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Abstract 

First, we present an efficient algorithm for establishing planar datums that is based on a constrained minimization search based on the L2 norm 

after forming a convex surface from sampled points. Visualized by Gauss maps, we prove that the problem reduces to a minimization search 

where the global minimum is localized about the minimizing facet. Second, we highlight advantages of this planar datum, including the major 

advantage that the datum planes have full mechanical contact with the datum features in stable cases yet are automatically balanced for rocking 

conditions. These advantages make this definition appealing for standardization. 
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1. Introduction 

In the world of Geometric Dimensioning and Tolerancing 

(GD&T), datums are used extensively to locate and orient 

tolerance zones [1-7]. Datum planes in particular are common 

and are established by mating planes to imperfect datum 

features on parts during inspection [3] (see Fig. 1). Distances 

and orientations on drawings and three-dimensional models are 

established from these datum planes, relative to which tolerance 

zones are located and oriented. Additional details of the 

importance and prevalence of datum planes in specifications are 

given in [8] and will not be revisited in this paper.  

 

 

Fig. 1. Deriving a datum plane from a datum feature. 

 

Given that datum planes are ubiquitous, it might be 

surprising that—short of standardization—there are several 

different yet reasonable approaches by which a datum plane can 

be established from a datum feature [9]. Furthermore, the 

International Organization for Standardization (ISO) and the 

American Society for Mechanical Engineering (ASME) are 

actively working to establish default datum plane definitions.  

In [10] we introduced a definition for a planar datum that 

naturally combines a correspondence to physical, surface plate 

mating (i.e., “high points”) but with automatic balancing in the 

case of unstable, rocking conditions. The datum plane 

definition is based on a constrained total least-squares criterion 

(abbreviated here as L2C), which is explored in this paper. This 

should not be confused with an unconstrained total least-

squares fit that is shifted out of the material. 

Given a set of points sampled on a datum feature, the two 

major steps in establishing the L2C datum plane are as follows: 

1) Compute the “lower” convex envelope of those points. 

This is the portion of the convex hull that lies on the 

nonmaterial side of the datum feature. In 3D, this 

convex envelope consists of a union of non-overlapping 

triangles, while in 2D it is a union of line segments 

creating a piecewise linear curve. 

2) Find the plane, constrained to lie on the nonmaterial side 

of the computed convex surface that minimizes the 

integral of squared distances from that surface, 

namely∫ 𝑑2(𝒑, 𝑃)𝑑𝑠
 

𝑆
, where S is the convex surface and 

d is the distance from a point p on the surface to the 
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plane, P. If P contains x and has normal a, then 𝑑 = 𝒂 ∙
(𝒑 − 𝒙).  

Concentrating on the second step, we find the need to 

integrate over a set of triangles (or line segments in 2D). For 

each triangle (or line segment) this integral can be replaced by 

the Simpson’s rule approximation (see Fig. 2)  [11] (which we 

will see is actually exact in our case). 

 

 
Fig. 2. The locations and weights for function evaluations for numerical 

integration using Simpson’s rule over an interval and triangle. 

 

Simpson’s rule for integrating over an interval (or triangle 

for the 3D case) depends only on the weighted values of the 

function at the endpoints (or vertices in 3D) and at the centroid. 

Over an interval, Simpson’s rule is given by: 

∫ 𝑓(𝑥)𝑑𝑥 ≈
𝑏

𝑎

(𝑏 − 𝑎) (
1

6
𝑓(𝑎) +

2

3
𝑓 (

𝑎 + 𝑏

2
) +

1

6
𝑓(𝑏)), 

and for integrating over a triangle, 𝑇, as shown in Fig. 2,  

∫ 𝑓(𝒔)𝑑𝑇 ≈
𝑇

 

Area(𝑇) (
1

12
𝑓(𝑎) +

1

12
𝑓(𝑏) +

1

12
𝑓(𝑐) +

3

4
𝑓 (

𝑎 + 𝑏 + 𝑐

3
)). 

Because Simpson’s rule [11] is exact for functions of degree 

2 (our case), we note that in the two formulas just above, these 

are exact calculations of the integrals and not mere 

approximations. The framing of this problem as a weighted 

sum-of-squares now allows us to solve the objective function 

as a singular value decomposition (SVD) problem. See [12] for 

a general treatment of using the SVD as a method for 

minimizing the total least-squares problem, and [13] for an 

application of it applied to planar fitting with weighted points 

(essential to be physically correct), which is our case here. 

For the 3D case, let a S be a lower convex surface be made 

up of N triangles, T1, T2, …,TN, where Ti has vertices 

(xiA, yiA, ziA), (xiB, yiB, ziB), and (xiC, yiC, ziC) and where each 

triangle has centroid (�̅�𝑖 , �̅�𝑖 , 𝑧�̅�) and area 𝐴𝑖. If P is a candidate 

plane and, for each triangle, 𝑑𝑖𝐴,  𝑑𝑖𝐵 ,  𝑑𝑖𝐶  are the distances 

between P and the vertices and  �̅�𝑖  is the distance from P to the 

triangle’s centroid. Then, the L2C objective function to be 

minimized is: 

∑ 𝐴𝑖 (
𝑑𝑖𝐴

2

12
+

𝑑𝑖𝐵
2

12
+

𝑑𝑖𝐶
2

12
+

3�̅�𝑖
2

4
)𝑁

𝑖=1 .                    (1) 

For the 2D case, where the convex surface is comprised of 

𝑁 − 1 line segments, each having length Li , endpoints (xi, yi), 

and (xi+1, yi+1),  𝑑𝑖 being the distance from P to (xi, yi),  and  �̅�𝑖  

is the distance from P to the line segment’s midpoint, we then 

have the objective function being  

∑ 𝐿𝑖 (
𝑑𝑖

2

6
+

𝑑𝑖+1
2

6
+

2�̅�𝑖
2

3
)𝑁−1

𝑖=1 .                      (2) 

In [10] we proved that the (2D) objective function for any 

candidate plane P is given by the elegant, efficient formula:  

 

𝜎1
2Cos2𝜃 + 𝜎2

2Sin2𝜃 + 𝐿𝑑𝑐
2,                    (3a) 

or equivalently 

𝜎1
2𝑎2 + 𝜎2

2𝑏2 + 𝐿𝑑𝑐
2,                           (3b) 

                       

where (see Fig. 3) 𝑑𝑐 is the distance from the plane P to the 

centroid, 𝜎1 and 𝜎2  are the singular values from the SVD of the 

matrix M below, and 𝜃 represents the angle P makes with the 

singular vector corresponding to the smallest singular value, 

𝜎1 . Eqs. (3a) and (3b) are equivalent, where (𝑎, 𝑏) =
(Cos𝜃, Sin𝜃) is the unit normal to the candidate plane when 

expressed as the dot product of that normal with each of the two 

singular vectors (e.g., 𝑎 is the dot product of the unit normal to 

the plane with the first singular vector). The 3𝑁 × 2 matrix, M, 

that is used in the SVD comes from the elements the Simpson’s 

rule approximation (see [10] for more detail), repeated for each 

of the N line segments: 

𝑴 = √
1

6

[
 
 
 
 
 
 
 
 
 
 √𝐿1(𝑥1) √𝐿1(𝑦1)

2√𝐿1 (
𝑥1 + 𝑥2

2
) 2√𝐿1 (

𝑦1 + 𝑦2

2
)

√𝐿1(𝑥2)

⋮

√𝐿𝑁(𝑥𝑁)

2√𝐿𝑁 (
𝑥𝑁 + 𝑥𝑁+1

2
)

√𝐿𝑁(𝑥𝑁+1)

√𝐿1(𝑦2)

⋮

√𝐿𝑁(𝑦𝑁)

2√𝐿𝑁 (
𝑦𝑁 + 𝑦𝑁+1

2
)

√𝐿𝑁(𝑥𝑁+1) ]
 
 
 
 
 
 
 
 
 
 

 

(The construction of M is done with the data translated so the 

centroid is at the origin. This translation is not shown explicitly 

in the matrix for reasons of space.)  

 
Fig. 3. The objective function for any candidate datum can be found 

simply by knowing the angle θ and distance dc and using Eq. (3). 

 

Using Eq. (3) to compute the objective function means that 

the SVD has to be computed only once, and its result can be 

applied to any given candidate datum plane. This makes for a 

much more efficient minimization algorithm. 

What is fascinating about Eq. (3) is that the two terms on the 

left are exactly the objective function used in a traditional least-

squares minimization while the term on the right is the objective 

function in a constrained 𝐿1 fit [14, 15]. We will see that the 

objective function indeed does manifest itself as having the 

balancing property of the unconstrained least-squares and the 

full mechanical contact of the constrained 𝐿1 definition, which 

is what is desired. 

This can extend to 3D as well, since we showed that there is 

an extension of Simpson’s rule that applies to integration over 

a triangular region. For the 3D case, the objective function for 

any candidate plane P is given by the efficient formula: 
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𝜎1
2𝑎2 + 𝜎2

2𝑏2 + 𝜎3
2𝑐2 + 𝐴𝑑𝑐

2,                       (4) 

where 𝑑𝑐 is the distance from the plane P to the centroid, 𝜎1 ,
𝜎2 and 𝜎3  are the singular values from the SVD of the matrix 

M below, and (𝑎, 𝑏, 𝑐) is the unit normal to the candidate plane 

P when expressed as the dot product of that normal with each 

of the three singular vectors (e.g., 𝑎 is the dot product of the 

unit normal to the plane with the first singular vector). Applying 

Simpson’s rule for each of the N triangles, the 4𝑁 × 3 matrix 

M that is used in the SVD is: 

𝑴 = √
1

12

[
 
 
 
 
 
 
 
 
 
 
 
 
 √𝐴1𝑥1A √𝐴1𝑦1A √𝐴1𝑧1A

√𝐴1𝑥1B √𝐴1𝑦1B √𝐴1𝑧1B

√𝐴1𝑥1C √𝐴1𝑦1C √𝐴1𝑧1C

3√𝐴1�̅�1 3√𝐴1�̅�1 3√𝐴1𝑧1̅

⋮ ⋮ ⋮

√𝐴𝑁𝑥𝑁A √𝐴𝑁𝑦𝑁A √𝐴𝑁𝑧𝑁A

√𝐴𝑁𝑥𝑁B √𝐴𝑁𝑦𝑁B √𝐴𝑁𝑧𝑁B

√𝐴𝑁𝑥𝑁C √𝐴𝑁𝑦𝑁C √𝐴𝑁𝑧𝑁C

3√𝐴𝑁�̅�𝑁 3√𝐴𝑁�̅�𝑁 3√𝐴𝑁𝑧�̅�]
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(The construction of M is done with the data translated so 

the centroid is at the origin. This translation is not shown 

explicitly in the matrix for reasons of space.)  

The notation used in showing 𝑴 (just above) assumes the 

surface is comprised of N triangles Ti , each having area 𝐴𝑖 and 

vertices (xiA, yiA, ziA), (xiB, yiB, ziB), and (xiC, yiC, ziC), their 

average being (�̅�𝑖 , �̅�𝑖 , 𝑧�̅�). 

We can summarize the 3D constrained 𝐿2  algorithm as 

follows (the 2D case being similar): Given data points 

𝒙1,  𝒙2,  𝒙3, ⋯ ,  𝒙𝑀 , where each 𝒙𝑖 = (𝑥𝑖 ,  𝑦𝑖 ,  𝑧𝑖 , ) , and a 

direction that indicates the direction into the material, then the 

datum plane is established using the following steps: 

1) Compute the convex hull of the data points and 

represent it by the union of a set of triangles. 

2) Select the N triangles (where N < M) that are exterior 

to the material. 

3) Compute the centroid, 𝒙, of the convex surface of 

Step 2.  

4) Construct the matrix M as defined above and 

compute its SVD to obtain the singular values 𝜎1 ,

𝜎2 , and 𝜎3 and their corresponding singular vectors. 

5) The objective function can now be constructed by Eq 

(4) and used to find the optimal plane. 

2. Gauss maps and convexity 

The procedure to accomplish the optimization in Step 5 (just 

above) is not obvious. This section will use Gauss maps to 

describe the nature of the objective function, which will drive 

our choice of method to search for the optimal plane. In 2D, the 

search is for the optimal line with only one degree of freedom, 

namely the angle of the line (Fig. 4).  

Thus we can envision a candidate datum line rolling (with 

increasing angle, as pictured in Fig. 4) from the left to the right, 

contacting different points and edges along the piecewise-

linear curve. We note that the “rolling candidate line” will 

contact each vertex of the curve for some finite time, and 

coincide with each edge for only an instant before the point of 

contact shifts to the next vertex. This can be viewed as a Gauss 

map as in Fig. 5. 

  

Fig. 4. A candidate datum is defined by its angle alone. Its location is 

automatically determined to just contact the curve. 

 

 

 

 

 

 

 

Fig. 5. (a) a rolling candidate line; (b) a 2D Gauss map showing a 

(dashed) example of a composite elliptical shape. 

  

In this view, one can see that an edge on the curve 

corresponds to a point on the circle (Gauss map) and a vertex 

on the curve corresponds to an arc on the circle. 

The objective function, when superimposed on the Gauss 

map, would be a composite elliptical shape. That is, the image 

of each arc on the circle would correspond to a part of an 

ellipse. (Note: the dashed curves in Fig. 5(b) show an example 

of a composite elliptical shape. It is not meant to correspond to 

the exact composite elliptical shape arising from the fig 5(a) to 

its left) 

In 3D, there are two angular degrees of freedom in the 

optimization search. This can be visualized on a Gauss map 

using a sphere. The set of triangles that makeup the convex 

surface includes faces, edges, and vertices. The 

correspondences to the Gauss map are: triangular faces on the 

convex surface correspond to points on the sphere, edges on the 

convex surface correspond to edges on the sphere, and vertices 

on the convex surface correspond to (somewhat triangular) 

patches on the sphere. The objective function superimposed on 

the Gauss map forms a composite ellipsoidal shape, the 3D 

equivalent of the 2D case. 

Realizing that the objective function has such a composite 

ellipsoidal/elliptical shape paves the way for the means to prove 

that the objective function is convex, a fact that is extremely 

helpful in creating an algorithm to efficiently find the global 

minimum. 

3. The objective function is convex over the relevant 

search region. 

We now give an outline of the proof that the objective 

function is convex with respect to any reasonable range of 

candidate orientations. Here, convexity is not a mere detail of 

technical interest but one we identify as a key accomplishment 
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of this paper. Assurance of convexity is powerful, in that it 

allows for a much faster (and, in our case, non-iterative) 

solution to find the datum plane. Convexity of the objective 

function is not obvious, since the term 𝐿𝑑𝑐
2 that appears on the 

right of Eq (3) is not convex with respect to 𝜃 . Here we 

understand the objective function to be dependent solely on the 

candidate plane’s orientation—its location is understood to be 

always just-contacting the convex surface. 

We will first consider the 2D case, along with the 

assumption that the datum feature, and the discrete points 

arising from it, are approximately planar. (And thus the convex 

surface arising from the points is approximately planar.) This 

assumption is reasonable, since planar datums are nominally 

planes that typically have form deviations that are orders of 

magnitude smaller than their size. Even if the form deviation 

were, say, 10 % or 20 % of the extent of the planar patch (which 

would be an extremely large relative form error) the proof still 

holds, which is outlined in the following two steps. 

Step 1: For each fixed vertex of the convex surface, the 

objective function (which is solely a function of the orientation, 

𝜃) is convex over each interval of 𝜃 that represents the rolling 

of the contacting plane about that vertex.  

One way to see this is that we know the Gauss map of the 

objective function over the circular arc is an ellipse. This is 

shown in [16], which states that any linear transformation 

applied to the unit circle yields an image that is an ellipse. The 

size, shape, and orientation of the ellipse can be seen by the 

observing the SVD of the linear transformation matrix. Since 

the surface is nominally planar, the shape of the ellipse is 

predictably oriented and elongated similar to that as shown in 

Fig. 6. (Typically the elongation will be much more extreme 

than that shown.) Since the curvature of the ellipse between 

between 𝜃1 and 𝜃2 is sufficiently small, it is clear that a plot of 

the radial value of the ellipse between 𝜃1 and 𝜃2 is convex, as 

depicted in Fig. 6. The objective function is the square of the 

function shown in Fig. 7, but we note that the square of any 

nonnegative, convex function is also convex.  

 

Fig. 6. A unit circle with its elliptical image. 

 

Fig. 7. The polar plot from 𝜃1 to 𝜃2 from Fig. 6 when expressed as a function 

of 𝜃 in a Cartesian graph. 

We note that 𝜃1  and 𝜃2  would be limited, if needed, to 

conform to a reasonable range of candidate orientations. 

Another way of demonstrating Step 1 is to observe that the 

objective function for a plane passing through a fixed vertex is 

𝜎1
2Cos2�̂� + 𝜎2

2Sin2𝜃,                            (5)                         

where 𝜎1 and 𝜎2  are the singular values from the SVD of the 

matrix �̂� (which is 𝑴 defined above, but with the data points 

shifted so that the vertex under consideration is the origin). �̂� 

represents the angle P makes with the singular vector 

corresponding to the smallest singular value, 𝜎1 , which is also 

the direction of the least-squares line constrained to pass 

through the vertex (Fig. 8). Since the second derivative of the 

function is a constant times  Cos(2�̂�), and since a function is 

convex over the region that its second derivative is nonnegative, 

this function is convex for all angles, �̂� , between −45°  and 

+45°. This requirement is easily met under our assumption that 

the surface be somewhat planar.  

 

Fig. 8 The dashed line is the unconstrained least-squares fit to the piecewise 

linear curve, which is the basis from which the angle is measured for Eq. (5). 

We note that it is indeed true that for the ends of the convex 

surface, a steep edge can exist, but we are only seeking to show 

the objective function is convex in the reasonable search range 

of values of 𝜃, which excludes those extreme angles. 

Step 2: The convexity from one piece of the graph to the 

next is preserved. Outline of proof of Step 2: The issue to be 

proven here is illustrated in Fig. 9. Depending on how the two 

functions come together determines whether convexity is 

preserved or broken. 

 

Fig. 9. (a) two convex functions over adjacent intervals result in a single 

convex function over the entire interval; (b) two convex functions over 

adjacent intervals result in a single nonconvex function over the interval. 

Convexity can be proved by showing the first derivative is 

nondecreasing. Therefore we can prove that any two adjacent 

parts of the objective function come together in a manner like 

Fig. 9(a) rather than Fig 9(b) by comparing the derivative from 

the left with the derivative from the right. The derivative on the 

left equals the derivative on the right when observing the first 

two terms (on the left) in Eq (3a). However the third term (on 

the right) is different, since the vertex about which the 

candidate line rotates changes. 

Three cases exist: In Case 1, as 𝜃 increases such that the 

candidate datum plane (line in 2D) rotates about vertex A, 

approaching the line segment, 𝑑𝑐 (the distance to the centroid) 

is decreasing, see Fig. 10(a). Once 𝜃  increases past the line 

segment so that it is contacting and rotating about vertex B, 𝑑𝑐 

is increasing. Hence the derivative of the objective function is 

increasing through the transition from one piece to the next. 

In Case 2, as 𝜃  increases such that the candidate datum 

plane (line in 2D) rotates about vertex A, approaching the line 

segment, 𝑑𝑐  is decreasing, see Fig. 10(b). Once 𝜃  increases 

past the line segment so that it is contacting and rotating about 
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vertex B, 𝑑𝑐 is still decreasing but at a slower rate (seen by the 

lower “leverage” due to a closer fulcrum). Hence the derivative 

of the objective function is increasing through the transition 

from one piece to the next.  

 

 

Fig. 10. As the point of contact shifts from A to B, (a) the distance to the 

centroid is decreasing then increasing, (b) the distance to the centroid is 

decreases more slowly (with respect to the angle). 

Case 3 (not pictured, but somewhat like a mirror image of 

Fig. 11) is like case 2, but 𝑑𝑐 is increasing in both cases, but 

increases at a faster rate after the transition from vertex A to 

vertex B. 

While the 3D case is certainly more complicated and is not 

put in writing in this paper, there is nothing fundamentally 

different in extending Steps 1 and 2 to demonstrate convexity 

in that case as well with appropriate changes (e.g., 2D ellipses 

become 3D ellipsoids). 

4. Convexity of the objective function leads to an efficient 

algorithm. 

The fact that we can rely on the objective function to be 

convex has powerful implications for the efficiency of our 

fitting algorithm. In particular, we will show that convexity 

allows us to search for the minimizing facet and then simply 

test the boundaries of that minimizing facet for a global 

solution. Convexity assures that such a search captures the 

global minimum and does not miss some hidden minimum 

elsewhere.   

Before giving an efficient, non-iterative algorithm, we note 

that the solution could be achieved by beginning with the 

orientation obtained using unconstrained total least-squares a 

starting orientation, and applying an iterative “downhill” 

minimization algorithm to the objective function as given in 

Eq. (1) (for 3D) or Eq. (2) (for 2D). For each candidate 

orientation, the candidate plane (or line in 2D) would be the 

one that just contacts the surface. Convexity assures that there 

is no risk of obtaining a local but not global minimum. While 

this may not be the most elegant approach, we mention it 

because it may be the simplest to code, which is desirable in 

some situations. 

But convexity can also be used to create an efficient and 

elegant solution. One can perform an SVD to get the objective 

function in the form of Eq. (3) (for 2D) or Eq. (4) (for 3D) and 

use it to quickly compute the objective function for every 

triangular facet (or line segment in 2D). 

In the 2D case, this step can be followed by checking the 

endpoints of the minimizing line segment to see if there exists 

a line passing through either endpoint that has a lower objective 

function and lies outside the material, see Fig. 11(a). This step 

can be achieved by—for each of the two endpoints—

computing the SVD of the matrix matrix �̂�  (which is 𝑴 

defined above, but with the data points shifted so that the 

endpoint under consideration is the origin). Form the line 

passing through the endpoint and oriented in the direction of 

the singular vector corresponding to the smallest singular 

value. Convexity allows us to know that if that line lies outside 

the material, then it is the line that minimizes the objective 

function. 

    

Fig. 11. (a) the minimizing line will coincide with the minimizing edge or 

will balance on one of the two adjacent vertices;. (b) the minimizing plane 

will be coincident with the minimizing facet or balance on one of the adjacent 

edges or vertices. The triangle shown is one of a collection of triangles (not 

shown) that make up the convex surface, but only this triangle’s edges and 

vertices need to be checked. 

 In 3D one can compute the centroid, shift to it, and then 

compute the SVD to achieve the objective function formula 

(Eq. (4)) for any candidate plane. Then the objective function 

can be computed for each triangle of the convex surface. For 

each triangle, this task is only a matter of evaluating Eq (4). As 

in the 2D case, only one SVD needs to be performed in order 

to gain the objective function values for all the triangles.  The 

triangle corresponding to the minimum objective function can 

then be identified. Then the vertices and edges of that triangle 

can be checked to see if a plane passing through any of them 

gives a lower objective function, see Fig. 11(b). The vertices 

can be checked using the 3D equivalent of the method 

described above in the 2D case. Each edge can be tested 

similarly, by rotating the data points such that the edge 

coincides with the Z-axis, and reducing the problem to a 2D 

one.  

5. Advantages of the constrained least-squares datum 

This L2C datum definition with the algorithm shown here 

has the following advantages: 

 The most complex mathematical tools required are a 

convex hull algorithm and SVD. Both of these are 

well studied, reliable, and available. 

 It can be performed efficiently. In fact, the limiting 

factor is the convex hull itself for which algorithms 

exist of time order 𝑛log(𝑛), where n is the number of 

original points. 

 It is not adversely affected by unevenly sampled data 

points as some datum definitions are. 

But the most notable advantage is the remarkable ability of 

the L2C datum definition that the datum makes full contact 

with the datum feature when it is stable to do so, and balances 

rocking conditions when there is instability that requires it.  

Figure 12 shows two typical cases where, on the left, one 

would seek to balance the rocking condition, and on the right, 

one would seek for the datum plane to be stably flush with the 

edge of the datum feature. This is what the L2C solution does 

automatically.  
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Fig. 12. Two typical cases of datum features with the associated L2C 
datums shown. The balanced rocking case is on the left and the stable, 

flush case is on the right. 

For the rocker condition pictured on the left side of Fig. 12, 

if the line segment on the right were made longer, the L2C 

datum plane would roll to the right smoothly. For the stable 

case pictured on the right side of Fig. 12, if the line segment on 

the right were made somewhat longer, the L2C datum plane 

would not move from its stable state. It would remain flush with 

the edge of the datum feature until the line segment on the right 

grew long enough to make a rocker condition, at which point 

the L2C datum would smoothly begin to roll to the right to 

balance the rocker. 

In contrast, the shifted least-squares solution would achieve 

a flush mating with the datum feature (as pictured on the right 

of Fig. 12) for only an instant. That is, as the line segment on 

the right began to be extended, there would only be one length 

that resulted in a flush mating. This contrast shows the 

fascinating feature of the L2C, which stays flush with the 

datum feature—even while the line segment extends—until it 

reaches such a length that a rocking condition exists, like 

shown in Fig. 13. 

 
 

Fig. 13. The line segment on the right is long enough for the constrained 

𝐿2 datum to treat it as a rocking condition and separate from the flush 
contact it had in the right hand picture of Fig. 12. 

6. Implementation 

The L2C datum definition has been coded and run under 

various input data set scenarios. The results are that the theory 

does in fact hold. For 2D, this means that the datum line 

contacts two points in sufficiently stable cases, and contacts 

one point when there is a rocking condition, which it 

appropriately balances. In 3D, the datum plane does, in fact, 

contact three points in sufficiently stable cases, and contacts 

two points along an edge, when there is a rocking condition 

along that edge (which it balances), and contacts one point 

when there is a rocking condition on that point (which is 

balanced by this datum plane definition). 

7. Conclusion 

The L2C datum plane definition automatically shifts 

between a full-contact solution to stabilizing rocker conditions. 

Besides other advantages, the definition is robust and, because 

the nature of the objective function has been investigated in this 

paper (and in particular because it is convex over the region of 

interest) reliable, efficient algorithms are available. The 

mathematical tools required to carry out implementation are 

reliable and available. Based on all these, the L2C is an 

attractive choice for standardization of planar datums. 

References 

[1] Srinivasan, V., “Reflections on the role of science in the evolution of 

dimensioning and tolerancing standards,” Proceedings of the Institution of 

Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 

227, No. 1, pp. 3-11, 2013. DOI: 10.1177/0954405412464012 

[2] Tandler, W. “All Those Datum Things” Inside Metrology, Quality Digest, 

Quality Digest  Magazine, 13 February 2008. 

[3] Tandler, W. “Establishing Datum Reference Frames,” Inside Metrology, 

Quality Digest, 12 March 2008. 

[4] ANSI/ASME Y14.5.1M-2009 “Dimensioning and Tolerancing,” The 

American Society of Mechanical Engineers, New York. 

[5] ANSI/ASME Y14.5.1M-1994 “Dimensioning and Tolerancing,” The 

American Society of Mechanical Engineers, New York. 

[6] ISO 5459:2011. “Geometrical product specifications (GPS)—geometrical 

tolerancing—datums and datum systems.” Geneva: International 

Organization for Standardization, 2011. 

[7] Zhang, Xuzeng, and Roy, Utpal “Criteria for establishing datums in 

manufactured parts” Journal of Manufacturing Systems, 12(1), pp 36–50, 

1993.  

[8] Shakarji, C. M., and Srinivasan V., “Theory and Algorithms for L1 Fitting 

Used for Planar Datum Establishment in Support of Tolerancing 

Standards,” DETC2013-12372, Proceedings, ASME 2013 International 

Design Engineering Technical Conferences  and Computers and 

Information in Engineering Conference, Portland, OR, 2013.  

[9] Hopp, T. H., 1990, “The Mathematics of Datums,” ASPE Newsletter, 

September 1990, American Society for Precision Engineering, Raleigh, NC  

[10] Shakarji, C. M., and Srinivasan V., “A Constrained L2 Based Algorithm 

for Standardized Planar Datum Establishment,” IMECE2015-51199, 

Proceedings, ASME 2015 International Mechanical Engineering Congress 

& Exposition, Houston, TX, 2015. 

[11] Horowitz, A., "A version of Simpson’s rule for multiple integrals," Journal 

of Computational and Applied Mathematics 134 (2001) 1–11. 

[12] VanHuffel, S., and Vandervalle, J., 1991 The Total Least Squares 

Problem: Computational Aspects and Analysis, SIAM, Philadelphia, PA. 

[13] Shakarji, C. M., and Srinivasan, V., “Theory and Algorithms for Weighted 

Total Least-Squares Fitting of Lines, Planes, and Parallel Planes to Support 

Tolerancing Standards,” ASME Journal of Computing and Information 

Science in Engineering, 13(3), 2013.  

[14] Shakarji, C. M., and Srinivasan, V., “Datum Planes Based on a 

Constrained L1 Norm,” ASME Journal of Computing and Information 

Science in Engineering, 15(4), 2015. 

[15] Shakarji, C. M., and Srinivasan V., “An improved L1 based algorithm for 

standardized planar datum establishment,” DETC2014-35461, 

Proceedings, ASME 2014 International Design Engineering Technical 

Conferences  and Computers and Information in Engineering Conference, 

Buffalo, NY, 2014. 

[16] Trefethen, Lloyd N., and David Bau III. Numerical linear algebra. Vol. 

50. Siam 1997. p. 25-31.  

 


