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Magnetic Resonance Imaging (MRI) is increasingly used to map the magnetic sus-
ceptibility of tissue to identify cerebral microbleeds associated with traumatic brain
injury and pathological iron deposits associated with neurodegenerative diseases
such as Parkinson’s and Alzheimer’s disease. Accurate measurements of suscepti-
bility are important for determining oxygen and iron content in blood vessels and
brain tissue for use in noninvasive clinical diagnosis and treatment assessments.
Induced magnetic fields with amplitude on the order of 100 nT, can be detected
using MRI phase images. The induced field distributions can then be inverted to
obtain quantitative susceptibility maps. The focus of this research was to deter-
mine the accuracy of MRI-based susceptibility measurements using simple phantom
geometries and to compare the susceptibility measurements with magnetometry mea-
surements where SI-traceable standards are available. The susceptibilities of para-
magnetic salt solutions in cylindrical containers were measured as a function of
orientation relative to the static MRI field. The observed induced fields as a func-
tion of orientation of the cylinder were in good agreement with simple models. The
MRI susceptibility measurements were compared with SQUID magnetometry using
NIST-traceable standards. MRI can accurately measure relative magnetic susceptibil-
ities while SQUID magnetometry measures absolute magnetic susceptibility. Given
the accuracy of moment measurements of tissue mimicking samples, and the need
to look at small differences in tissue properties, the use of existing NIST standard
reference materials to calibrate MRI reference structures is problematic and better
reference materials are required. © 2017 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4975700]

INTRODUCTION

Quantitative Susceptibility Mapping (QSM)1 using Magnetic Resonance Imaging (MRI) is
increasingly used instead of qualitative techniques, such as susceptibility weighted imaging,2 to map
neurological conditions,3–5 blood oxygen content,6 and iron overload in the heart and liver.7 Some
neurodegenerative diseases, such as Parkinson’s and Alzheimer’s disease, have been associated with
excess iron in the brain.8,9 A reproducible and quantitative method to measure blood-oxygen content
via QSM is particularly important for finding and determining the severity of cerebral microbleeds
resulting from stroke or traumatic brain injury.10 QSM may be important for measuring iron over-
load in the heart and liver, caused by diseases such as hemochromatosis, because iron can catalyze
the conversion of hydrogen peroxide into free radicals, causing damage to cell membranes, pro-
teins, and DNA.11 Tissue property measurements using QSM are also advantageous compared to
SQUID (superconducting quantum interference device) magnetometry measurements since the latter
are done on excised tissue and are inaccurate due to water loss, blood oxidation, and volume changes.
However, there is much left to do to validate the accuracy of QSM and of MRI-based susceptibility
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measurements in general. Accurate in-vivo measurements of magnetic susceptibility, along with the
necessary calibrations and post-processing techniques, are required to use magnetic susceptibility as
a quantitative biomarker. Creating standard measurement protocols and a phantom with NIST veri-
fied susceptibility samples would help ensure site-to-site comparability of data and allow QSM to be
more widely and reliably used in clinical applications. In-vivo MRI susceptibility measurements, if
done properly, may become the gold standard for tissue susceptibility quantification. The first step is
to verify the accuracy of MRI susceptibility measurements relative to other traditional methods.

TISSUE SUSCEPTIBILITY AND TISSUE MIMICS

Tissue is predominantly diamagnetic at body temperature 310 K and room temperature 300 K.
This is seen in Fig. 1a, which shows the magnetic moment vs. field for cow liver. The magnetic
susceptibility is dominated by the diamagnetic susceptibilities of water (-9.05 x 10-6) and fat (typ-
ically -10.0 x 10-6).12 All susceptibility values in this paper are reported in SI units. The complex
magnetic structure of tissue is seen at lower temperatures. Fig. 1a shows a decrease in the diamagnetic
(negative) slope as the temperature decreases indicating the presence of a paramagnetic component.
At low temperature (1.8 K) there is a deviation in linearity due to paramagnetic and ferrimagnetic
components. The presence of a ferrimagnetic component is seen in Fig. 1b, which plots the moment
vs. inverse temperature. If there were only a paramagnetic component, the data would be linear.
For liver, the paramagnetic and ferrimagnetic components are predominantly due to blood iron in
deoxygenated hemoglobin and iron oxide deposits (ferritin).

To mimic the susceptibility properties of tissue, one can use a solution of paramagnetic salts in
water. Fig. 1d demonstrates how the diamagnetic susceptibility of water, with minimal temperature-
dependence, and a paramagnetic component can roughly approximate the magnetic properties of
tissue. We present data from GdCl3 solutions, whose magnetic properties are shown in Fig. 1c,d

FIG. 1. (a) SQUID magnetometer measurements of magnetic moment vs. applied field for a sample of cow liver. (b) Magnetic
moment vs. inverse temperature, upon heating and cooling, of the same sample. (c) SQUID magnetometer measurements of
the magnetic moment vs. applied field of the 5.0 mM GdCl3 solution. Also shown is the calibration curve obtained from a
NIST moment standard reference material. (d) Magnetic susceptibility vs. inverse temperature for the same solution showing
paramagnetic behavior. The horizontal dotted line schematically shows the diamagnetic susceptibility of water. The arrow
indicates the susceptibility contribution from the Gd3+ ions at 300 K. Comparing the tissue magnetic properties, shown in
(a) and (b), to those of the standard Gd solutions, shown in (c) and (d), one can see that the reference solutions are a good
starting point to mimic the magnetic properties of tissue, although they lack the full complexity of tissue.
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for a 5.0 mM solution in deionized water. The SQUID magnetometer is calibrated with a NIST
YIG (yttrium iron garnet) sphere standard reference material (SRM #2852) whose room temperature
moment is (79.9 ± 0.3) x 10-6 A·m2. The moment (m) vs. applied field (Ba) data can be fit assuming
a paramagnetic component and a diamagnetic component:

m=NGdVgµBJ · BJ

(
gJµBBa

kBT

)
−
χwVBa

µ0
(1)

NGd is the concentration of Gd3+ ions, V is the volume of the sample, g is the Landé g-factor
(which is 2.0 for Gd since the angular momentum vanishes), µB is the Bohr magneton, J is the ion
angular momentum quantum number, BJ is the Brillouin function, kB is Boltzmann’s constant, T
is the temperature of the sample, χw is the magnitude of the diamagnetic susceptibility of water,
and µ0 is the permeability of free space. The susceptibility due to the Gd3+ ions can be calcu-
lated from the model (Eq. 1) using the best fit parameters and the measured volume. The measured
Gd susceptibility for a 5.0 mM solution at 300 K, shown in Fig. 1d is χGd = (1.58 ± 0.16) x 10-6,
comparable to the theoretical value of χth = 1.89 x 10-6. The errors in the measured value come
from errors in the moment measurement, the volume measurement and from the extraction of
the smaller Gd moment from the larger diamagnetic moment of water. For comparison, the dif-
ference in susceptibility between deoxygenated and oxygenated blood, as measured by MRI, is
(3.43 ± 0.08) x 10-6.13

MRI SUSCEPTIBILITY MEASUREMENTS

MRI susceptibility measurements are typically done by acquiring magnitude and phase data from
a gradient echo sequence with multiple echo times. Magnitude and phase images of a phantom are
shown in Fig. 2a. The phase image clearly shows distortion of the phase fronts due to the enhanced
susceptibility of the paramagnetic salt solution contained within the vial. The imaging was done in
a 30 cm bore preclinical scanner designed to image at 1.5 T, 3.0 T, or 7.0 T. The data in this paper
were obtained with a static field of B0 = (1.502102 ± 0.000006) T. The error in the field represents
the typical field variation over the active volume with a standard shimming procedure. The phase
must be unwrapped and the low-spatial frequency background phase variations subtracted (Fig. 2a).
Background phase variations are due to an imperfect shimming of the magnet and to susceptibility
discontinuities far from the region of interest.

The difference in proton phase (inside relative to outside the vial), δφ, after an echo time, TE,
is proportional to the local induced field, δBL, along the main field direction: δφ= γp·δBL ·TE, where
γp is the shielded proton gyromagnetic ratio. The local field differs from the macroscopic field and
is given by the macroscopic field minus the Lorentz field. The Lorentz field is a correction to the

FIG. 2. (a) Magnitude and phase images of a vial containing 5.0 mM GdCl3. The dark circle in the MRI amplitude image is
a 76 mm diameter polycarbonate support for the vials. The third image shows the phase after unwrapping and after the long
wavelength background has been subtracted. (b) Phase difference as a function of echo time (TE) taken from phase maps.
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macroscopic continuum model and attempts to account for the local microscopic distribution of
moments. The slope of the measured phase difference vs. echo time, as shown in Fig. 2b, will yield
δBL. The magnetic field distortion is a convolution of the magnetic susceptibility distribution, χ(r),
with the magnetic dipole kernel, d(r): δBL(~r)= d(~r)⊗ χ(~r).14 The susceptibility map can be obtained
by inverting the field profile, although complex methods are required since this inversion is not
unique.15–18 Here, we limit our measurements to simple cylindrical geometries where the induced
field is simply related to the susceptibility. For a long cylinder the internal and external field distortion
is given by19

Internal : δBL =
∆χB0

6
(3 cos2 θ − 1) (2a)

External : δBL =
∆χB0

2
a2/r2 sin2 θcos2φ (2b)

where∆χ is the susceptibility difference between the inside and outside of the cylinder, θ is the angle of
the cylinder axis with respect to the main field, φ is the azimuthal angle of the observation point relative
to the plane of the main field and cylinder axis, and a is the radius of the cylinder. For the simple case
where the cylinder is aligned with the main field (θ = 0), the susceptibility difference is given by∆χ =

3δφ
γpB0TE . By measuring the slope of δφ vs. TE, as seen in Fig. 2b, the susceptibility can be determined.

The susceptibility difference of the 5.0 mM GdCl3 solution at 300 K, was (1.71 ± 0.02) x 10-6, which,
within error bars, agrees with the SQUID magnetometer measurements. The intrinsic errors for the
SQUID measurements are larger than the MRI measurements, although the systematic errors for the
MRI measurements have not yet been determined.

ANGLE DEPENDENT MEASUREMENTS

To test the orientational dependence, MRI phase maps were obtained from a phantom with vials
(80 mm long, 5.0 mL volume) oriented along and perpendicular to the B0 field. The vials were filled
with 5.0 mM GdCl3; the main compartment of the phantom was filled with deionized water. Line
scans through the cylinders are shown in Fig. 3a along with the predicted phase change and induced
fields obtained from Eq. 2a,b. Good agreement is observed, although there is some deviation at the
edges of the vials, in part due to the loss of signal from the plastic vial.

To more precisely verify the orientation dependence, a rotating phantom was constructed in
which the 80 mm vials could be continuously rotated while in the MRI scanner. A schematic of
the rotating phantom is shown in the inset in Fig. 3b. Four 80 mm vials filled with 1.0 mM and
5.0 mM GdCl3 solutions were placed in the scanner. A rod extended from the outside of the scanner
to the internal rotation gears; each revolution corresponded to 19◦mechanical rotation of the phantom

FIG. 3. (a) Line scans (opaque lines) of phase and corresponding field distortions taken with the field parallel (blue) and
perpendicular (red) to the cylinder axis. When the field was perpendicular to the cylinder axis, the line scan was taken along
B0 (φ = 0). Also shown are the predicted phase shifts (lighter lines) from Eq. 2. (b) Plot of the change of phase with echo
time within a cylinder of 1.0 mM GdCl3 as a function of angle of the cylinder axis relative to the B0 field. Also plotted is a fit
using Eq. 2a (blue line). The inset a schematic of the rotating phantom used for the experiment.
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insert. The change of phase between the center of each vial and the surrounding water was collected
as a function of angle (Fig. 3b). The data were fit using Eq. 2a, yielding ∆χ = (0.324 ± 0.005) x 10-6

for the 1.0 mM solution.

BEYOND THE SIMPLE MODELS

A multiphysics finite element simulation with a package for modeling magnetic fields without
currents was used to compute the macroscopic field of the five perpendicular vials, shown in the
inset of Fig. 3b. The vials were filled with a solution with a magnetic susceptibility of 3.0 x 10-6

relative to the surrounding water. The numerical accuracy of the field distortion was estimated to
be ±7% by varying degrees of freedom from 2 to 5 million. Finite element calculations of extremely
small field perturbations on a very large B0 field gave significant numerical errors. Fig. 4a,b show
the field distortions when the B0 field is parallel and perpendicular to the vial axes, respectively. The
field profiles within the vials are not constant, as predicted by the simple models, due to the fields
from neighboring vials, the finite length of the vials, and the phantom structure. Determining the
local susceptibility from the full inversion of the 3-dimensional phase map should account for these
distortions.

One of the main approximations in MRI-based susceptibility measurements is to assume that
the local field is given by the macroscopic field, Bm, minus the Lorentz field: BL =Bm −

2
3 χB0.

This assumes that the local microscopic fields average to zero. To determine the local field, precise
microscopic calculations are needed. As a simple test, we performed a Monte Carlo simulation where
2.5 x 106 Gd spins were randomly distributed in 2 µm diameter sphere and 300 water molecules were
allowed to diffuse throughout the volume. The fields sensed by the water molecules after a time
of 0.15 ms are plotted in Fig. 4c. The Gd density corresponds to 1.0 mM concentration and an
MRI-measured susceptibility of 0.32 x 10-6. The microscopic field calculated from the simulation
is 13.5 nT, which is much smaller than the Lorentz field BL = 320 nT. The simulation supports the
assumption that the microscopic fields due to neighboring spins average to zero, and the local field
approximation is valid. For tissues, which may have more complex local geometry, this local field
assumption may not be valid.

The Monte Carlo simulation gave a Gaussian distribution in microscopic fields, which had a
standard deviation of 249 nT. This field distribution gives rise to a short total dephasing time T2*.
The T2* value can be measured with the same data set as the susceptibility using the magnitude
images and extracting the exponential decrease in the magnitude signal with echo time TE. The
T2* value can be used to obtain measurements of the local iron concentration in tissue.8 While the

FIG. 4. Numerical calculations of the field distortions produced by the phantom shown in the inset in Fig. 3b, with five vials of
paramagnetic salt solution with a susceptibility of 3.0 x 10-6. The macroscopic field distribution is plotted, not the local field,
since the macroscopic field is what is calculated using the macroscopic Maxwell equations. (a) The field distortion calculated
by a finite element method when the vial axis is parallel to B0 field. The inset graph shows the variation within the vial due to
neighboring vials and structures. (b) The field distortion when the B0 field is perpendicular to the axis of the vial and the line
scan is taken perpendicular to both B0 field and the vial axis. (c) Monte Carlo simulation generated histogram of microscopic
fields experienced by an ensemble of water molecules diffusing (with a diffusion constant of 2.0 x 10-3 mm2/s) in a 1.0 mM
Gd solution. The geometry is shown in the inset with the red and blue dots representing Gd3+ ions and water, respectively.
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decrease in T2* and the change in phase both arise, in the system studied here, from the Gd spins,
T2* is strongly affected by the local microscopic structure while the phase shift is not.

CONCLUSIONS

The relative phase shifts and local induced magnetic fields can be measured very precisely with
MRI. The relative susceptibilities can be accurately determined from these field shifts for simple
geometries and agree with primary measurements of susceptibility where standards exist. More
suitable primary standards, however, will be required to validate MRI susceptibility measurements in
complex geometries. More extensive investigation into how the local field depends on microscopic
tissue geometry is required to determine the accuracy of local field models.
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