoring engine was built. We start by describing how a parser 
was written to load the GPR model parameters from a PMML 
file. We then describe the GPR scoring algorithm that was 
used to compute the posterior distribution for each new 
observation. Lastly, we describe how the scoring engine 
connected to other devices using a simple Python webserver. 

A. PMML Parser 

Before performing any mathematical operations, the 
scoring engine must load the GPR model parameters from a 
PMML file. A PMML file is a text file that describes a 
machine learning model, using a standardized XML-based 
language. As the PMML format is based on XML, any 
compliant XML parser can be used to extract information 
from the PMML file.  

The XML parser from the Python lxml library [21] was 
used as the PMML parser for the scoring engine. Based on 
the standard PMML representation of the GPR model [20], 
the parser was used to extract the relevant parameters and 
training data from the PMML file and store them in the 
computer memory. 

B. GPR Scoring Algorithm 

The GPR scoring algorithm is designed to calculate the 
posterior distribution on the response  corresponding to 
the new observation . As shown in (7), the posterior 
distribution can be fully described by the posterior mean ( | ),  and the variance 	 ( | ) . The scoring 

algorithm thus involves computing the posterior mean and 
variance given in (8) and (9). Therefore, the scoring 
procedure requires computing the inverse of the ×  matrix + , where n is the number of training data points. For 
models with a large number of training points, computing the 
inverse of +  can be computationally demanding. 

As the kernel matrix K is real and symmetric positive 
semidefinite, Cholesky factorization can be used in lieu of 
computing the inverse. In particular, there exists a matrix L 
such that: = ( + ) (19) 

We define two new vectors  and 	such that: = :  
  

(20) and =  (21) 

The posterior mean and variance can then be calculated, 
respectively, as: ( | ) =  (22) 

 ( | ) = ( , ) −  (23) 

The kernel matrix K depends only on the training data; it does 
not change between predictions. Thus, the Cholesky 
decomposition of ( + )  only needs to be performed 
once. To reduce computational demand, the Cholesky 
decomposition is performed immediately after the training 
data is loaded from the PMML model file.  

The GPR scoring algorithm is written using the Python 
numerical computing library NumPy [22], and is similar to 
the algorithm used by the machine learning library, Scikit-
learn [23]. The NumPy library uses LAPACK [24] to 
perform the linear algebra calculations efficiently. 

C. Network Webserver 

In a manufacturing environment, the scoring engine must 
be able to communicate with the manufacturing devices. A 
network connection is established between the scoring engine 
and each manufacturing device, allowing the device to send 

  
Figure 7. Architecture of the PMML scoring engine developed as part of this work. 
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new data observations to the scoring engine. This can be 
facilitated by either a Local Area Network (LAN) or an 
Internet connection. 

The Python webserver Tornado [25], is used to connect 
the scoring engine to the local network. New data 
observations  are sent to the scoring engine in the JSON 
format via the HTTP protocol. The scoring engine computes 
the relevant scores and returns them with the HTTP response. 
Figure 8 provides an example of the JSON-encoded data that 
is transferred over the network. 

V. SCORING ENGINE PERFORMANCE 

The performance of the scoring engine is critical to its 
value in a real manufacturing application. We choose to 
quantify the performance in terms of the scoring engine 
response time and request throughput. The scoring engine 
must be able to make fast predictions (response time) at a 
high rate (throughput), while maintaining very high accuracy.  

In this section, we describe how the performance of the 
scoring engine is evaluated. We start by describing how the 
scoring engine is installed on a Raspberry Pi microcomputer, 
which represents the type of computing environment that 
could be embedded in a manufacturing device. We then 
install the scoring engine on a virtual server on the Google 
Compute Engine for comparison. Lastly, we comment on the 
performance of the two scoring engines. 

A. PMML Scoring Engine on Raspberry Pi 

Numerous authors have discussed how predictive models 
can be evaluated on an embedded system or programmable 
microcontroller. In this scenario, the scoring engine is 
installed on computing hardware which is embedded within, 
or attached to the manufacturing device.  

Due to space and cost restrictions the compute power and 
memory capacity of the microcontroller is often restricted. To 
simulate this scenario we installed the PMML scoring engine 
on a Raspberry Pi 3 Microcomputer [26] running the Ubuntu 
16.04 operating system. The Raspberry Pi microcomputer 
has a 1.2GHz quad core central processing unit (CPU) and 
1GB random access memory (RAM). A desktop computer is 
connected to the microcomputer board via a Wireless Local 
Area Network (WLAN) connection, to simulate the data 
stream produced by a manufacturing machine. An additional 
heat sink was fitted to the CPU to prevent it from overheating, 
as shown in Figure 9. 

 

Figure 8. New observation encoded in the JSON format (left) and 
resulting prediction also encoded in the JSON format (right). Both the 
observation and the prediction are encoded and sent over the network in this 
format. 

B. PMML Scoring Engine on Google Compute Engine 

Cloud infrastructure services, such as the Google 
Compute Engine, provide significant amount of compute 
power for a relatively low cost. These services provide virtual 
machines for a fixed hourly cost. Virtual machines allow 
multiple users to share the computing resources within a data 
center, while ensuring that resources are shared securely. 

The PMML scoring engine was installed on a Google 
Compute Engine virtual machine. The virtual machine was 
assigned two virtual processors (vCPUs) and 1.8 GB of  
RAM. A desktop computer was connected to the virtual 
machine over the Internet, and used to simulate the data 
stream produced by a manufacturing machine.  

C. Scoring Engine Accuracy and Performance Tests 

The performance of the scoring engine is evaluated by 
load testing it with real manufacturing data. In a load test, 
new observations are sent to the scoring engine at a 
predefined rate. The new observations are sent from a 
desktop computer referred to as the client. The client 
represents an operational manufacturing device, in a real 
manufacturing setting. 

The rate of new observations is referred to as the 
throughput. The amount of time required for the scoring 
engine to compute a response is measured, averaged, and 
subsequently referred to as the response time. We define the 
response time as the total time taken to generate a prediction, 
from the point in time when the client starts sending the 
observation to the point when the prediction response is fully 
returned to the client. 

The throughput is gradually increased at regular intervals, 
until the scoring engine is unable to respond in a reasonable 
amount of time. In this work, the throughput is increased at 
60 second intervals. The initial throughput is chosen based on 
the complexity of the model. 

The performance of scoring engine was measured on both 
the microcomputer and cloud-based platforms. Figure 10 
demonstrates the prediction response time obtained from the 
energy consumption prediction model. Figure 11 
demonstrates the response time for predictions made with the 
tool condition model.  

 

 
Figure 9. Raspberry Pi 3 Microcomputer running Python GPR scoring 

engine on Ubuntu 16.04. An additional heat sink (blue) was fitted to the CPU 
to allow it to operate at maximum capacity for a long duration of time.
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Figure 10. Response time of both scoring engines with the energy 

consumption model, including network latency. 

 
Figure 11. Response time of both scoring engines with the tool 

condition model, including network latency. 

It can be seen that the performance of the scoring machine 
on the cloud server greatly exceeds that of the scoring engine 
on the microcomputer, with respect to both response time and 
throughput capacity. In both manufacturing examples, the 
time required to perform the linear algebra operations for the 
scoring process was non-trivial. The experimental results 
demonstrate that the response time and throughput capacity 
of a GPR scoring engine on a microcomputer board can be 
severely limited by the computational power of the device. 

The response time remains reasonably constant as 
throughput increases, until the point where the computational 
demand of evaluating the model exceeds the computational 
capacity of the scoring engine hardware, as shown in Figure 
10 and Figure 11. In all four cases the response time 
dramatically increases when the request throughput exceeds 
the capacity of the scoring engine. 

VI. DISCUSSION 

In this work we demonstrated the performance of a GPR 
PMML scoring engine when installed on a Raspberry Pi 
microprocessor and a managed cloud service. The aim was to 
investigate the advantages and limitations of each strategy, 
using two examples derived from real manufacturing 
problems. 

Purpose-built scoring engines will become increasingly 
important in the smart manufacturing industry, especially as 
internet-connected manufacturing machines become more 
mainstream. The response time and throughput capacity of 
these scoring engines are critical to the adoption of predictive 
modeling in smart manufacturing. For many real-time 
applications, the response time of the scoring machine must 
be sufficiently low to avoid manufacturing devices becoming 
idle whilst waiting for feedback from the scoring engine. 

Both cloud-based and embedded scoring engines have 
their own advantages and limitations. Firstly, if a hardware 
failure occurs on the cloud-based system the scoring engine 
can be copied to another virtual machine quickly and easily. 
In contrast, if a hardware failure occurs on an embedded 
scoring engine, the faulty hardware must be manually 
replaced. 

An embedded microcomputer scoring engine will excel 
when network reliability is considered important. Embedded 
scoring engines do not rely on wireless communication 
protocols such as Wi-Fi or Bluetooth, so they are less prone 
to network issues. 

Whilst the cloud-based scoring engine outperformed the 
microcomputer in this study, the minimum response time of 
a cloud-based scoring engine will always be limited by 
network latency. The average response time of a cloud-based 
scoring engine will never be lower than the average round-
trip network latency between the manufacturing machine and 
the virtual server.  

Large manufacturing operations will likely need to 
evaluate predictive models at much higher rates than 
demonstrated in this work. One way to increase the prediction 
rate is to run multiple PMML scoring engines in parallel. 
Future studies could investigate how virtual machines in the 
cloud could be used in parallel to achieve the high throughput 
required for a modern predictive-model driven 
manufacturing plant. 

The GPR scoring algorithm is computationally 
demanding for datasets with a large number of training data 
points. A more efficient algorithm such as Sparse Gaussian 
Process Regression could provide faster predictions with a 
similar prediction accuracy [27].  

In conclusion, the development of standards-compliant 
scoring engines is critical to the widespread adoption of 
predictive models for smart manufacturing. The throughput 
capacity and response time of such scoring engines is 
dependent on a number of factors, including the deployment 
strategy and the complexity of the predictive model.  
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