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Neural networks have proven effective for solving many difficult computational problems, yet
implementing complex neural networks in software is computationally expensive. To explore the limits
of information processing, it is necessary to implement new hardware platforms with large numbers of
neurons, each with a large number of connections to other neurons. Here we propose a hybrid
semiconductor-superconductor hardware platform for the implementation of neural networks and large-
scale neuromorphic computing. The platform combines semiconducting few-photon light-emitting diodes
with superconducting-nanowire single-photon detectors to behave as spiking neurons. These processing
units are connected via a network of optical waveguides, and variable weights of connection can be
implemented using several approaches. The use of light as a signaling mechanism overcomes fanout and
parasitic constraints on electrical signals while simultaneously introducing physical degrees of freedom
which can be employed for computation. The use of supercurrents achieves the low power density
(1 mW/cm? at 20-MHz firing rate) necessary to scale to systems with enormous entropy. Estimates
comparing the proposed hardware platform to a human brain show that with the same number of neurons
(10'") and 700 independent connections per neuron, the hardware presented here may achieve an order of
magnitude improvement in synaptic events per second per watt.
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I. INTRODUCTION

Many foundational concepts in information theory and
computing were developed beginning in the 1930s and
1940s through the work of Turing [1], von Neumann [2],
Shannon [3], and others. Given the variety of proposed
approaches to computing, it is somewhat surprising that the
current landscape of computing technologies exclusively
uses the von Neumann architecture. There has long been an
interest in the relationship between information, computa-
tion, and cognition [4,5]. Computing architectures drawing
inspiration from biological neural systems have been
considered for decades [6], but investigation of novel
architectures is only now becoming urgent as we reach
the end of Moore’s law scaling. The recent surge in deep
learning and neural networks marked by advances in
hardware [7-9], applications [10], and theory [11-13]
has increased our understanding of the importance of such
systems for solving complex problems.

Lin and Tegmark have recently argued [13] that the
physics of our Universe is conducive to representation by
neural networks. While there is an infinite number of
possible functions a network may try to approximate, only
a very limited subset will be of interest in our physical
world. Additionally, it has been shown mathematically
[11,12] that the ability of a neural network to accurately
represent different kinds of functions (the expressivity of
the network) scales as k", where m is the dimension of the
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input, n is the number of hidden layers, and k is the number
of nodes in each layer. This insight informs us that we can
improve a network’s ability to represent a broad range of
functions both by increasing its width (k) and depth (n).
Further, since the total information capacity of a computing
system is proportional to the entropy, which scales with the
number of distinct states which can be addressed by the
system [14], computing systems based on complex inter-
connected networks, such as biological neural systems,
offer extraordinary computational power.

To further maximize the information-processing capacity
of such a system, it is desirable to fully utilize the time
domain. For resilience to noise as well as temporally
encoded information [15,16], signal communication via
pulses, or spikes, is most advantageous, and such spike-
encoded information is most powerful when many con-
nections are established between processing units [16]. All
of these findings taken together inform us that to implement
neural networks most effectively in hardware, we should
develop systems with a large total number of processing
units, a large number of connections between units, and
pulse-based communication.

Much like the von Neumann architecture has dominated
modern computing, the hardware of silicon microelectron-
ics has been similarly preeminent. It is possible that the
ideal hardware platform for the next generation of com-
puter architectures will also look very different. We make
two conjectures which lead us to the hardware platform
presented here. The first is that photons, based on their
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FIG. 1. Schematic representation of the proposed device
concept. SC, superconducting; SNSPD, superconducting-

nanowire single-photon detector; Rx, receive; Tx, transmit;
WG waveguide.

noninteracting bosonic nature, will prove advantageous
over electrons for achieving spike-based communication
over networks with a large number of connections between
nodes. That is to say, photonic fanout will overcome
limitations of electronic fanout. The second conjecture is
that superconducting circuits will enable lower power
densities than semiconducting circuits, thereby leading to
systems with a larger number of processing units and
greater total complexity. In conceiving of a hardware
platform integrating photonic with superconducting devi-
ces, we find a feasible route to highly scaled, multiphysical
systems with extraordinary potential for computing com-
plexity and experiments in information physics. A sche-
matic representation of the concept is shown in Fig. 1.
The optoelectronic hardware platform is based on wave-
guide-integrated semiconductor light emitters working with
superconducting detectors and electronics to implement
weighted, directed networks [17]. Optical signals between
neurons are communicated through reconfigurable nano-
photonic waveguides. Utilization of light-emitting semi-
conductors allows efficient access to photonic degrees of
freedom (frequency, polarization, mode index, intensity,
statistics, and coherence), which achieve complex func-
tionality analogous to chemical signaling in biological
organisms and possibly with information-processing capa-
bilities far beyond. Light enables massive interconnectivity
with no need for time-multiplexing schemes that can limit
the event rates of complementary metal-oxide-semicon-
ductor (CMOS) systems [9,18]. Photonic signals are
received and integrated by superconducting single-photon
detectors. Firing thresholds and gain are controlled by a
dynamic superconducting network, and neuron-generated
photonic signals can reconfigure this current-distribution
network. By employing superconducting electronics, we
can approach zero static power dissipation [19], extraor-
dinary device efficiencies, and utilize Josephson-junction
circuits including single-flux-quantum devices [20-22].
Within this hardware platform, memory can be imple-
mented via several means. These include temporally fixed
synapses achieved with branching waveguides, synaptic
weight variation via the actuation of locally suspended
waveguides or through the use of magnetic Josephson

junctions [23], or other magnetic and flux-storage compo-
nents. The suspended waveguides that we explore in more
detail in this work are reconfigurable on a time scale of
1 us. None of these approaches draw power in the
steady state.

The combination of efficient faint-light sources and
superconducting-nanowire single-photon detectors inter-
acting in an integrated-photonics environment enables
neuronal operation with excellent energy efficiency, enor-
mous intra- and interchip communication bandwidth,
light-speed-limited latency, compact footprint, and rela-
tively simple fabrication. The optoelectronic hardware
platform is predicted to achieve 20 alJ/synapse event. By
comparison, many CMOS systems are on the order of
20 pJ/synapse event [9,24,25], or in more recent work,
hundreds of femtojoules per synapse event [26]. For these
reasons, the proposed platform appears promising for
advanced neuromorphic computing at the highest level
of performance, while the compact nature and room-
temperature operation of CMOS circuits will inevitably
remain better suited for a wide range of neuromorphic
applications.

The article is organized as follows. In Sec. II, we present
the foundational neuronal optoelectronic circuits and con-
sider each of the requisite constituent components. In
Sec. III, we discuss the coupling of these circuits as well
as mechanisms for reconfigurable memory enabling plas-
ticity and learning. In Sec. IV, we discuss concrete
applications of this hardware platform and consider the
spatial and power scaling. We conclude with Sec. V. Details
of the device design are presented in the appendixes.

II. OPTOELECTRONIC NEURONAL CIRCUITS

Information in neural systems is often referred to as
“spike encoded,” as interconnected neurons transmit infor-
mation to one another in pulses [27]. An individual neuron
(also referred to as a “processing unit,” or simply, “unit”)
receives pulses from a number of upstream neurons. The
neuron’s input-output relation will be nonlinear, and if
the integrated upstream signals exceed a certain threshold,
the neuron may itself fire a pulse to its downstream
connections. In this section, we describe superconducting
optoelectronic circuits to emulate several biological neural
responses. These circuits use integrated light-emitting
diodes (LEDs) as transmitters with optical detectors as
receivers. We next discuss the requirements for detectors
and LEDs for this platform, and we motivate our choice
from current technologies. Based on these choices, the
energy per firing event is calculated.

A. Detector choice

A neuron that uses photonic signals requires both a
source of photons and a photon detector. The choice of
detector is critical to the design and analysis of the
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hardware platform. The central aim of this hardware
platform is to achieve massive scaling to large numbers
of interacting neurons. Therefore, simple waveguide inte-
gration, extreme energy efficiency, high yield, and small
size are principal concerns. A review and comparison of
single-photon detectors can be found in Ref. [28]. Of all
existing detector options, only those based on supercon-
ductors allow single-photon detection in the infrared with
zero static power dissipation and single-photon sensitivity
to enable operation at the shot-noise limit. Because a
system based on superconducting detectors will enable
operation in this limit, it offers a useful platform to test the
role of noise in learning and evolution of complex,
dynamical systems.

There is an additional energy cost associated with
cooling superconducting detectors to cryogenic temper-
atures necessary for operation. Therefore, an alternative is
to move away from low-light levels and use integrated
detectors such as Si [29-31], Si defect [32,33], Ge-on-Si
[34-36], or III-V detectors, either bonded to Si [37] oron a
fully III-V platform [38]. Such detectors have low signal-
to-noise ratio requiring operation with significantly higher
optical powers than if superconducting detectors are
employed. While it may be possible to develop neuro-
morphic technology based on many of these detectors,
we choose for this article to focus on superconducting-
nanowire single-photon detectors (SNSPDs) due to the
high efficiencies (>90%) [39] at wavelengths below the Si
band gap, simple on-chip waveguide integration [40—46],
compact size, and speed. While operation at cryogenic
temperatures imparts a fixed energy cost, the energy cost
per operation is significantly decreased by allowing inte-
gration with superconducting electronics. Therefore, cryo-
genic systems are of use in a subset of neuromorphic
applications where the required system size is sufficiently
large that the savings in chip power outweigh the cryocool-
ing cost. Additionally, low-temperature operation allows
the use of certain LED designs that are not possible at room
temperature, as we discuss in Sec. I G.

B. Integrate-and-fire circuit

To encode information, the nodes of a neural network
must have a nonlinear input-output relationship. In the
proposed system, that nonlinearity is achieved via the
transition of wires from the superconducting phase to
the normal-metal phase. These phase transitions can be
induced by absorption of a photon or by exceeding the
critical current. A single SNSPD can be designed to fire
with close to unity efficiency upon absorbing a single
photon. We can think of this as an integrate-and-fire neuron
in the limit of a single-photon threshold. In order to obtain
an integrate-and-fire response with a threshold photon
number larger than one, SNSPDs can be configured in
parallel (step response) or series (continuous response). In
Fig. 2(a), we show a circuit diagram of the parallel SNSPD

(a) [b@ OXO) (C%\Q

SZ\ (d) D (e)

TS 8585

FIG. 2. (a) PND neuron circuit. (b) A PND with all wires
superconducting. (¢) A PND where one of the wires is driven
normal by absorption of a single photon, redirecting the current
through the other four. (d) A PND with two normal wires due to
absorption of two photons. (¢) A PND with all wires driven
normal by exceeding the critical current. A LED in parallel with
this PND now receives current, causing a firing event.

_@

O

_L_

|||—

array referred to as a parallel nanowire detector (PND)
[47,48]. One example of an integrate-and-fire circuit is
accomplished by placing the PND in parallel with a LED.
The thresholding mechanism is explained pictorially in
Figs. 2(b)-2(e). In the steady state, the PND is super-
conducting and has zero resistance. The semiconducting
LED has finite resistance, and, therefore, all current from
the source [, flows through the PND. When a sufficient
number of nanowires in the PND has been driven to the
normal state by the absorption of photons, the critical
current of the array is exceeded, the array becomes
resistive, and current is diverted to the LED. This diversion
of current and the subsequent production of light via carrier
recombination constitutes the firing event. The LED fires
with a step response, meaning that the LED output is
independent of the exact number of photons absorbed and
depends only on whether or not the threshold is exceeded.
The diversion of current to the LED allows the PND to
return to the superconducting state. Once this occurs,
current ceases to flow through the LED, the production
of light stops, and the device is reset.

The minimum duration of a spike event is determined by
the emitter lifetime. The integration time of the neuron can
be engineered to be within the range of a few hundred
picoseconds up to seconds. See Appendix A for a more
detailed discussion of the temporal response of the circuits.

To model the spike probability of this circuit, we conduct
Monte Carlo simulations of the device. The critical number
of absorbed photons 7, is given by

ne = Naw =2, 1)

lC
where Ny is the number of nanowires in the array, I, is
the bias current for the entire array, and i.. is the critical
current of a single wire. Equation (1) is derived in
Appendix B. Although each individual firing event
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FIG. 3. Monte Carlo simulation of spike probability. (a) PND
with ten SNSPDs. (b) The same simulation as (a) but with four traces
isolated for clarity. (c) The number of absorbed photons which gives
a 50% absorption probability plotted as a function of bias current.
Traces for PNDs with 10, 20, and 40 nanowires are shown.

generates the same current pulse across the LED (i.e., a step
response), a given number of input photons causes only the
neuron to fire with some probability. This is due to the
stochastic nature of the photon-absorption events, which
we discuss in more detail in Appendix C. The results of
these simulations are shown in Fig. 3. The probability of a
spike occurring is plotted as a function of the number of
photons incident on the device for various bias currents
ranging from 0.01 of the array critical current (/,.) to 0.99 ..
in steps of 0.01 /... In Fig. 3(a), we show the behavior of an
array with ten SNSPDs in parallel. Figure 3(b) shows the
spike probability versus the number of incident photons for
four values of bias current; these data are a subset of that
shown in Fig. 3(a), plotted separately to illustrate the shape
of the traces. The Monte Carlo simulations which produce
these plots are conceptually based on the neuron design of
Fig. 4 and proceed as follows. A given number of photons
is assumed to be incident on a PND array. The pulse is
assumed to pass each nanowire of the array in sequence. At

Upper metals

e
AN
& AR
=‘='41!‘\$=
i *4
S N e
— g
S e

FIG. 4. The spiderweb neuron. The scale bar is shown for
reference, but significantly more compact implementations of this
device can be achieved.

each pass, a random number between zero and one is
generated. If this random number is less than or equal to the
assumed absorption probability (1% in these calculations),
the number of photons in the pulse is reduced by one, and
the state of that nanowire is set to nonsuperconducting. The
photon pulse is allowed to pass each nanowire of the array
100 times. The number of photons in the pulse which cause
Eq. (1) to be satisfied is recorded for each bias current. The
result of 1000 such simulations is averaged to calculate the
probability for spiking to occur.

In Figs. 3(a) and 3(b), we observe that by adjusting the
bias current, we can adjust the shape of the firing function
versus photon number. Yet, adjusting the bias current
cannot tune the threshold with arbitrary accuracy. In
Fig. 3(a), it is evident that the spike probability for a
PND array with ten nanowires separates into ten bands.
Therefore, to achieve higher-photon-number differentia-
tion, more wires must be integrated. This point is illustrated
in Fig. 3(c). Simulations similar to that of Fig. 3(a) are
conducted for PND arrays with 20 and 40 nanowires, and
the number of absorbed photons (1n%**) for which the spike
probability reaches 50% is plotted versus the bias current.
This figure further illustrates that the resolution of the PND
array is limited by the number of nanowires in the array,
resulting in discrete steps in the number of photons required
for a spike event as a function of bias current. Because 7,
and Nyw in Eq. (1) are both integers, the floor of the ratio
I,/i. is effectively taken, and the utility of the current for
setting the threshold is discretized. For the case of
Nnw = 40, the steps become quite small, and the curve
is approximately continuous.

The simple model of Fig. 3 reveals that the PND array
can achieve a high dynamic range in that the threshold can
be tuned broadly in hardware by changing the number of
wires in the array (from a single nanowire up to potentially
thousands) as well as actively during operation by changing
the bias current. The state space of the receiver, which
scales as 2V can be made quite large in the regime where
thousands of nanowires comprise the PND.

Figure 4 presents a neuron design well suited to a system
with a few tens and possibly hundreds of connections. We
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refer to this device as the spiderweb neuron. In this design,
all upstream signals are combined on a single waveguide.
This waveguide enters a spiral region in which it passes a
number of SNSPDs which can be wired in series or parallel.
Photon wave packets can pass several tens of SNSPDs
several tens of times. The system can, thus, be engineered
to spread the absorption probability evenly over the
SNSPDs. In Fig. 3, the photons are assumed to pass each
nanowire 100 times with a probability of absorption of 1%
at each pass. The size of the detector portion of this neuron
can be made as small as 10 x 10 gm? and depends on the
thresholding number of photons. For a threshold of 1000
photons, the device is approximately 35 x 35 um”. We
discuss the model in more detail in Appendixes A and C,
and other neuron designs are discussed in Sec. III A. In the
calculations of Fig. 3, we assume all photons arrive in a
short pulse, so nanowire rebiasing dynamics can be
neglected. The complex dynamics of the PND receiver
array in the case of arbitrary photon-arrival times is the
subject of future investigation.

C. Differentiable response circuit

In biological systems, the neuron response is not that of a
step function but rather a nonlinear response taking the
form of a sigmoid. For certain neural-network back-
propagation algorithms, it is important that the response
be continuous and differentiable [49]. Figure 5(a) shows the
series-nanowire-detector (SND) [50] circuit which achieves
a continuous and differentiable nonlinear response. In
Fig. 5(b), we define a general optoelectronic circuit element
symbolizing either the PND (Fig. 2) or the SND (Fig. 5).
We envision the SND as a single length of superconducting
wire with incident photons spread along the length of the
wire. As in Fig. 2(a), the detector array is in parallel with
the LED. When a single photon is absorbed by the SND, a

@

b

(b)

p/s

FIG. 5. (a) SND circuit. (b) Component diagram indicating
either SND or PND array. This circuit symbol is used throughout
this article.

length of normal wire called a hot spot emerges in series
with the superconductor, leading to current redistribution
between the two branches of the circuit. For common
SNSPD materials, this resistance is approximately 1 kQ for
the typical wire width, while the length of the single hot
spot is on the order of 100 nm [51,52]. As more photons are
absorbed, more hot spots are created, and the resistance of
the SNSPD increases. This resistance causes the voltage
across the LED to increase, and sufficient current can be
driven through the diode to produce an optical signal.

While attempts have been made to utilize this effect for
number-resolving single-photon detection [50], we empha-
size that we propose to utilize this circuit in a very different
operating regime. To detect a single photon with near-unity
efficiency, a SNSPD is driven close to its critical current,
and the ensuing voltage pulse is measured across a 50-Q
resistor in parallel with the SNSPD. When a photon is
absorbed, a 1-kQ hot spot is produced, and nearly all
current is diverted to the 50-Q load. For the application at
hand, the device is not intended to observe events of one or
a few photons but rather hundreds to thousands. Thus,
diverting the current through a high-impedance diode with
I-V relationship approximated by Eq. (D1) enables thresh-
olding with some dynamic range for higher numbers of
absorbed photons. The model of this SND-based neuron
considers simple joule heating behavior in that each
photon-absorption event results in the same hot-spot
resistance, when in reality, the hotspot resistance depends
on the current through that branch of the circuit, which
depends on the temporal dynamics of the preceding
absorption events. A thorough study of these dynamics
is the subject of future work.

The electro-optic performance of the SND is analyzed in
Fig. 6. The nanowire resistance as a function of the number
of absorbed photons is shown in Fig. 6(a). In this model, we
assume the photons are incident upon a length of out-and-
back nanowire [40-46] with 100-ym attenuation length,
and it is assumed that two photons absorbed at the same
location along the nanowire give rise to the same resistance
as a single photon absorbed at that location. For this reason,
the nanowire resistance levels off as a function of the
number of absorbed photons. The current-voltage relation-
ship of the LED is highly nonlinear, as shown in the inset,
but above a certain number of absorbed photons, the entire
length of the absorbing region of the superconductor is
driven normal, and the absorption of additional photons
results in no additional resistance, as shown in Fig. 6(b) and
6(c). Hence, the device has an input-output relationship
with an exponential turn-on when a threshold number
of photons is absorbed followed by a flattening of the
output when the entire SND is driven normal. Figures 6(b)
and 6(c) show the photon input-output relationship for two
different nanowire designs with critical currents of 4 and
8 pA, respectively, demonstrating the ability to tune the
response in hardware. Note that the photon input-output
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FIG. 6. Electrical characteristics for SND with /5. = 100 pym.
(a) Resistance versus number of photons for the SND. Inset
shows the exponential current-voltage curve for the LED.
Photons out versus photons in for SNDs with (b) i. =4 uA,
n=1% and (c) i. = 8 pA, n = 0.1%. Here, 1 is the efficiency of
the LED.

relationship depends on the refractory period, as we discuss
in Appendix A.

Based on the analysis of Fig. 6, in the SND-based
neuron, the normal-state resistance of the SND and the
applied bias determine the maximum voltage that can be
achieved across the LED. This resistance and bias, in
conjunction with the optoelectronic design of the LED,
determines the number of photons generated, in contrast
to the case of the PND where the number of photons
generated is a step response determined by the bias current.

Both the PND-based integrate-and-fire circuit of
Fig. 2(a) and the SND-based continuous-response circuit
of Fig. 5(a) may offer utility for neuromorphic computing.
For the case of the PND, the number of nanowires in the
array is on the order of the number of photons required for
threshold. This is also the order of the number of connections
each processing unit makes to other units. Biological
systems reveal that scaling to systems with thousands of
connections per neuron is desirable [16]. To achieve this
number of parallel receiver elements, several geometrical
configurations can be utilized to arrange approximately

1000 micron-scale SNSPD elements, and the exploration of
this design space is the subject of future work.

The SND device straightforwardly lends itself to hun-
dreds or thousands of connections. In this case, we can
expect the thresholding number of photons to be approx-
imately 1000, and, therefore, we want a nanowire with the
length of 1000 hot spots. Given the hot-spot length of
100 nm, the entire length of the nanowire is on the order of
100 pm, as simulated in Fig. 6. Such a length becomes
quite compact when coiled in a spiral [see Fig. 11(b)], and
as we discuss in Sec. III A, this configuration is well suited
to receive inputs from hundreds to thousands of wave-
guides. We discuss the energy requirements of the SND and
PND circuits in Sec. II F.

D. The nTron current amplifier

Introducing an amplifier into the circuits described in
Secs. II B and II C allows decoupling of the firing threshold
and LED gain. In a superconducting circuit, amplification
can be achieved using the nTron, a three-terminal super-
current amplifier [53]. When the current in the gate terminal
exceeds the critical current, the path from the source to
drain is driven normal, diverting the bias current to the
parallel load. This recently developed device has been used
to drive loads of tens of kilohms, making it suitable for this
application.

In Fig. 7(a), we show a variation of the circuit of
Fig. 2(a), but instead of driving the same current /, through
the LED after firing, this circuit utilizes a nTron current
amplifier to provide gain to the light emitter. The nTron
allows us to decouple the current used to bias the receiver
from the number of photons produced in the firing event.
Note that in this configuration, /, can be less than [,
making it possible to cover a broad range of input-output
responses. The circuit of Fig. 7(a) also expands the state
space in which information can be encoded.

E. Other neuromorphic circuits

We introduce the basic neuromorphic circuits in Secs. II B
and II C. We now introduce several variants on those cells
which enable diverse functionality desirable for neuro-
morphic computing.

Figure 7(b) shows an alternate configuration in which the
LED is driven by current /, until a firing event occurs and
cuts off the current supply. This circuit is shown with the
LED below the nTron, but it can also be implemented
without a nTron. This circuit is an example of an integrate-
and-stop-firing neuron which can be useful in neuromor-
phic architectures to provide a means of stimulating various
regions of the cortex until a certain level of activity is
reached, at which point the firing neuron is quenched.

Another essential functionality of neuromorphic circuits
is that of inhibitory connections [54,55]. Most neuronal
connections provide feedforward excitation wherein an
action potential produced by upstream neurons increases
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FIG. 7. Various neuromorphic circuit configurations. (a) PND
with nTron amplifier. (b) Integrate-and-stop firing. (c) Neuron
with the possibility for both excitatory and inhibitory excitation.
In this figure, green corresponds to photons inhibiting firing and
red to photons exciting firing. These photons can have different
colors. (d) Firing of the upper neuron inhibits firing of the lower
neuron. (e) Circuit for achieving self- and upstream feedback.

the probability of action potentials being produced by
downstream neurons. But biological systems also exhibit
connections wherein the firing of upstream neurons sup-
presses the probability of firing events by downstream
neurons. Figure 7(c) shows a configuration which achieves
this. The lower portion of the circuit is identical to that
of Fig. 7(a), but the current /; feeding the receiver first
passes through a preliminary nanowire array. Absorption of

photons in this region of the circuit reduces the current
through the primary receiver, increasing the threshold
photon number. Waveguides from different upstream neu-
rons can be routed to these two different ports to establish
inhibitory or excitatory connections. In Fig. 7(c), the inputs
to the two receivers are drawn with different colors,
emphasizing the possibility that integrated-photonic filters
placed before the neuron can be employed to route different
frequencies to the two receivers. With this approach, we
can employ the use of color to perform inhibitory or
excitatory functionality in much the same way that different
neurotransmitters perform inhibitory or excitatory func-
tions in biological systems [54]. We note that low-loss
spectral filters performing this function are commonplace
in many integrated-photonic applications.

From an architectural standpoint, it may also be useful
to establish purely electrical inhibitory connections. In
Fig. 7(d), we show a circuit in which two neurons, each
with only a single excitatory port, are connected in series.
In this configuration, firing events in the upper neuron
inhibit firing events in the lower neuron. Such a configu-
ration is useful for moderating the net firing activity of
groups of neurons.

It is also advantageous to have a means by which a single
neuron can moderate its own firing activity. Such behavior
is straightforward to implement, as is shown in Fig. 7(e). A
power tap is added to the output of the LED, and some
fraction of the produced light is incident upon a receiver in
series with the current supply to the receiver array. The
superconducting wire in this location may be wider than the
integrating receiver, and it, therefore, may be designed to
quench the current only when a large number of photons
drives the superconducting wire normal.

In addition to self-feedback, biological neurons send
both downstream signals as well as upstream signals when
an action potential fires. The upstream signals are believed
to be critical for spike-timing-dependent plasticity and
synchronization of circuit behavior via threshold modifi-
cation. To briefly hint at how self-feedback may be
implemented in the proposed platform, the green arrow
leaving the LED in Fig. 7(e) indicates that a power tap can
also be used for upstream feedback. The color of this arrow
is meant to remind us that it may be advantageous to use
different frequencies of light for downstream and upstream
signaling. A LED can be fabricated to emit at two distinct
wavelengths or across some region of bandwidth, and
integrated spectral filters can be employed to route the two
signals. Alternatively, two different LEDs coupled to two
different waveguides can be utilized.

In this section, we present several superconducting
optoelectronic neuromorphic circuits covering a wide
range of functions. We refer to members of this class
of circuits as single-photon optoelectronic neurons
(SPONSs). We now proceed to discuss additional aspects
of their performance.
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F. Energy consumption

We introduce the basic SPON circuits of the proposed
neuromorphic computing platform, and we are in a position
to estimate the energy required for a firing event. A
complete neuron firing event involves supplying current
to the inductors associated with all superconducting wires
(including the detectors), charging the capacitor associated
with the LED p-i-n junction, and driving current through
the LED to produce light. For the case of the PND circuit of
Fig. 7(a), we analyze the energy consumption of each of
these three contributions.

In this model, we assume one inductor Lgngpp in the
PND array for each photon, as well as a series inductance to
achieve the desired temporal response (see Appendix A).
We assume each element of the PND is 500 squares, while
the entire receiver array is in series with 5000 squares of
inductance. At low photon numbers, the energy consump-
tion from inductance is dominated by the series inductance,
but for higher numbers, it is dominated by the PND array and
grows linearly. The energy required for photon production is
calculated simply as E n, /n, where E, is the band gap of Si,
n,, is the number of photons created, and # is the efficiency.
Thus, within this model, the contribution to energy con-
sumption due to photon creation is linear throughout. We use
E in this model because it is an upper bound on the photon
energy. Any photon transmitted through a Si waveguide will
have energy below the band gap. We assume a super-
conducting material with a sheet inductance of 400 pH/[J
(such as WSi), and a parallel-plate capacitive model for the
LED as described in Appendix D.

In Fig. 8(a), we plot the total energy per photon as a
function of the number of photons emitted for four values
of LED efficiency. We find that with a unity-efficiency
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FIG. 8. (a) Energy required to generate a single photon versus
number of photons emitted for four different LED efficiencies.
(b) Contributions to total energy consumption for a 10%
efficient LED.

LED, the energy per photon can be as low as 2 aJ when
larger photon numbers are created. This remarkably low
number is still an order of magnitude greater than the
0.16 aJ stored in the hv of the light quantum itself
(assuming A = 1.22 ym), with the extra energy going to
supplying current to the inductors and charge to the
capacitor. The figure reveals that producing LEDs with
efficiency above 10% has only a modest benefit, as the
contribution to energy consumption from inductance will
become the limiting factor. However, for thresholding on
larger photon numbers, as is desirable for neurons with
more connections, the inductance per photon can likely be
reduced. While a 100% efficient LED may not be realized,
even a 1% efficient LED leads to 20 aJ/synapse event. This
energy efficiency illustrates the promise of superconduct-
ing electronics and faint-light signals.

In Fig. 8(b), we show the contribution to the total energy
from the various circuit elements for the case of a 10%
efficient LED. This efficiency is chosen for this plot
because it is the value at which the contributions from
inductance and photon production are nearly equal for
photon numbers near or above 100. For low photon
numbers, the dominant contribution is in charging the
LED capacitor. Because of the highly nonlinear LED
current-voltage relationship, a small increase in the voltage
across the LED leads to a large gain in current. The
capacitive energy is nearly constant across the range of
photon numbers considered here, and for larger photon
numbers, it makes a negligible contribution.

In the case of the SND circuit of Fig. 5 with parameters
as shown in Fig. 6(b) driven at 0.6 /. and receiving 10°
photons, and assuming a hot-spot recovery time of 50 ns
and a LED with 1% efficiency, the device achieves
100 aJ/synapse event. While not as efficient as the PND
neuron, this device design still lends itself to massive
scaling, as we discuss in Sec. IV B.

We believe a LED with 1% system efficiency is realistic
in a nanophotonic environment at cryogenic temperature
and with faint-light levels desired. Therefore, we use
20 aJ/photon as a representative number for what this
platform can hope to achieve. We use the energy per photon
as the energy per firing event per synapse (commonly
referred to as the energy per synapse event), because the
goal of the system is to produce neurons which threshold on
a number of photons roughly equivalent to the number of
connections made by the neuron. A neuron receiving 100
signals from upstream will threshold on 100 photons. It will
produce 100 photons in a firing event and distribute them
amongst 100 downstream synapses. Therefore, the energy
per synapse event is calculated as the total energy of the
firing event divided by the number of connections. In our
case, for systems with 100 to 10 000 connections per unit,
20 aJ/synapse event is a realistic number.

The second law of thermodynamics informs us that to
keep a system at 2 K, 150 W of cooling power is required
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per watt of power dissipated at 2 K. Assuming a 15%
efficient cooling system, this gives an estimate of 1 kW of
cooling power per watt of device power. Multiplying our
conservative estimate of 20 aJ/synapse event by this factor
of 103, the hardware achieves an energy consumption of
20 fJ/synapse event. Similarly, while the human brain uses
20 W to perform roughly 10'# synapse events per second, a
power budget of 20 W corresponding to 20 mW of device
power will enable our system to achieve 10'> synapse
events per second. Success in developing LEDs with
higher efficiency, reduction of the device inductance, and
utilization of superconducting materials operating at
higher temperatures will further increase the advantage.
Additionally, while transistor technologies inevitably leak
current, superconducting devices can be engineered to draw
no power in the steady state and can be dc biased without
loss using Josephson junctions [19].

G. Electrically injected light source

Having introduced the proposed optoelectronic neuronal
circuits, we now proceed to analyze the operation and
performance requirements of the LED. As we discuss in the
previous section, we target operation efficiencies of around
10%. This efficiency is relatively easy to attain in III-V
semiconductors such as GaAs and InP. However, for the
application at hand, massive scaling is a priority, and
massive scaling requires photonic electronic process inte-
gration. A single source with 100% efficiency is less
desirable than the ability to scale to millions (and even-
tually billions) of sources each with 1% efficiency. We also
require low-loss waveguides with the potential for recon-
figurability (see Sec. III).

One option is to implement these devices on a GaAs or
InP substrate. These have been the materials of choice for
photonic integrated circuits where light sources are of the
utmost importance. Quantum-dot-well LED lasers can be
electrically injected with high efficiency on this platform
[38] and combined with high-index (III-V) waveguides to
form the synaptic connections described in Sec. I A.
Another option is to implement the light sources in the III-
V material and then couple to low-temperature deposited
materials with low-loss waveguides [46,56] such as a-Si or
SiN. A III-V platform has the advantage of high-efficiency
light sources, but massive scaling on III-V substrates has
historically been more difficult and expensive than on Si
substrates. This drawback, while not fundamental, may
prove significant in halting the development of this tech-
nology, especially since high emitter efficiencies are not a
strict requirement for neuromorphic computing.

Another option is hybrid III-V silicon integration.
Hybrid II-V silicon has followed one of three approaches
57]]: direct mounting, wafer bonding, or III-V material
grown on Si. While direct mounting or wafer bonding are
currently the preferred methods for optical interconnect
applications, these applications typically require a single

source that can be diverted to multiple components. For the
proposed neuromorphic computing platform, we desire a
separate electrically injected source for each neuron. Direct
mounting, therefore, is not an option, but wafer bonding
may be able to achieve the yield and reproducibility
required for this application. Direct heteroepitaxial growth
offers the most promise for hybrid integration with this
system. In this case, the desired light source is templated
III-V quantum dots grown in the intrinsic region of a lateral
Si p-i-n junction. While great progress in this field has been
made [58-64], additional effort is needed to achieve the
waveguide-integrated sources required for this system.
Promisingly, electrically injected single-photon emission
has been demonstrated in these materials [58—-61]. While
single-photon emission is not a requirement for the present
application, a desirable property of the emitters is that they
have low-photon-number variance (defined as the standard
deviation of the number of photons output for a given input
current pulse over an ensemble of measurements). The fact
that single-photon emission has been demonstrated in
various systems indicates the possibility to bring this
photon number variance down to the range of a few
photons.

A major disadvantage of this heteroepitaxy approach is
the significant cost and difficulty associated with growing
these materials. As this approach matures, this material
platform may become more desirable. Another similar
approach using Ge [65] or Ge quantum dots [66] may
also prove useful.

A commonly overlooked light source that may prove
particularly promising for this application is emissive
centers in Si [67]. These have proved unattractive for
optical interconnects due to very low efficiencies at room
temperature. Much work in this area was motivated by the
prospect of room-temperature light sources [68] for CMOS
and telecommunications [69] and, in particular, room-
temperature lasers. This includes various point defects in
Si including Er [70-73] and other emissive centers giving
rise to electric-dipole-mediated transitions [67,74-82], as
well as band-edge or Si nanocrystal-based emission proc-
esses [83—85]. While the efficiencies of many of these
emitters fall off exponentially with increasing temperature,
the SNSPDs required for this application operate at
cryogenic temperatures where many point defects have
suitable efficiencies. A large number of emissive centers are
under consideration for this application [67].

The main challenge is the successful integration of large
numbers of emitters with the ultimate goal being billions
integrated in a system. Many emissive centers can be easily
fabricated in a CMOS-compatible process via ion implan-
tation and annealing [67,75,80-82,86,87]. A schematic of
the desired device is depicted in Fig. 9. A p-i-n junction is
created in a ridge waveguide. Emitters are located only in
the ridge (intrinsic) region via lithographic patterning, and
light is obtained from forward biasing the junction. While
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FIG. 9. Schematic of a monolithically integrated electrically
injected emissive-center LED in Si for the proposed neuro-
morphic computing application.

this is a relatively standard configuration of a LED, for the
application at hand it is important to keep the emitters
localized only in the intrinsic region of the LED, as their
presence elsewhere in the waveguides leads to intolerable
loss. Thus, the ability to lithographically control the
location of emitters is crucial.

With coimplantation of multiple impurities, it is possible
to add additional (color) degrees of freedom to the platform.
Similarly, on a III-V platform, we can take advantage of
inhomogeneous broadening of the quantum-dot spectrum
and tuning of dot size via templating or growth conditions.

We note that the neuromorphic computing platform
proposed here is not tied to any one of these light sources,
and indeed there are other possible light sources that we
have not discussed. For the calculations throughout the
present work, we assume LEDs with 1% efficiency at
1.22 ym in a waveguiding medium with index of 3.52 with
a cladding of 1.46 above and below.

H. Summary

We have now presented several superconducting opto-
electronic circuits capturing a broad range of neuromorphic
behaviors. We have presented basic thresholding SPON
circuits of Figs. 2 and 5, variants on these circuits as
shown in Fig. 7 which enable gain, integrate-and-stop, and
inhibitory connections, and circuits with self- and upstream
feedback, as shown in Fig. 7(e). We now discuss the means
by which we propose to connect these processing units.

III. CONNECTIVITY

Of central importance to the implementation of the
proposed neuromorphic platform is the network of wave-
guides that connect the processing units. Optical wave-
guides offer the possibility for improved performance over
electrical connections by allowing individual neurons to
integrate signals from many sources without the need for
time multiplexing. Because of the additional energy cost
associated with the capacitance of additional wires [88],
electrical neurons must utilize shared wires. Voltage pulses
from different neurons on the same bus will interact. To
prevent this, pulses must be delayed in time.

In the following section, we discuss how a network of
optical waveguides can be implemented to form the
connections between the SPON circuits presented in
Sec. II. Each neuron has a waveguide exiting the LED
and leading to many branching waveguides, which we liken
to the axon and its arbor, and another set of integrating
waveguides combining signals received from upstream
neurons, which we liken to the dendritic arbor, as shown
schematically in Fig. 1. The connections between these
input and output waveguides act as synapses in this
network. We outline a mechanism for varying the strength
of the connections between various input and output
waveguides, which is similar to varying synaptic weights
in biological systems. We emphasize that other methods of
connecting neurons in three dimensions using the same
optoelectronic neurons are also possible. One can envision
using gratings, flat lenses [89], metasurfaces [90,91], or
optical phased arrays [92,93] to direct signals between
neurons. Additionally, electrical means of changing syn-
aptic weights at the receivers may prove useful.

A. The dendritic arbor

The dendritic arbor of a neuron collects signals from
upstream neurons. For optoelectronic neurons, the equiv-
alent of this is a waveguide network that combines optical
signals from many other neurons to the neuron for
detection. At each neuron, the device must be designed
to combine the modes from a large number of waveguides
on a PND or SND with low loss. There are likely many
ways to achieve this functionality, and here we explore two.

A schematic of the first approach is presented in
Fig. 10(a) showing the spiral waveguide receiver of the
spiderweb SPON, the nTron, and the LED emitter. The
major challenge of this device design is the merging of
many single-mode waveguides into one multimode wave-
guide which enters the spiral. The proposed technique for
accomplishing this is shown in Fig. 10(b). Two single-
mode waveguides cannot be combined into one single-
mode waveguide without significant loss [94]. However,
two single-mode waveguides can be combined into one
dual-mode waveguide nearly losslessly. In Fig. 10(b),
several single-mode waveguides combine their power on
a given main spine. That spine can receive at its input one
single mode. As it continues to receive more modes, its
width must grow. The lower-order modes of this adiabati-
cally tapering multimode waveguide can pass each new
single-mode input nearly losslessly as long as the width of
the spine has grown to support an additional mode by the
location of the next input waveguide. More detail regarding
the optical design of this structure is given in Appendix E.
Modal simulations reveal that a waveguide width of 2 ym
in 200-nm-thick Si is sufficient to support several tens of
modes at 1220-nm wavelength, each with tolerably small
bending loss with a 10-um radius of curvature. Therefore,
this dendritic arbor and receiver design is suitable for the
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PND receiver

FIG. 10. The spiderweb neuron. (a) Overview of the device.
(b) Dendritic arbor design which combines light from multiple
neurons.

compact combining
upstream neurons.
The second proposed design is better suited to scaling to
larger numbers of inputs. It is shown in Fig. 11. In this
design referred to as the stingray SPON, the input wave-
guides are directly combined on a landing pad housing the
PND or SND array. The implementation with a PND is
shown in Fig. 11(a). As is shown in Appendix E, the
minimum spacing required to avoid modal coupling is
600 nm at the input of the cell. From these input ports, the
waveguides enter an array of sine bends where their spacing
is reduced to enter the smaller landing pad containing the
nanowires. In this sine region, intermodal coupling is
tolerated (and perhaps even desirable to spread the photons
across the nanowires), as all waveguides ultimately termi-
nate on the detector array. Figures 11(b) and 11(c) show 2D
finite-difference time-domain (FDTD) simulations of the
structure. Figure 11(b) shows the propagation of light into
the receiver body in the presence of absorbing nanowires,
while Fig. 11(c) shows propagation without the absorbing
nanowires. Here, 100 waveguides terminate on a receiver
body with less than 0.2-dB insertion loss from any port,
with the outermost ports giving the most loss, and the
innermost ports achieving near-zero insertion loss. In this
context, insertion loss refers to light entering and leaving
the simulation without being absorbed in the nanowire
array. Calculated quantitatively with pulsed excitation, we
find the majority of loss is due to light scattering and not
entering the detector array rather than being transmitted
through the receiver due to inadequate absorption. The
entire receiver of Fig. 11(b) occupies 30 x 30 um?.

signals from approximately 40

Waveguides

4

Sum

il

(©

FIG. 11. (a) Schematic overview of the stingray neuron.
(b) FDTD simulation of the dendritic arbor for the stingray
neuron with SNSPDs present to absorb the light and (c) without
SNSPDs present.

A design with 204 input waveguides and less than 1-dB
insertion loss with a footprint of 60 x 60 ym? is also found.
For larger numbers of inputs, the simulations become
cumbersome. Yet, scaling to larger systems is clearly
possible.
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For threshold-based computation, processing units with
large numbers of connections are advantageous [16,95].
Biological systems achieve massive interconnectivity with
3D branching networks and dedicated wires for each
connection. To achieve this level of massive interconnec-
tivity, we propose the use of multilayer photonics. Recent
work has demonstrated the utility of low-temperature-
deposited dielectrics [46,96] and superconductors [46]
for scalable integrated photonics. For future massive
scaling, we propose the use of waveguide routing networks
and dendritic arbors spanning several—and possibly up to
tens—of photonic and superconducting layers. A hybrid of
the aforementioned spiderweb and stingray neuron designs
can be implemented in which higher vertical-mode orders
are utilized as well as higher lateral-mode orders, and
massively multimode waveguides deliver their photon
pulses to SNSPD receivers. These receivers can be imple-
mented between waveguiding layers. At present, the
technical challenge of building networks with processing
units supporting tens to hundreds of connections is a
serious one, so we mention the fully 3D multilayer
photonic approach [97] to emphasize that this neuromor-
phic platform holds promise for scaling far into the
technological future, but such sophisticated processing is
not required to implement even very advanced systems with
2D interconnectivity supporting hundreds of high-band-
width connections per unit.

B. The axon and its arborization

The output waveguide (axon) from a unit’s LED must
split into as many branches as there are connections to be
made. While such a power splitter may seem to be the time-
reversed case of the dendritic arbor, the initial conditions
make this device significantly easier to implement. In the
case of the dendritic arbor, one cannot assume the optical
field will populate the arbor modes in a particular manner.
Thus, while a power splitter can readily couple from a
single-mode waveguide into many other single-mode
waveguides, multiple single-mode waveguides cannot
simply merge their power into a single-mode waveguide
unless a particular distribution of power is present in the
input waveguides. Such power splitters [98] can be made
with a small footprint and low loss. It is straightforward
to generalize such power splitters into the third dimension
with multilayer photonics, and such an implementation
will enable thousands of synapses with a volume of
10 um?3 /synapse.

C. Learning, reconfiguration, and plasticity

An important aspect of any neuromorphic computing
system is the ability to establish the strength of interaction
between the connected units. These connection strengths,
often referred to as the weight matrix, are important for
memory and learning. This weight matrix determines how
much of the light from the firing of a particular neuron is

coupled into any other neuron, analogous to the synaptic
strength between two neurons in a biological system.

As a first implementation, fixed connection weights are
quite useful for many computing applications [9]. This can
be readily accomplished by branching the output waveguide
from one neuron and routing those waveguide branches to
various downstream target-neuron input waveguides.

However, while fixed interaction weights are useful as a
preliminary tool, one wants to develop a system in which
the interaction strengths are variable. This is challenging at
cryogenic temperatures, where modulators that rely on
either the thermo-optic effect or free-carrier injection are
ineffective, while electro-optic switches require too much
space for this application. We propose the employment of
electromechanically actuated waveguide couplers sche-
matically depicted in Figs. 12(a) and 12(b). The amount
of light coupled from one waveguide to the other is
determined by the distance between them. These wave-
guides can be coupled either vertically [Fig. 12(a)] or
laterally [Fig. 12(b)]. This distance can be controlled
electromechanically, and anywhere from 0% to 100% of
the light can be coupled from one waveguide to the other.
The minimum coupling will be set in hardware, as the gap
at 0 V is the maximum. Any applied voltage (positive or
negative) produces an attractive force between the two
waveguides. We then want activity within the circuits to
build up voltage between the waveguides and increase the
strength of the synapse. Such couplers have recently been
demonstrated [99] in a highly scaled configuration. In
Ref. [99], 4096 such switches were operated with >60-dB
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Electrodes

Membrane
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FIG. 12. Photonic synapses with electromechanically tunable
coupling. (a) Interplane waveguide coupler. (b) Lateral wave-
guide coupler. The inset shows an abstract representation of the
synaptic circuit element used in subsequent network diagrams.
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extinction ratio and actuation voltage of 40 V. Because of
the relaxed visibility requirements for this application, we
expect much lower voltages will suffice.

To assess the utility of such synapses for neuromorphic
computing, one must further specify the target application.
To this end, we separate potential applications into two
classes, which we refer to as supervised and unsupervised
systems. For supervised systems, an input stimulus is
injected into the system, the output is recorded, and the
weight matrix is updated through a training algorithm to
improve the output relative to a target. For such an
application, one anticipates using control electronics to
interface with the neuromorphic system, and arbitrary
voltages can be applied to the various synaptic elements.

For more highly scaled implementations emulating the
behavior of biological organisms, we turn our attention to
unsupervised systems. Here it is important that each
synapse be as small as possible to enable massive scaling,
but it is also important that voltages be modest, as we want
the activity in the circuits to be capable of reconfiguring
the synapses. In particular, we want firing events from
upstream neurons followed closely by firing events by
downstream neurons to place charge on this MEMS
capacitor (waveguide coupler) and thereby decrease the
gap between the two waveguides and increase the optical
coupling and, therefore, the synaptic strength. This
coordinated charging of the membrane will accomplish
spike-timing-dependent plasticity, an important learning
and memory reinforcement mechanism in biological
neural systems. In this mode of operation, we envision
eliminating external control circuits and achieving the
capacitor charging using integrated superconducting cir-
cuits to distribute current based on photon-absorption
events. The storage of charge on a capacitor required for
this device operation is very similar to dynamic random-
access memory (DRAM), which is a mature technology.
While implementing what is essentially spike-timing-
dependent DRAM with suspended waveguide membranes
presents a technical challenge, it offers a promising means
to implement truly neuromorphic learning within this
optoelectronic platform.

While the size of mechanical waveguide couplers and the
voltages required for their operation are commensurate with
the requirements for scaling this technology, an implemen-
tation of variable synaptic weights which does not rely on
mechanically mobile components will be advantageous. It
may be possible to implement synapses in the electronic
domain by making use of superconducting circuit elements
or magnetic elements such as magnetic tunnel junctions or
magnetic Josephson junctions [23]. Such an approach to
memory will be investigated in future work. Additionally,
we note that a variable weight can be achieved with a
tunable Mach-Zehnder interferometer. However, the size of
such devices makes them poorly suited to highly scaled
systems.

IV. NETWORKS AND SCALING

We have now discussed neural circuits based on optical
signaling. We have discussed various means to connect
these optical and electrical signals in a time-varying manner
with event-based plasticity. In Fig. 13, we again show the
inhibitory SPON of Sec. IIC and introduce an abstract
symbol to represent the circuit labeled N, which is used in
the following sections as an element in networks. We refer
to networks comprising interconnected SPONs as super-
conducting optoelectronic networks (SOENS). In this and
the following schematics, we represent electrical inputs
and outputs as black arrows running vertically and optical
inputs and outputs as colored wavy arrows running
horizontally. In Fig. 13, we emphasize that the optical
processing unit can receive and transmit electrical and
optical signals each in two ports. The electrical signals
affect SPON threshold and gain, while the optical ports are
either excitatory or inhibitory. This full functionality need
not be employed, and as few as one optical input and output
and one electrical input can be utilized.

We now illustrate how the circuits presented in Sec. Il
may be put to use in systems by considering the canonical
example of the multilayer perceptron (MLP) in Sec. IVA.
This leads us into a more general discussion of SOEN
scaling in Sec. IV B.

A. Multilayer perceptron

Perhaps the most studied implementation of neural
networks is the MLP [49] and its contemporary counter-
part, the convolutional neural network (CNN) [100]. Our
consideration of the MLP provides insight into other
applications of this platform in terms of important quan-
tities such as speed, size, and dynamic range.

Generally speaking, the MLP consists of a number of
inputs incident on a weight matrix (array of synapses)
which feeds into a layer of neurons. The output of this layer
of neurons projects to at least one more layer of weights and

Inhibitory
i

Excitato-l:\)?>

FIG. 13. Abstract symbol definition for general neuron with
inhibition and gain.
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FIG. 14. (a) Schematic of the MLP implemented with the
SOEN platform. (b) Cross section in the x-z plane. (c) Three-
dimensional schematic of stacked die. (a) illustrates layers of
neurons in the network, (b) illustrates planes of routing wave-
guides, and (c) illustrates sheets of stacked die.

neurons, and often several, before being output from the
system. In Fig. 14(a), we show a schematic diagram of how
such a MLP is likely to be implemented. Such a MLP can
be achieved with a single plane of routing waveguides or
many such planes. Here, we use “plane” to refer to
vertically stacked dielectric layers to avoid confusion with
the processing layers of the MLP progressing horizontally
in Fig. 14(a). The processing layers of the MLP are labeled
in Fig. 14(a), and the cross-sectional view of planes of
routing waveguides is shown in Fig. 14(b). Stacked sheets
of die are illustrated in Fig. 14(c).

Several factors determine the functionality of a MLP.
These include the dynamic range of the inputs, the speed
with which the inputs can be received, the bit depth of the
synaptic weights, and the speed with which the weights can
be reconfigured. From Fig. 6(c), we see that for 0.7 /., the
response turns on at around 500 photons, and it roughly
levels out by 3000 photons. For this case, the dynamic range
of the inputs is, therefore, log,(2500) ~ 11 bits. The speed
with which inputs can be received is limited by the device
reset time of 50 ns, so a20-MHz input rate is achievable. The
bit depth of the weights depends on the number of discrete
values of coupling achievable between the two waveguides
involved in a synapse, and further investigation is required to
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FIG. 15. (a) Length and width of layer versus number of

neurons in a layer assuming each neuron in a given layer is
connected to each neuron in the next layer. (b) Number of
neurons per centimeter squared versus the number of connections
per neuron.

report a valid estimate for this number. The speed with which
the weights can be changed is at least 1 MHz [99].

The number of inputs, the number of connections per
neuron, and the number of MLP layers all affect the size
and complexity of MLP that can be fabricated on a given
die. In Figs. 15(a) and 15(b), we consider a model of these
factors to estimate what may be achieved with reasonable
size. Figure 15(a) assesses the length L; and width W, of a
single MLP layer, as given by Eq. (F1) as a function of the
number of neurons in a MLP layer N, for two different
values of the number of vertically stacked waveguide
planes Nwg. The model assumes a feedforward configu-
ration wherein every neuron in a given MLP layer is
connected to every neuron in the next MLP layer with a
variable-weight connection. The total width of a MLP layer
is also plotted. See Appendix F for more information. If we
assume that a 10 x 10 cm? die is the largest we want to
fabricate, we find the width limits the number of con-
nections per neurons to 700, and we are, thus, considering
MLP layers with 700 inputs and 700 neurons per layer. For
the case with Nywg = 10, the length of a MLP layer with
700 connections per neuron is 1 mm. We can, therefore, fit
100 such MLP layers on the 10 x 10 cm? die. The total
number of neurons is 70 000. A MLP or CNN with 700
inputs, 700 connections per neuron, and 100 layers
receiving inputs at 20 MHz with weight reconfiguration
speed of 1 MHz is a very powerful tool. While it is not
necessarily optimal to work with a neural network of 100
layers, as shallower networks are advantageous for several
reasons [95], we present this model to quantify SOEN
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spatial scaling keeping in mind that network depth can be
traded for a larger number of inputs or larger connectivity.
As a point of comparison, the recent demonstration of a
computer defeating the world champion Go player input
the state of the board as a 19 x 19 matrix (361 inputs)
to the 13-layer-deep neural network [10]. The bit depth of
the synapses proposed here is unlikely to reach the 32 bits
utilized in software implementations running on modern
graphics processing units, but there are likely many
applications in which such a constraint is minor compared
to the system advantages of speed, complexity, and
connectivity.

B. Scaling

To further pursue this discussion of the scaling of the
MLP (or other similar neuromorphic computing systems),
we consider the number of neurons in an area of 1 cm?
versus the number of connections per neuron, N.g,,-
Figure 15(b) shows the results of the model of Eq. (F1)
for Nwg =1, 10, and 100. If N, = 10 is sufficient
for a given application, we can achieve a neuron density of
400 000 neurons per centimeter squared. Because of the
size of the interlayer couplers, this is achieved more
compactly with Nwg =1 than with Nywg = 10. For
N onn 10 the range of 100 to 1000, it becomes advantageous
to utilize Nywg = 10. For N, = 100, over 10000 neu-
rons will fit within a centimeter squared, and for
Neonn = 1000, 300 neurons fit within a centimeter squared.
It does not become advantageous to use Nyg = 100 until
Neonn = 2000, and even then the gain is modest. To
achieve 10000 connections per neuron (comparable to a
mammalian brain), only a few devices fit within a
centimeter squared (given the present model), and we
are left in awe of the massive interconnectivity and scaling
achieved by the bottom-up nanofabrication of biological
organisms.

While the scaling to 10 000 connections per neuron is
formidable, the range of N ,,, = 100-1000 is promising
and technologically consequential. As is the case for
scaling CMOS neuromorphic platforms, utilization of die
tiling [9] plays a crucial role in this technology. For this
purpose, the SOEN platform is in an excellent position. Die
can be tiled in 2D with several types of connectivity to
adjacent die including electrical, single-flux-quantum, and
photonic communication over interdie bridge waveguides.
Additionally, tiling in the third dimension is possible with
the usual bump-bonding approach for electrical connectiv-
ity as well as with free-space optical signals sent from one
chip using vertical grating couplers and received by a chip
above or below using SNSPD arrays [101]. Information
over such links can be encoded temporally, spatially, or in
frequency with forgiving alignment tolerances. From
Fig. 15(b), we find that 700 neurons with 700 connections
per neuron can fit on a 1 x 1 cm? die if ten waveguiding
planes are utilized.

To analyze long-term scaling, we consider a system on
the scale of the human brain. To this end, we envision tiling
a 215 x 215 array of these die in a sheet to build a system
with 32 x 10® neurons. Such a sheet will be approximately
1 mm thick. To achieve the scale of the brain, 2150 such
sheets need to be stacked with intersheet coupling to
construct a cube 2.15 m on a side and with a total volume
of 10 m>. The system then comprises 7 x 10'° neurons or
roughly the number contained in the human brain.

To achieve such a system, we envision sheets of die
mounted in trays with in-plane fiber-optic connections
leaving from the perimeter of the trays and out-of-plane
free-space grating-to-SNSPD interconnects, thus, enabling
the trays to slide laterally. Achieving intersheet connectiv-
ity without physical bonds enables access to die within the
volume of the cube for diagnostics, repair, and local
iteration and evolution. Massive interconnectivity between
neurons on different die can be accomplished using such
grating interconnects [89-93].

Of greater importance than the size of highly scaled
systems is the power consumption. We again consider a
system of SPONs with 700 connections each. Such a device
consumes 2 x 10~!7 J/synapse event, and with 700 con-
nections, each firing event consists of 700 synapse events.
Information processing in neuromorphic systems requires
sparse event rates, so for the SOEN hardware wherein
20 MHz is achievable based on device limitations, 20 kHz
represents a sparse rate. Note that this rate is a factor of
(2 x 10*)—(2 x 10°) faster than biological event rates and a
factor of 1000 faster than the CMOS demonstration which
achieved 26 pJ/synapse event and was limited by time
multiplexing [9]. For the system under consideration, we
have 7 x 10'° processing units which we consider to be
firing at this rate with this energy per firing event, giving a
total device power consumption of 20 W. These numbers
give 5 x 10'® synapse events per second per watt. The
system must be kept around 2 K, so we also include an
additional 1 kW of cooling power per watt of device power,
as we discuss in Sec. II F. While this cooling power does not
affect the power density (which ultimately limits scaling),
and this 20 kW is minuscule compared to the tens of
megawatts of a modern supercomputer, if we include this
additional power in the calculation, we find that we achieve
5 x 10'3 synapse events per second per watt.

To put this in perspective, the human brain also uses
20 W of device power, but by analogy to the inclusion of
the cooling power in the above calculation, one must
include the human’s total power of 100 W which is
necessary to sustain the brain’s operational state. The brain
has roughly 10'" neurons with roughly 7 x 10 synapses
per neuron firing between 0.1 and 1 Hz [54,102—-104]. For
the purposes of this calculation, we generously assume the
rate is 1 Hz. This equates to 7 x 10'? synapse events per
second per watt. Even with the 1-kW/W cooling power of
the cryostat, we find that the number of synapse events per
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second per watt of the SOEN system exceeds that of the
brain by an order of magnitude. The size of the SOEN
system (10 m?, 2.15 m on a side) is, however, much larger
than the biological brain.

Importantly, because signaling occurs predominantly in
the optical domain, firing events can be directly imaged
with a camera. For massively scaled systems, this direct
optical imaging becomes a powerful metrological tool.
Such a measurement technique can be used to monitor
device and system performance across spatial and temporal
scales in a manner analogous to functional magnetic
resonance imaging of biological organisms.

To close this discussion of scaling, we address the
cryogenic requirements of a 1-m* SOEN system. We seek
a “He sorption refrigerator capable of cooling a 1 m?
volume to 2 K with 20 W of cooling power. While this
is a relatively large cryostat, it is certainly well within the
realm of possibility. No new physical principles of oper-
ation need to be developed; it is simply a question of
scaling up existing “He cryogenic systems. Additionally, if
suitable SNSPD materials can be found which operate at
4 K with high yield, 20 W of cooling power is straightfor-
ward to achieve. We are of the opinion that with the
advancement of single-flux-quantum processors, super-
conducting qubit devices, and SOENSs, large-scale cryo-
genic technology will advance significantly in the coming
years. Presently, many conversations in advanced comput-
ing debate whether the technology which proves victorious
will operate within a cryostat or at room temperature. We
speculate that a supercomputer of the future will leverage
optoelectronic devices on various material platforms to
employ quantum principles, neuromorphic principles, and
digital logic principles across various temperature stages.
The device designer is faced with the task of optimizing
hardware performance at each temperature stage, and the
architect is liberated to dream with von Neumann [5] far
beyond the architecture that now bears his name.

V. DISCUSSION AND OUTLOOK

We have explained the proposed devices and their
functions, analyzed their performance, and considered their
scaling. Here we consider possibilities for utilization of this
platform for neuromorphic applications.

A. Advantages of optoelectronic neural networks

The unparalleled performance of the brain emerges from
the enormous number of connections between neurons
and the numerous complex signaling mechanisms available
to the neurons. Optical signaling has an advantage over
electronics in terms of the ability to route noninteracting
signals in three dimensions without wiring parasitics.
These strengths have been recognized for many years, and
early implementations utilized reconfigurable holographic
gratings [105,106] for forming connections between

optoelectronic neurons [107]. We envision utilizing multi-
layer waveguides [97] in a deposited-photonics process
[46] to implement photonic fanout [98] and routing from
each neuron to its many downstream connections.

The two key components to enable photonic fanout and
routing at an intradie level are multilayer waveguide power
dividers and in-plane waveguide crossings. Both of these
devices occupy a small area and operate with low loss and
no RC penalty. As we mention in Sec. [V B, implementing
these devices with roughly ten waveguiding layers appears
optimal, comparable to the number of back-end-of-line
metal layers used in CMOS for interconnect. With ten
waveguiding layers, the desired routing between optoelec-
tronic neurons still requires in-plane waveguide crossings
[108]. The ability to implement multilayer power dividers
and in-plane waveguide crossings with low loss and low
cross talk allows dedicated communication lines for each
interneuron connection.

On the receiving end, signals from an arbitrary number
of SPONSs can be received simultaneously, and time multi-
plexing is unnecessary. The system is conducive to encod-
ing of information in both spike rate and timing. On an
electronic platform, the length of an electronic signal line
increases as the number of connections grows, resulting in a
larger RC time constant. This increase in RC time constant
with number of connections forces a speed or connectivity
trade-off, leading most electronic neuromorphic implemen-
tations to share communication lines. Such a shared inter-
connect can transmit only a single voltage pulse within a
time window, and this limits both the number of connections
between neurons and the firing rate of each neuron.

Other approaches that leverage phenomena unique to
optics for neuromorphic computing [109-114] have
employed optical devices such as lasers and integrated
microresonators. Laser cavities with strong light-matter
interaction can be leveraged to realize complex nonlinear
dynamics which can emulate the behavior of neurons
[109,111,114]. The frequency selectivity of integrated ring
resonators can be used to achieve synaptic weights [112].
Optical neural networks [113,115] and spiking neurons
[111,116-119] based on these effects have been proposed
and demonstrated. Optical reservoir computing has also
recently been demonstrated [120—-122] as another way in
which inherently optical phenomena can be leveraged for
advanced computing. The distinction of the proposed
SOEN platform is that it operates in the few-photon regime
with compact, energy-efficient components, enabling a
large degree of scalability. Thus, at present, many elec-
tronic and photonic technologies appear promising for
neuromorphic computing, and the most suitable hardware
platform is likely to depend on the application.

B. The visual cortex

While we describe in detail in Sec. IVA how a simple
neural network (the MLP) can be built with SPONSs, the
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FIG. 16. Schematic of a SOEN model of the mammalian visual cortex.

potential of the SOEN platform for more complex systems
should not be overlooked. The visual cortex is the most
thoroughly studied region of the mammalian brain [123],
yet there is still a great deal to be understood about
information encoding from the retina through the thalamus
and on to the visual cortex. A nonbiological experimental
test bed is highly desirable to explore hypotheses [8,124].
Biologically realistic supercomputer simulations of the
brain can simulate only a small fraction of the brain
cells in a small mammal at significantly reduced speed
[125,126]. The massive parallelism enabled by a scalable,
biologically realistic hardware implementation of the many
thousands of neurons involved in the visual system can
provide more quick and efficient simulations [18,126,127],
which may give further insight into the visual system, while
also offering potential for image-processing applications.

We propose a hardware platform with the potential for a
built-in retina, manifest as integrated SNSPDs, which can
be used in pixel arrays [101] for monolithic image
acquisition and analysis. In Fig. 16, we show a schematic
of how such a SNSPD array can be integrated with a
multilayer neural network to emulate the visual system. To
illustrate the key points of such an experimental system, we
break the visual system into three parts: the retina, the
thalamus, and the primary visual cortex. In biological
systems, the primary visual cortex is highly sophisticated,
being organized into six layers each with their own
sublayers [123]. For the purpose at hand, we treat the
primary visual cortex as being composed of two layers
referred to as the granular layer and the supragranular layer.

At the left of Fig. 16, the SNSPD array receives light
from the environment and converts it to signals to be sent to
the first layer of neurons in the thalamus, in direct analogy
with a biological retina. Much like the cones in one’s eye,
the pixels of the SNSPD array can be designed to be more
sensitive to particular frequencies simply by varying the
thickness of an antireflection coating locally above
each pixel.

From the retina, a small number of pixels project to each
neuron in the thalamus without a large amount of branch-
ing. Similarly, the neurons of the thalamus project to the

first layer of the visual cortex with minimal branching.
Importantly, some of these connections are inhibitory and
some are excitatory. While inhibitory connections are
known to play a central role in information encoding in
the visual system, the full scope of that role remains the
subject of investigation. The biologically realistic mecha-
nism for implementing inhibitory connections, as illus-
trated in Fig. 7(c) is of great utility in using SOENS to study
information encoding in the visual system. In the thalamus,
there is little if any recurrence, meaning the neurons in that
layer project forward but do not form synapses on each
other. The thalamic neurons do, however, receive feedback
from the granular layer of the visual cortex. The ability to
straightforwardly implement feedback with SOENSs, as
illustrated in Fig. 7(e), is another feature of great utility
in using SOENs to model the visual system.

The granular layer receives feedforward signals from the
thalamus, projects feedforward signals to the supragranular
layer, and receives feedback from the supragranular layer.
While still only minimally recurrent, neurons in the
granular layer branch more heavily to form a larger number
of connections across more neurons in the supragranular
layer. The supragranular layer projects its output to other
regions of the cortex and is also heavily recurrent. At the
right of Fig. 16, we show the neurons in the supragranular
layer making connections with other neurons within
the layer.

For an initial SOEN visual system, we envision imple-
menting the retina and thalamus on a single die, with a
separate chip of 700 neurons being employed for the
granular layer and a third chip of 700 mutually interacting
neurons representing the supragranular layer. This exper-
imental test bed may offer insight into outstanding
questions such as how and why concentric circular
patterns of retinal response are mapped to bars for
processing in the visual cortex. With a simple system
like that illustrated in Fig. 16, it will be possible to
conduct experiments related to object recognition, edge
detection, the perception of motion and spatial frequency,
as well as many other subjects in contemporary visual
system research.
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C. High-performance application spaces

One strength of neuromorphic systems is their ability to
find trends and extract features from large and noisy data
sets, thereby reducing the dimensionality of those data sets
[128]. They can learn over time based on the temporal
evolution of the data under consideration. Several societal
challenges require this type of analysis of large numbers of
complex, interacting units—exactly the type of system for
which neuromorphic computing excels. These applications
include monitoring of markets, Internet traffic metrology,
detection of hacking attacks, modeling of climate systems,
and phenotypic prediction from genomic data. For these
applications, supercomputers at the limit of what is possible
with CMOS implementations of the von Neumann archi-
tecture are presently in use. Yet, greater performance is still
required. For the most demanding computational tasks of
this class, massively scaled systems employing parallel
computation in a neuromorphic architecture are likely to
play a central role. It is for these applications that we
envision the SOEN platform making the largest impact.

Another likely solution to the current bottlenecks
facing supercomputers is superconducting electronics. In
particular, Josephson-junction processors with single-flux-
quantum logic are poised for use in the next generation of
supercomputers. These processors can provide an improve-
ment over CMOS in speed by roughly a factor of 100 with
extremely high-energy efficiency. Our proposed platform
will integrate well into such supercomputers, offering
neuromorphic capability to von Neumann implementations
[129] and additional degrees of freedom to neuromorphic
Josephson-junction systems [20,21,130], which are purely
electronic. In addition, the SOEN platform may offer a
means to transduce single-flux quantum pulses to the optical
domain, for interconnects between chips and with the
outside world (cryostat I/O) via photonic signaling.

D. Summary

We describe a hardware platform combining supercon-
ducting single-photon detectors and electronics with semi-
conducting faint-photon sources to operate as a massively
interconnected information-processing system. The SOEN
platform consists of neurons that exhibit complex signaling
and efficient access to photonic degrees of freedom such as
frequency, polarization, mode index, intensity, and coher-
ence, in analogy to the complex signaling mechanisms in
the brain. The proposed networks of connections based on
reconfigurable waveguides offer advantages over electronic
connections in terms of speed, connectivity, and energy
efficiency.

In the present paper, we argue that through the use of
networks of neurons consisting of semiconductor LEDs,
superconducting-nanowire single-photon detectors, and
reconfigurable optical waveguides, we can build advanced
computing systems. Such networks can achieve states of
enormous entropy through massive interconnectivity and

the interaction of multiple physical degrees of freedom. We
further show that the integrate-and-fire operation of super-
conducting optoelectronic neurons can be used for spike-
encoding information. Such spike-encoded information
is highly advantageous for high-bandwidth information
processing with temporal information encoding and resil-
ience to noise. These concepts have recently been placed on
a solid theoretical foundation [11-13,16], so we should not
be surprised to find that the brain’s computing mechanisms
employ all of these concepts. The fundamental principles of
information theory which enable reasoning, decision,
innovation, and consciousness are currently incompletely
understood. To date, we know of one computing platform
which can accomplish these tasks: the biologically evolved
neural system. We do not appear to be close to a complete
understanding of the information theory describing such a
complex system. Yet, by exploring alternative physical
systems with comparable complexity, we stand to learn a
great deal about the fundamentals of information science.
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APPENDIX A: INTEGRATION TIME AND
REFRACTORY PERIOD

The integration time of a SPON is the time from the
absorption of a photon until the receiver no longer has a
memory of that absorption event. The behavior of integrate-
and-fire devices with integration times less than infinity
are referred to as leaky integrate-and-fire neurons. In the
context of SPON devices, in the most basic case, this
integration time is determined by the hot-spot relaxation
time of the superconductor, which depends on the material
quasiparticle dynamics which are governed by the electron-
phonon coupling and the thermal conduction to the sub-
strate. This thermal relaxation is a material-dependent
quantity and can be as fast as 200 ps in NbN [52]. In
WS4, it is closer to 1 ns [52], and there may be materials for
which it is even slower. Additionally, the bias current is
shown to have a significant effect on the quasiparticle
recombination time [52]. Therefore, the choice of super-
conducting material and substrate may be leveraged to tune
the integration time to a desired value in hardware, and the
bias current may be used to modify it dynamically.

Further, the PND circuit shown in Fig. 2 can be modified
so that each wire in the PND array is in parallel with a small
shunt resistor. In this configuration, the L/R time constant
of each receiving wire can be chosen to set the integration
time. In this case, the hot-spot relaxation time represents a
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lower limit on the integration time, but the integration time
can be extended to very long times relative to other time
scales of the system simply by adjusting the L/R value.

Recent studies [131,132] reveal that nonuniform current
distribution in the PND as drawn in Fig. 2(a) is problematic
for number-resolving photon detection. To avoid this, the
cylindrically symmetric nanowire arrays of Figs. 4 and 19
are proposed. In this geometry, no nanowire occupies an
edge, so supercurrent is evenly distributed after each firing
event. Also shown in Ref. [132] is the fact that a PND can
trap flux after a photon-absorption event. To utilize this to
extend the integration time to infinity, the geometry of
Fig. 4 is proposed. If one wishes to dissipate flux to reduce
the integration time, the topological variant of Fig. 19 is
proposed. The differing circuit designs of these two devices
are shown in Fig. 20. In the flux-dissipating configuration
shown in Figs. 19 and 20(b), flux-trapping superconducting
loops are avoided, and all locations where hot spots can be
created are on a boundary with the normal environment.
Therefore, vortices created during absorption events are not
trapped.

We note that in biological systems, the integration time is
set by the RC time constant of the membrane and is
typically approximately 1 ms or approximately 1074-~107°
the firing period. Taking the 1-ns quasiparticle lifetime as
the integration time, this corresponds to operating the
system with (10-100)-kHZ event rates, a range that is
straightforward to achieve.

The refractory period of a neuron refers to the time
following a firing event during which the neuron cannot fire
again. For a standard SNSPD, this dead time is governed by
the L/R time constant of the series inductance of the
SNSPD and the resistance across which the voltage pulse is
being measured. In the case of WSi, this L/R time constant
is usually 50 ns [133]. This resistance is usually 50 €, but
in the present case, it is the impedance of the LED, which
will be several kilohms, giving a shorter refractory period.
If an application requires a longer refractory period, an
additional series inductance can be added to achieve the
desired delay. We note that in some SNSPD material
systems, the L /R time constant must be chosen sufficiently
large to avoid latching, while in the present application, the
feedback circuit of Fig. 7(e) can also be utilized to avoid
latching and control the refractory period.

APPENDIX B: THRESHOLD CONDITION FOR
THE PND ARRAY

Here we derive the expression of Eq. (1). We begin by
defining all the quantities of interest. The number of
nanowires in the PND array is denoted by Nyw. The
number of nanowires driven normal by photons is denoted
by 1. The critical number of nanowires driven normal is
denoted by n2%. The bias current through the entire array is
denoted by I,. The current through a single wire of the

array is denoted by i. The critical current of a single wire is
denoted by 1.

In the steady state, before any photons are absorbed,
n®® =0, and i = I,,/Nyw. Upon absorption of a single
photon, n*® =1 and i =1,/(Nyw —1). In the general
case that n nanowires are driven normal by photons, 7% =
nand i = I,/(Nyw — n).

The condition for n® is i=i, =I,/(Nyw — n®).
Rearranging gives n®® = Nyw — (I,/i.).

APPENDIX C: INTEGRATION OF
SUPERCONDUCTING-NANOWIRE DETECTORS

To properly understand the behavior of the SNSPD
receivers, we must analyze the optical absorption and
statistical behavior of waveguide-integrated SNSPDs
[40-46]. We first calculate the attenuation of light as a
function of propagation length for 200-nm-thick wave-
guides (fwg) in the asymptotic slab regime. The waveguide
refractive index is 3.52, the cladding index is 1.46, and our
calculations are at a wavelength of 1220 nm. The nanowire
1s assumed to be 4 nm thick, 300 nm wide with a 50% fill
factor, and n =3.25+2.19i. In Fig. 17, we show the
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Propagation length (um)

Absorption (%)
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FIG. 17. Absorption of light propagating in a waveguide with
SNSPD on top in (a) parallel and (b) perpendicular configura-
tions, for different spacer heights between the SNSPD and
waveguide. (c) Absorption in waveguides of different thicknesses
for different spacer heights.
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absorbed photons versus number of incident photons for neuron
designs where light is directed past each nanowire once (single
pass). Mean number (c) and standard deviation (d) of absorbed
photons versus number of incident photons for neuron designs
where light is directed past each nanowire ten times.

results for the common out-and-back configuration [light
propagating parallel to the nanowire, Fig. 17(a)] and the
slab configuration [light propagating perpendicular to the
nanowire, Fig. 17(b)]. In each case, the various traces are
for different spacer thicknesses, (A, refractive index 1.46)
between the waveguide and nanowire, ranging from zero to
160 nm in steps of 20 nm. The modal distribution is shown
in the inset. The data in Figs. 17(a) and 17(b) are fractal in
nature, so an increase of the x axis by one decade is
accompanied by an increase in the y axis by a decade (on
the decibel scale). From these plots, one can see that for
both the parallel and perpendicular configurations, a wide
range of attenuation coefficients can be achieved.

In Fig. 17(c), we show the probability of absorption after a
single pass by a nanowire as a function of spacer thickness
for waveguides with 100 and 200 nm thickness, illustrating
another degree of freedom for tuning the absorption. It is
important to be able to engineer the statistical distribution of
absorption across the SNSPD receiver. For the case of the
PND, each SNSPD should absorb an average of one photon
each, as an additional photon absorption in the same SNSPD
will not contribute to the spike event. For the case of the
SND, the requirement is less stringent, but one still wants to
spatially distribute absorption events so that hot spots do not
overlap until a certain (large) number of photons is absorbed.

To address the design requirements of the PND, we
consider the absorption statistics as calculated via
Monte Carlo simulations. We perform 1000 trials each for
different photon numbers incident on a PND with 40
SNSPDs. Figure 18(a) shows the mean number of photons
absorbed (out of 1000 trials) in the PND as a function of the
number of incident photons for different absorption proba-
bilities, in the case where only a single pass by each nanowire
occurs. This behavior may be achieved with a design like that
of Fig. 11. For each of the 1000 simulations, the arithmetic
mean of the number of photons absorbed per nanowire is
calculated for each value of incident photon number as

1 Nyw
u(n, a X, Cl
(o) = > (1)

where x; is the number of photons absorbed in the ith
nanowire. From these values, the mean number of photons
absorbed per nanowire y; is then calculated as the mean of
the means (grand mean) in Eq. (C1).

One then engineers the absorption probability in the
PND such that the mean number of absorbed photons per
nanowire per pulse and the standard deviation of this
number are both less than or equal to 1. In Fig. 18(b),
we show the standard deviation data for the single-pass
case. For each of the 1000 trials, the standard deviation of
the number of absorbed photons is calculated as

(€2)

FIG. 19. Flux-dissipating version of the spiderweb neuron.
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FIG. 20. (a) Flux-trapping PND circuit. (b) An alternative PND
design which avoids flux trapping.

where 4, is given by Eq. (C1). The mean of these standard
deviations over the 1000 Monte Carlo trials (o3) is
calculated, as is the standard deviation of the standard
deviations. The center trace of each curve in Fig. 18(b) is o5
for a given value of «, and the width of the trace is
calculated by adding and subtracting the standard deviation
of the standard deviations. The standard deviation with o =
10% is roughly three photons. Thus, such large absorption
is undesirable for this purpose, as the initial wires tend to
absorb more than a single photon, and the latter wires
absorb zero photons. For the one-pass case, 1% absorption
appears to be close to ideal. The mean number of absorbed
photons is close to 1, as is the standard deviation. The
standard deviation for @ = 0.1% is even lower, yet the
mean number of absorbed photons is only approximately
0.2. Therefore, many photons are passing through the array
without being absorbed.

In Figs. 18(c) and 18(d), we show results for the case
where ten passes by each nanowire occur, as may be
achieved with the spiderweb neuron design of Fig. 10. For
the case of ten passes, a = 0.1% performs much better,
although all photons are still not absorbed.

Consider the case where 40 photons are incident. We want
all 40 of these photons to be absorbed by the 40 nanowires
of the array, and, therefore, we want p; to be near unity.
In Fig. 18(c), we see that we achieve this for both a = 1%
and 10%, yet in the case of a = 10%, all photons are
absorbed on the first pass [as seen in Fig. 18(a)], so the mode
of the distribution is greater than 1, and the standard
deviation is larger than desired. By comparing the standard
deviations forthe @ = 1% and @ = 0.1% cases in Fig. 18(d),
we find that @ = 0.1% gives a more desirable spread of
absorption events (smaller standard deviation). From this
analysis, we find that for the PND receiver array, it is
desirable to operate with low « and a high number of passes.

APPENDIX D: p-n JUNCTION MODEL OF THE
LIGHT-EMITTING DIODE

To model the performance of the emitters, we work with
an analytical model of a p-n junction [134]. Within this
model, the current-voltage relationship for the junction is
given by

I,,(V)=eA <\/§ ot \/zzlnp> (e¢V/ksT — 1), (DI)

In Eq. (D1), the electron and hole diffusion coefficients are
given by D, = u,(kT/e) and D, = u,(kT/e), where u,
(1) is the mobility of electrons (holes). The electron and
hole lifetimes are given by 7, and 7, respectively, which
we take to be 40 ns. n,, is the concentration of electrons on
the p-doped side of the junction, and p, is the concen-
tration of holes on the n-doped side of the junction. To
achieve low-temperature operation, we assume degenerate
doping, and, therefore, a low mobility is to be expected. We
use a value of 100 cm?/(V's) [135] for both electron and
hole mobilities. Because this value will be limited by
ionized impurity scattering, it is likely to change little as the
temperature decreases to 1 K.

From the electronic current, we calculate the photonic
current as

(D2)

This model for the current through the diode is derived for
an abrupt p-n junction, yet for the waveguide-integrated
LED, one employs a p-i-n junction. Also, the present
model breaks down at low temperature. We use 7 = 300 K
in Eq. (D1) because our measurements inform us that in the
degenerate doping regime, the behavior is relatively con-
stant to low temperature. Therefore, we use this model only
as an approximation, and a more thorough numerical and
experimental investigation of the devices to be used in the
platform is the subject of future investigation. With this in
mind, we approximate the capacitance of the junction using
a simple parallel-plate model where the capacitance is
given by C = €A /d, where ¢ is the material permittivity, A
is the capacitor area, and d is the distance between the
plates. We assume ¢ = 12¢p, A = 10 ym x 100 nm, and
d =300 nm. The energy associated with charging this
capacitor is then calculated as E, = 1/2CV?. We note that
for all values of photon number generated by the LEDs
within this model, the applied voltage is below the built-in
potential of the junction, so true forward-bias operation is
not required. We anticipate that for the case of a p-i-n
junction, the voltages required to achieve the same number
of photons will increase slightly, but this can easily be
accommodated by utilizing nanowires with larger critical
currents.

APPENDIX E: WAVEGUIDE DESIGN FOR THE
DENDRITIC ARBOR

In Fig. 21(a), we show effective indices at 1220 nm for
slab thicknesses up to 600 nm to illustrate that many
vertical modes can be present with high effective indices
with only modest film thicknesses. We find that for < 200
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FIG. 21. Effective indices of refraction for various guided
modes in a waveguiding layer with index of refraction n =
3.52 and cladding n = 1.46. (a) Slab mode calculations of both
TE and TM modes for different film thicknesses showing
different vertical mode orders. (b) TE and TM modes for different
waveguide widths in a film of height 200 nm. The cladding index
is shown as the dashed line in both (a) and (b).

thick waveguides, only the first vertical order TE and TM
modes are present. Therefore, in Sec. IIl A, we assume a
waveguide height of 200 nm. For massive scaling even
beyond that presented in Sec. [V B, it may be necessary to
use multimode waveguides with higher vertical as well as
lateral modes and both polarizations.

Having selected 200 nm as our waveguiding layer
thickness, we consider the lateral mode spectrum, as shown
in Fig. 21(b). Here we see that the second-lateral-order TE
mode emerges above the cladding index around 350 nm;
we choose this as the single-mode width for the dendritic
arbor simulations. From Fig. 21(b), we also find that a
large number of higher-lateral-order modes are present
with high effective index and modest waveguide width.
For the dendritic arbor design presented in Fig. 10(b), it is
important that a compact multimode waveguide be achiev-
able. From this analysis, we find that a waveguide with tens
of modes can be achieved while still maintaining a compact
bend radius.

In addition to choosing the single-mode width, we also
need to choose the minimum interwaveguide gap that
avoids undesired coupling of modes in space. To do this,
we calculate the supermode propagation constants as a
function of the waveguide gap, as shown in Fig. 22. We see
the splitting between the symmetric and antisymmetric
modes is quite large for a gap of 100 nm, but both modes
converge to the uncoupled value for a gap of 600 nm. The
fractional splitting A/ S, is shown in the inset. Here, Af is
the difference between the propagation constants of the

13.1
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S

o

S 300 400 , 500 60

~ Waveguide gap (nm)

- 12.9 o

...ﬁ/. = Symmetric [®] [®]
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FIG. 22. Supermode propagation constants for 200-nm-thick,
350-nm-wide waveguides with 3.52 core index and 1.46 cladding
index at 4 = 1220 nm. The inset shows the fractional splitting,
and the mode profiles show the symmetric mode for gaps of 100
and 600 nm.

symmetric and antisymmetric supermodes, and f, is the
uncoupled propagation constant. Based on this analysis,
we choose 600 nm to be the interwaveguide gap for the
dendritic arbor design of Fig. 11 and the value used in the
scaling analysis of Sec. IV B.

APPENDIX F: SCALING

In reference to Sec. IV B, the length of a MLP layer is
given by

N
Li=(L,+L,+ LX)Ni\;:G +2LwgNwg + L,.  (F1)

where L, is the length of a single tap (or synapse) taken to
be 10 um; L, is the length of a gap between two vertically
running waveguides taken to be 5 ym, which is sufficiently
wide to allow for undercut of the mechanically mobile
synapses; L, is the length of an intraplane waveguide
crossing taken to be 3 um; N, is the number of neurons in a
MLP layer [four in Fig. 14(a)]; Nwg is the number of
vertically stacked waveguide planes used for routing; Lyg
is the length of an interplane coupler between two wave-
guiding planes taken to be 10 ym. L, is the length of a
single neuron as shown in Fig. 11. L, is determined
predominantly by the number of inputs and, therefore, is
taken to be the interwaveguide gap, 600 nm x N,. The
width of a single neuron is taken to be equal to its length,
and within this model, we assume each neuron in a given
layer has a synapse connecting to each neuron of the
next layer.

APPENDIX G: INFORMATION

The application of Shannon’s theory of communica-
tion [3] to neural systems enables the quantification of
information-processing capacity. The mutual information
(in bits) between a neural system and a stimulus can be
represented as [27]
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I, = /ds/drP[s]P[r|s]log2 <PI£}£1;]> (G1)

In Eq. (G1), P[r] is the probability of spike rate r occurring
given a stimulus s, P[s] is the probability of stimulus s
occurring from the set of all possible stimuli, and P[r|s] is
the conditional probability of response rate r being evoked
when the system is presented with stimulus s. With a
neuromorphic computing platform, one wants to maximize
the mutual information. Because /,, within this model is
calculated simply as a double integral over stimuli and
response rates, we can maximize this quantity by increasing
the limits of the integral. Because the proposed devices can
operate at 20 MHz—and potentially up to 1 GHz by
employing superconductors with faster thermal recovery—
they can achieve response rates as well as receive stimulus
across this entire bandwidth. The intrinsic speed of SPONs
is greater than biological systems by a factor of 10*, and
this affects both the stimulus and response bandwidths in
the double integral.

In addition to increasing the double integral by increas-
ing the bandwidths, we can also maximize the bit depth. As
we discuss in Sec. IV B, signals can be discretized into
roughly 11 bits. However, it is possible to increase this
number further at the expense of size and efficiency.

We discuss the s and r in Eq. (G1) with the photonic input
to the receiver array and photonic output pulse rate of the
transmitter in mind, but the neuron of Fig. 13 can receive
more stimulus and generate more output. For example, if one
considers not only the photons incident upon the receiver as
stimulus but also the current through the SNSPD, the bit
depth of the discernible stimuli increases further.

Equation (G1) is derived by considering the difference
between the entropy of a neuron’s responses to a given
stimulus and the noise entropy. As such, itis a measure of the
information content at the device level and not at the system
level. A full analysis of the information content of pop-
ulation-encoded information is beyond the scope of this
work. At a minimum, we point out that the information
content of a population grows with the size of that pop-
ulation. Therefore, the high bandwidth of SPON devices, the
ability to scale to units with large numbers of connections,
and the ability to scale to systems with large numbers of units
while maintaining a low power density points to the potential
for complex systems with enormous information content.
We note that these attributes are enabled by photonic
signaling and superconducting electronics.
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