
This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for public release;

distribution is unlimited.

Proceedings of the ASME 2015 International Mechanical Engineering Congress & Exposition
IMECE2015

November 13-19, 2015, Houston, Texas

 IMECE2015-50654

A CONSTRAINED L2 BASED ALGORITHM FOR STANDARDIZED
PLANAR DATUM ESTABLISHMENT

Craig M Shakarji
Physical Measurement Laboratory

National Institute of Standards and Technology
Gaithersburg, Maryland 20899

craig.shakarji@nist.gov

Vijay Srinivasan
Engineering Laboratory

National Institute of Standards and Technology
Gaithersburg, Maryland 20899

vijay.srinivasan@nist.gov

ABSTRACT
For years (decades, in fact) a definition for datum planes

has been sought by ASME and ISO standards writers that

combines the contacting nature of traditional surface plate

mating with a means of balancing rocking conditions when

there is a centrally positioned extreme point or edge on the

datum feature. This paper describes a completely self-

balancing method for datum plane establishment that matches

traditional surface plate mating while automatically stabilizing

rocker conditions. The method is based on a constrained L2

(L2) minimization, which, when seen mathematically, elegantly

combines the desirable contact properties of the constrained L1

(L1) minimization with the stable properties of the

unconstrained least-squares and does so in a manner that

avoids the drawbacks of either of those two definitions. The

definition is shown along with proofs of a mathematical

development of an algorithm that relies on a strategically

chosen singular value decomposition that allows for an elegant,

robust solution. Concise code is included for the reader for

actual use as well as to full clarify all the algorithmic details.

Testing has shown the definition defined here does indeed

provide attractive balancing of full contact with rocker stability,

leading to guarded optimism on the part of the key standards

committees as an attractive default definition. Since both the

ISO and ASME standardization efforts are actively working to

establish default datum plane definitions, the timing of such a

rigorously documented study is opportune.

1. BACKGROUND AND INTRODUCTION
In the world of Geometric Dimensioning and Tolerancing

(GD&T), datums are used extensively to locate and orient

tolerance zones [1-7]. Datum planes in particular are common

and are established by mating planes to imperfect datum

features on parts during inspection [3] (see Fig. 1). Distances

and orientations on drawings and three-dimensional models are

established from these datum planes, relative to which tolerance

zones are located and oriented. In many cases there is a need

for more than one datum plane. In fact a full Cartesian

coordinate system in three dimensions is often established

using datums. Datum planes, in particular, are widely used for

this. The importance and prevalence of datum planes in

specifications are given in greater detail in [8] and will not be

revisited in this paper.

Fig. 1. Deriving a datum plane from a datum feature.

Given that datum planes are ubiquitous, it might be

surprising that—short of standardization—there are several

different yet reasonable approaches by which a datum plane can

be established from a datum feature [9]. Furthermore, the

International Organization for Standardization (ISO) and the

American Society for Mechanical Engineering (ASME) are

actively working to establish default datum plane definitions.
1

1 The constrained 𝐿2 planar datum definition, as described in this paper,

has been adopted as the default planar datum definition for by ISO for the Draft

International Standard ballot to take place in 2015 for the revision of ISO 5459

mailto:craig.shakarji@nist.gov
mailto:vijay.srinivasan@nist.gov

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for public release;

distribution is unlimited.

Consequently, the timing of this paper is opportune, since we

seek to demonstrate an algorithm that naturally combines a

correspondence to physical, surface plate mating with

automatic balancing in the case of rockers.

Till now the ASME definitions (ASME Y14.5, Y14.5.1)

have employed a complex “candidate” datum system, which

they now desire to replace or supplement with a default,

unambiguously defined planar datum. The ISO working group

is also seeking to improve its default planar datum definition in

its emerging replacement of the ISO 5459 standard. The ISO

definition (ISO 5459) had, since 1982, relied on non-rigorous

language that implies using the full contact of a surface plate

with balancing in the case of rocking conditions (and an

intermediate “improvement” has its own issues). Both

standards groups seek a mathematical definition that makes

sense in ordinary cases of surface plate mating but one that also

balances rocking conditions. The purpose of this paper is to

document a new and advantageous definition and algorithm for

establishing a datum plane from a datum feature—one that is

appropriate for national and international standard definitions.

In Section 2 of this paper, we define what the 𝐿2 norm is in

the context of datum planes. Section 3 gives details of another

planar datum definition based on a constrained 𝐿1 norm that

will give the appropriate context to understand the benefit of

the constrained 𝐿2 solution. Section 4 details the constrained 𝐿2

algorithm and gives mathematical details that show how it is

actually a combination of traditional least-squares fitting and

the constrained 𝐿1 datum. That section also gives mathematical

means for an efficient algorithm. Section 5 is an important part

of the paper, as it answers why 𝐿2 the constrained datum

definition is appealing in that it automatically gives the desired

result of a full contact or balancing solution. Section 6 gives

our conclusions. Matlab code for the 2D case is included in the

appendix for any readers who wish to independently examine

the effects of the algorithm on various data sets.

2. L2 NORM DEFINED IN THE CONTEXT OF DATUM
PLANES

First, we describe what is meant by a constrained 𝐿2 fit in

our context.
2
 To fit a one-sided 𝐿2 plane to a surface patch in

space, we pose the following optimization problem (with

reference to Fig. 2): Given a bounded surface 𝑆, and a direction

𝒂∗ (that points into the material), find the plane 𝑃 that

minimizes ∫ |𝑑2(𝒑, 𝑃)|𝑑𝑠

𝑆
, subject to the constraint that 𝑃 lies

entirely to one side (as determined by 𝒂∗) of the surface 𝑆.

on datums. Thus it is likely that this datum plane definition will be adopted for

worldwide use.
2 The 𝐿2 norm is also known as a least-squares norm. However, in this

paper, in order to avoid confusion, the datum definition we propose is

consistently called the constrained 𝐿2 datum. It is not called a constrained least-
squares plane (though correct) in order to emphasize that this is different than
the normal least-squares plane and also different from a shifted least-squares

plane.

Here 𝑑(𝒑, 𝑃) denotes the signed perpendicular (to 𝑃)

distance of a point p on surface patch S from the plane P that

will be fitted. We note that ∫ 𝑑𝑠

𝑆
 is the area of the surface patch.

If the surface consists of several patches, then the integrals can

be evaluated over each patch and then summed.

Fig. 2. Fitting a plane to a surface patch.

The objective function cannot, in general, be evaluated in

closed form. So we resort to numerical integration over the

surface S. We can sample points on a surface patch after

dividing up the patch into discrete areas ΔAi and approximate

the objective function as

∫ 𝑑2(𝒑, 𝑃)𝑑𝑠 ≈ ∑ 𝑑2(𝒑𝑖 , 𝑃)(∆𝐴𝑖) ,
𝑁
𝑖=1

𝑆
 (1)

where pi are the N sampled points, one in each subdivision.

Thus we are led to minimizing ∑ [|𝑑(𝒑𝑖 , 𝑃)| ∙ ∆𝐴𝑖]
𝑁
𝑖=1 over the

parameters of the plane P, where ΔAi's are treated as the

weights.

The distance from a point 𝒑 to a plane 𝑃 defined by a point

on the plane, 𝒑𝟎, and the unit normal to the plane, 𝒂, is

𝑑(𝒑, 𝑃) = 𝒂 ∙ (𝒑 − 𝒑𝟎).

The two-dimensional case is a readily-apparent restriction

from the three-dimensional case shown above.

3. A BRIEF LOOK AT THE CONSTRAINED L1
MINIMIZATION DATUM PLANE DEFINITION

Before examining the advantageous properties of the

constrained 𝐿2, it is helpful to understand the constrained 𝐿1

datum plane definition—both its advantages and disadvantages.

Doing so will highlight how the new, constrained 𝐿2 definition

largely keeps the advantages of the constrained 𝐿1, along with

elegantly removing the issues with the constrained 𝐿1.

P

S

ds

p

d(p,P)

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for public release;

distribution is unlimited.

In an earlier paper [8] and then improved in [10], we

presented the theory and algorithms for datum plane

establishment using a constrained minimization search based on

the 𝐿1 norm. In short, the algorithm worked as follows: Given a

surface (or set of sampled points), the datum plane was defined

as the plane that (1) is constrained to lie on the nonmaterial side

of the surface (or points), and (2) minimizes the integral (or

sum) of absolute distances between the plane and the surface

(or points). We showed that finding such a plane actually turns

out to be quite simple, since we proved that it is equivalent to

finding the plane that minimizes the distance between the

centroid of the surface (or of the weighted points) and the

plane. This simplification led to efficient algorithms (and code

provided) for the primary and secondary planar datums (the

tertiary case being trivial).

The reader is encouraged to fill in details as desired from

the earlier paper itself [10], but we give a summary of the

constrained 𝐿1 algorithm as follows:

1) Given a set of points sampled on a surface, compute

the lower convex envelope of those points. This

surface is the part of the convex hull of those points

that lies to the outside of the material. The constrained

𝐿1 definition will now be applied to this surface (as

opposed to the points)

2) Compute the centroid of the surface as the weighted

combination of the centroids of the triangles making

up the convex surface. In 2D, the centroid of the

convex, piecewise linear curve would be computed as

the weighted combination of the centroids (midpoints)

of the line segments that it is comprised of. The

weights are the relative areas of the triangles (or

relative lengths of the line segments in 2D, one such

length shown in fig. 3, middle picture).

3) Find the plane containing a triangular facet of the

convex hull closest to the computed centroid (or, in

2D, find the line containing a line segment of the

curve closest to the centroid).

Figure 3 shows these three steps in a 2D case.

Fig. 3. The three main steps of computing the constrained

𝐿1 datum plane, given a discrete set of points.

Theorems were proved in [10] that showed that the

algorithm summarized above is an efficient means of exactly

obtaining the constrained 𝐿1 datum plane. Some of the

appealing properties of this method are:

1) It mimics the contact achieved by the effect of gravity,

if the surface were placed onto a mathematically

perfect, horizontal plane.

2) In a 3-2-1 datum reference frame, the primary datum

plane always contacts three data points (minimum)

and the secondary, always two minimum. This is in

the context of discrete, sampled points.

3) The method works well even for non-uniformly

sampled data without needing any weights to be

provided for the points or any part information.

4) The method yields pleasing results for several example

cases studied.

Other advantages are given in [10], but these should suffice

for our needs here. In summary, the appeal of the constrained

𝐿1 definition is how closely it mimics many uniform-thickness,

real parts sitting on surface plates under the influence of

gravity.

However, common practice with a surface plate also

employs balancing rocker conditions as shown in fig. 4.

Fig. 4. A planar datum feature of a wedge shape being

stabilized to avoid rocking, thus giving the dashed line

shown as the datum.

If the constrained 𝐿1 definition were applied to the wedge

shape shown in fig. 4, the datum plane would lie coincident

with one side or the other of the datum feature. This drawback

manifests itself in a few important ways. First, if the part were

convex (bowl shaped) and sampled with five points (one in

each corner and one in the middle) then the effect would be that

of an upside-down pyramid, and the constrained 𝐿1 plane

would coincide with one of its triangular faces. In a symmetric

case, the choice of which triangular face would be chosen

would depend on something as little as measurement error

during the time of inspection.

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for public release;

distribution is unlimited.

Another case to consider is a 3D concave datum feature,

where a rectangular feature has four low spots, one at each

corner. In this case, the part would naturally sit on a horizontal

plane like a four-legged chair. That is, it would rest along one

diagonal (contacting two opposite corners) and rock between

contacting either of the two corners off that diagonal. Here

again, the desire among many in the standards communities is

to balance that rock, a feature the constrained 𝐿1 definition does

not employ.

It does little good to seek to remedy the various rocking

situations described by simply stating in words that the

constrained 𝐿1 definition holds except in rocking situations,

where the rock should be balanced. This is insufficient (1) due

to the lack of rigor in defining a rocking condition and (2) due

to the lack of rigor in defining how the rock should be

balanced. But even if crisp definitions are added to the above

words, there would still be discontinuities at the thresholds of

rocking/non-rocking states that could lead to instability in the

resulting datum plane from one measurement to the next.

In contrast to the problems just described with the

constrained 𝐿1 datum definition, it is well known that the

traditional least-squares fitting plane is a smoothly varying,

stable association to a planar feature.
3
 We will show that the

constrained 𝐿2 takes the best of both worlds. It exactly matches

the 𝐿1 solution when there is not a rocker condition and also

(naturally and automatically) balances rocker conditions

smoothly (like traditional least-squares) without any special

“if” statements employed to do so.

4. THE CONSTRAINED L2 DEFINTION AND EFFICIENT
ALGORITHM

As in the constrained 𝐿1 defintion above, the proposed

constrained 𝐿2 datum plane definition first forms the lower

convex surface of the datum feature and then finds the plane

that minimizes the sum-of-squares (or integral, in the

continuous case) of the distances from the plane to that convex

surface.

The reasons for forming the convex envelope first are

given in detail in [10], but are summarized by these three

points: (1) it represents the actual interaction of a plane with the

feature (if one rocks a datum feature on a perfect plane, the

plane never contacts the concave sections), (2) it prevents the

need for weights or part information when given discrete data

points, since the convex envelope allows appropriate weighting

to be included in the algorithm itself, and (3) it better handles

broken surfaces.

For simplicity sake, the remainder of this section will often

deal with the two-dimensional case, though we will still use the

3 We do not go into detail here about the disadvantages of a least-squares

or shifted least-squares datum definition. That has been done in [10]. We only

note here the advantage of its stability in order to show that the constrained 𝐿2
definition contains a similar appealing property.

terms “plane” and “surface” instead of “curve” and “line” since

all these concepts will apply to the 3D case as well.

Given a set of points (as shown in fig. 5), we compute the

lower convex surface as shown.

Fig. 5. Above: The lower convex envelope computed from a

set of points. Below: A candidate datum plane P is shown

along with its distance to a point of the surface.

It is important to emphasize that we now seek find the

plane that minimizes the constrained 𝐿2 objective function

between the plane and convex surface, not the original points.

So then, applying the constrained 𝐿2 norm to the convex

surface, we seek to minimize, from Eq. (1),

∫ 𝑑2(𝒙, 𝑃)𝑑𝑠 ,

𝑆
 (2)

where the plane P is constrained to lie on the non-material side

of the convex surface S. It is immediately clear that the P that

minimizes the objective function will contact S, since, if it did

not, the objective function could be lowered by shifting P

closer to S.

If S is obtained as the convex surface formed from discrete

input points, then it is a piecewise linear surface. (In 3D it is a

union of discrete triangles). For any candidate plane, P, the

solution to equation (2) can be found by summing individual

integrals along each line segment of S. But the solution to (2)

over each line segment will be a 3
rd

 degree polynomial.

However, the problem can be converted into a least-

squares problem, which will allow a much more efficient

numerical solution. Simpson’s rule [11] is a numerical

integration technique that uses three function values at the left,

right, and middle of an interval to approximate the integral of a

function over an interval (fig. 6) and a similar method for

integrating over a triangle in our 3D case. While Simpson’s rule

is generally an approximation, it has been proved that it is exact

for integrals of functions that are polynomials of degree 2,

which is the case here. Therefore, we can solve (2) exactly over

each line segment (or triangle) that comprises S in order to

solve a minimum sum-of-squares problem using well known

methods.

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for public release;

distribution is unlimited.

Fig. 6. The locations and weights for function evaluations

for numerical integration using Simpson’s rule over an

interval and triangle.

Simpson’s rule for integrating over an interval or triangle

depends only on the weighted values of the function at the

endpoints (vertices) and centroid. Over an interval, Simpson’s

rule is given by:

∫ 𝑓(𝑥)𝑑𝑥 ≈
𝑏

𝑎

(𝑏 − 𝑎) (
1

6
𝑓(𝑎) +

2

3
𝑓 (

𝑎 + 𝑏

2
) +

1

6
𝑓(𝑏)),

and for integrating over a triangle, 𝑇, as shown in fig. 6,

∫ 𝑓(𝒔)𝑑𝑇 ≈
𝑇

Area(𝑇) (
1

12
𝑓(𝑎) +

1

12
𝑓(𝑏) +

1

12
𝑓(𝑐) +

3

4
𝑓 (

𝑎 + 𝑏 + 𝑐

3
)).

If each line segment of S is called 𝑆𝑖 having left endpoint

𝒙𝒊, right endpoint 𝒙𝒊+𝟏, midpoint, 𝒎𝒊, and length 𝐿𝑖, (i = 1, 2,

…, N, the number of edges and where L denotes the total

length, 𝐿 = ∑ 𝐿𝑖
𝑁
𝑖=1) then Simpson’s rule gives the integral

evaluation as

∫ |𝑑2(𝒙, 𝑃)|𝑑𝑠 =
𝐿𝑖

6

𝑆𝑖
[𝑑2(𝒙𝒊) + 4𝑑2(𝒎𝒊) + 𝑑2(𝒙𝒊+𝟏)]. (3)

Because Simpson’s rule is exact for functions of degree 2,

we note that in Eq (3) this is an exact calculation of the integral

and not a mere approximation. (Simpson’s rule is also exact for

our 3D case). The framing of this problem as a weighted sum-

of-squares now allows us to solve the objective function as a

singular value decomposition problem. See [12] for a general

treatment of the singular value decomposition as a method for

minimizing the total least-squares problem, and [13] for an

application of it applied to planar fitting with weighted points,

which is our case here.

In the Appendix, we prove theorems 1 and 2, which when

applied to our applications give us the remarkable result, that

(in 2D) the objective function for any candidate plane P is

given by the efficient formula:

𝜎1
2Cos2𝜃 + 𝜎2

2Sin2𝜃 + 𝐿𝑑𝑐
2, (4b)

or equivalently

𝜎1
2𝑎2 + 𝜎2

2𝑏2 + 𝐿𝑑𝑐
2, (4a)

where (see fig. 7) 𝑑𝑐 is the distance from the plane P to the

centroid, 𝜎1 and 𝜎2 are the singular values from the singular

value decomposition (SVD, of the matrix M below), and 𝜃

represents the angle P makes with the singular vector

corresponding to the smallest singular value, 𝜎1 . (Eq. (4b) is

just a restatement of (4a), where (𝑎, 𝑏) = (Cos𝜃, Sin𝜃) is the

unit normal to the candidate plane expressed as dot products

with the singular vectors.) The 3𝑁 × 2 matrix, M, that is used

in the singular value decomposition comes from the elements of

Eq. (3), repeated for each of the N line segments:

𝑴 = √
1

6

[

 √𝐿1(𝑥1) √𝐿1(𝑦1)

2√𝐿1 (
𝑥1 + 𝑥2

2
) 2√𝐿1 (

𝑦1 + 𝑦2

2
)

√𝐿1(𝑥2)

⋮

√𝐿𝑁(𝑥𝑁)

2√𝐿𝑁 (
𝑥𝑁 + 𝑥𝑁+1

2
)

√𝐿𝑁(𝑥𝑁+1)

√𝐿1(𝑦2)

⋮

√𝐿𝑁(𝑦𝑁)

2√𝐿𝑁 (
𝑦𝑁 + 𝑦𝑁+1

2
)

√𝐿𝑁(𝑥𝑁+1)]

(The construction of M is done with the data translated so the

centroid is at the origin. This translation is not shown explicitly

in the matrix due to lack of space. See Theorem 1 in the

appendix for further details.)

Fig. 7. The objective function for any candidate datum can

be found simply by finding the angle θ and distance dc and

using Eq. (4).

Using Eq. (4) to compute the objective function means that the

singular value decomposition only has to be computed once and

its result can be applied to any given candidate datum plane.

This makes for a much more efficient minimization algorithm.

What is fascinating about Eq. (4) is that the first two terms

are exactly the objective function used in a traditional least-

squares minimization while the last term is the objective

function in an 𝐿1 fit. And we will see that the objective function

indeed does manifest itself as having the properties of both,

which is what is desired.

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for public release;

distribution is unlimited.

This can extend to 3D as well, since we showed that there

is an extension of Simpson’s rule that applies to integration

over a triangular region. For the 3D case, the objective function

for any candidate plane P is given by the efficient formula:

𝜎1
2𝑎2 + 𝜎2

2𝑏2 + 𝜎3
2𝑐2 + 𝐴𝑑𝑐

2, (5)

where 𝑑𝑐 is the distance from the plane P to the centroid,

𝜎1 , 𝜎2 and 𝜎3 are the singular values from the singular value

decomposition (SVD, of the matrix M below), and (𝑎, 𝑏, 𝑐) is

the unit normal to the candidate plane P expressed as the dot

product of that normal with each of the three singular vectors.

Applying Simpson’s rule for each of the N triangles, the

4𝑁 × 3 matrix, M, that is used in the singular value

decomposition is:

𝑴 = √
1

12

[

 √𝐴1𝑥1A √𝐴1𝑦1A √𝐴1𝑧1A

√𝐴1𝑥1B √𝐴1𝑦1B √𝐴1𝑧1B

√𝐴1𝑥1C √𝐴1𝑦1C √𝐴1𝑧1C

3√𝐴1�̅�1 3√𝐴1�̅�1 3√𝐴1𝑧1̅

⋮ ⋮ ⋮

√𝐴𝑁𝑥𝑁A √𝐴𝑁𝑦𝑁A √𝐴𝑁𝑧𝑁A

√𝐴𝑁𝑥𝑁B √𝐴𝑁𝑦𝑁B √𝐴𝑁𝑧𝑁B

√𝐴𝑁𝑥𝑁C √𝐴𝑁𝑦𝑁C √𝐴𝑁𝑧𝑁C

3√𝐴𝑁�̅�𝑁 3√𝐴𝑁�̅�𝑁 3√𝐴𝑁𝑧�̅�]

(The construction of M is done with the data translated so the

centroid is at the origin. This translation is not shown explicitly

in the matrix due to lack of space. See Theorem 1 in the

appendix for further details.)

The notation used in showing 𝑴 (just above) assumes the

surface is comprised of N triangles Ti , each having area 𝐴𝑖 and

vertices (xiA, yiA, ziA), (xiB, yiB, ziB), and (xiC, yiC, ziC), their

average being (�̅�𝑖 , �̅�𝑖 , 𝑧�̅�)

We can summarize the 3D constrained 𝐿2 algorithm as follows

(the 2D case being similar):

Given:

1) Data points 𝒙1, 𝒙2, 𝒙3, ⋯ , 𝒙𝑀, where each 𝒙𝑖 =

(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ,), and

2) A direction, 𝒂∗ that indicates the direction into the

material,

then the datum plane is established using the following steps:

1) Compute the convex hull of the data points and

represent it by the union of a set of triangles.

2) Select the N triangles (where N < M) that are exterior

to the material (i.e., the triangles that comprise the

lower convex envelope). This can be accomplished by

computing the normal to each triangle (pointing into

the hull) and comparing its direction to 𝒂∗. (The sign

of the dot product can easily be used here).

3) Compute the centroid, �̅�, of the convex surface of Step

2. The centroid of each triangle can be trivially

computed as the average of its vertices. The sum of

these centroids when weighted by their relative areas

is the centroid of the lower convex envelope. If the 𝑁

triangles each has area 𝐴𝑖, then each relative weight is

𝑤𝑖 = 𝐴𝑖 ∑ 𝐴𝑖
𝑁
𝑖=1 .⁄

4) Construct the matrix M as defined above and compute

its singular value decomposition to obtain the singular

values 𝜎1 , 𝜎2 and 𝜎3 and their corresponding

singular vectors.

5) The objective function can now be used efficiently in a

minimization algorithm to find the optimal plane that

is constrained to lie on one side of the material. Given

any candidate orientation, the candidate plane can be

found easily by shifting it just to the outer edge of the

material. The objective function of this candidate

plane can be easily computed using Eq. (5).

Before moving on to the next section that highlights why

the algorithm is so appealing to the standards writers, we note

that the only three nontrivial mathematical functions needed for

implementation of this algorithm are (1) a convex hull function,

(2) a singular value decomposition function, and (3) a

minimization function. All three of these are well researched,

documented, and available to the numerical community. In fact,

the minimization algorithm (3) can be eliminated, as is

explained in the code in the appendix, where an even more

efficient solution is explained.

5. THE APPEALING PROPERTIES OF THE
CONSTRAINED L2 DATUM PLANE DEFINITION

When we saw that the 𝐿2 constrained objective function in Eq.

(4) was in fact a combination of 𝐿1 and traditional least-squares

objective functions, we suspected that this datum plane

definition might manifest itself as combining the advantageous

properties of them both. This turns out to be the case. Figure 8

shows two typical cases where, on the left, one would seek to

balance the rocking condition, and on the right, one would seek

for the datum plane to be stably flush with the edge of the

datum feature. This is what the constrained 𝐿2 solution does

automatically.

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for public release;

distribution is unlimited.

Fig. 8. Two typical cases of datum features with the

associated constrained 𝐿2 datums shown. The balanced

rocking case is on the left and the stable, flush case is on the

right.

For the rocker condition pictured on the left side of fig. 8,

if the line segment on the right were made longer, the

constrained 𝐿2 datum plane would roll to the right smoothly.

For the stable case pictured on the right side of fig. 8, if the line

segment on the right were made somewhat longer, the 𝐿2

constrained datum plane would not move from its stable state.

It would remain flush with the edge of the datum feature until

the line segment on the right grew long enough to make a

rocker condition, at which point the 𝐿2 constrained datum

would smoothly begin to roll to the right to balance the rocker.

In contrast, the shifted least-squares solution would

achieve a flush mating with the datum feature (as pictured on

the right of fig. 8) for only an instant. That is, as the line

segment on the right began to be extended, there would only be

one length that resulted in a flush mating. This contrast shows

the fascinating feature of the constrained 𝐿2, which stays flush

with the datum feature—even while the line segment extends—

until it reaches such a length that a rocking condition exists,

like shown in fig. 9.

Fig. 9. The line segment on the right is long enough for the

constrained 𝐿2 datum to treat it as a rocking condition and

separate from the flush contact it had in the right hand

picture of fig. 8.

6. CONCLUSIONS

The constrained 𝐿2 datum definition for planes has the

remarkable benefit of combining desired properties from both

the constrained 𝐿1 definition and traditional least-squares

definition, which each have their deficiencies by themselves.

We have shown that the objective function in the constrained 𝐿2

definition actually can be mathematically broken down to be

seen (perhaps unexpectedly) as a combination of the objective

functions of the constrained 𝐿1 and traditional least-squares.

Furthermore, a careful application of Simpson’s rule and

singular value decomposition (which is widely available)

allows for the objective function to be evaluated efficiently and

solved with popular optimization algorithms. 2D code in

Matlab is provided in the appendix for the reader and has been

evaluated in numerous test cases to be found appealing in its

behavior and stable in its results.

REFERENCES

[1] Srinivasan, V., “Reflections on the role of science in the

evolution of dimensioning and tolerancing standards,”

Proceedings of the Institution of Mechanical Engineers, Part B:

Journal of Engineering Manufacture, Vol. 227, No. 1, pp. 3-11,

2013. DOI: 10.1177/0954405412464012

[2] Tandler, W. “All Those Datum Things” Inside Metrology,

Quality Digest, Quality Digest Magazine, 13 February 2008.

[3] Tandler, W. “Establishing Datum Reference Frames,” Inside

Metrology, Quality Digest, 12 March 2008.

[4] ANSI/ASME Y14.5.1M-2009 “Dimensioning and

Tolerancing,” The American Society of Mechanical Engineers,

New York.

[5] ANSI/ASME Y14.5.1M-1994 “Dimensioning and

Tolerancing,” The American Society of Mechanical Engineers,

New York.

[6] ISO 5459:2011. “Geometrical product specifications

(GPS)—geometrical tolerancing—datums and datum systems.”

Geneva: International Organization for Standardization, 2011.

[7] Zhang, Xuzeng, and Roy, Utpal “Criteria for establishing

datums in manufactured parts” Journal of Manufacturing

Systems, 12(1), pp 36–50, 1993.

[8] Shakarji, C. M., and Srinivasan V., “Theory and Algorithms

for L1 Fitting Used for Planar Datum Establishment in Support

of Tolerancing Standards,” DETC2013-12372, Proceedings,

ASME 2013 International Design Engineering Technical

Conferences and Computers and Information in Engineering

Conference, Portland, OR, 2013.

[9] Hopp, T. H., 1990, “The Mathematics of Datums,” ASPE

Newsletter, September 1990, American Society for Precision

Engineering, Raleigh, NC. A reprint is available at:

 http://www.mel.nist.gov/msidlibrary/doc/hopp90.pdf

[10] Shakarji, C. M., and Srinivasan V., “An improved L1

based algorithm for stnadardized planar datum establishment,”

DETC2014-35461, Proceedings, ASME 2014 International

Design Engineering Technical Conferences and Computers and

Information in Engineering Conference, Buffalo, NY, 2014.

[11] Horowitz, A., "A version of Simpson’s rule for multiple

integrals," Journal of Computational and Applied Mathematics

134 (2001) 1–11.

http://www.mel.nist.gov/msidlibrary/doc/hopp90.pdf

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for public release;

distribution is unlimited.

[12] VanHuffel, S., and Vandervalle, J., 1991 The Total Least

Squares Problem: Computational Aspects and Analysis, SIAM,

Philadelphia, PA.

[13] Shakarji, C. M., and Srinivasan, V., “Theory and

Algorithms for Weighted Total Least-Squares Fitting of Lines,

Planes, and Parallel Planes to Support Tolerancing Standards,”

ASME Journal of Computing and Information Science in

Engineering, 13(3), 2013.

[14] "Singular Value Decomposition" Wikipedia: The Free

Encyclopedia. Wikimedia Foundation, Inc. 10 Aug. 2015.

https://en.wikipedia.org/wiki/Singular_value_decomposition

APPENDIX: PROOF OF THE EFFICIENT OBJECTIVE
FUNCTION FORMULAS

Two theorems need to be proved in order to justify Eqs (4)

and (5). They are closely related to the well-known principal

axis theorem and parallel axis theorem. The 3D and 2D proofs

are similar, and one can infer one straightforwardly from the

other, so to minimize cumbersome notation, we show the 3D

case.

Theorem 1. Assume that we are given a set of data points
{𝒙1, 𝒙2, ⋯ , 𝒙𝑁}, where 𝒙𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖), and the

corresponding positive weights: 𝑤1, 𝑤2, ⋯ 𝑤𝑁, where all the

weights are positive and where the centroid (i.e. the weighted

centroid,
∑ 𝑤𝑖𝒙𝑖

𝑁
𝑖=1

∑ 𝑤𝑖
𝑁
𝑖=1

) is expressed as 𝒙 = (�̅�, �̅�, 𝑧̅). Then the sum

of the squares of the distances from these points to a plane

passing through the centroid is 𝜎1
2𝑎2 + 𝜎2

2𝑏2 + 𝜎3
2𝑐2, where

𝜎1 , 𝜎2 and 𝜎3 are the singular values of M (as defined below)

and (𝑎, 𝑏, 𝑐) is the unit normal to the plane expressed in terms

of the eigenvectors of M.

Proof: For a plane passing through the centroid, having

unit normal 𝒏 = (𝑛1, 𝑛3, 𝑛3), define the sum-of-squares of the

distances as

𝐹(𝒏) = ∑ 𝑤𝑖𝑑𝑖
2

𝑁

𝑖=1
= ∑ 𝑤𝑖[𝒏 ∙ (𝒙𝑖 − 𝒙)]2

𝑁

𝑖=1
.

Let 𝐺(𝒏) = 0 be the constraint that n be a unit vector (where

𝐺(𝒏) = |𝒏|2 − 1). Using the method of Lagrange multipliers,

we know that the critical points of 𝐹(𝒏) subject to the

constraint that 𝐺(𝒂) = 0 occurs when ∇𝐹 = 𝜆∇𝐺. In this case

we have,

∇𝐹 =

[

𝜕𝐹

𝜕𝑛1

𝜕𝐹

𝜕𝑛2

𝜕𝐹

𝜕𝑛3]

 ,

which, when expanded becomes:

2

[

 ∑ 𝑤𝑖[𝒏 ∙ (𝒙𝑖 − 𝒙)](𝑥𝑖 − �̅�)

𝑁

𝑖=1

∑ 𝑤𝑖[𝒏 ∙ (𝒙𝑖 − 𝒙)](𝑦𝑖 − �̅�)
𝑁

𝑖=1

∑ 𝑤𝑖[𝒏 ∙ (𝒙𝑖 − 𝒙)](𝑧𝑖 − 𝑧̅)
𝑁

𝑖=1]

,

which can be rewritten as

2 [

𝑤𝑖(𝑥𝑖 − �̅�)2 𝑤𝑖(𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�) 𝑤𝑖(𝑥𝑖 − �̅�)(𝑧𝑖 − 𝑧̅)

𝑤𝑖(𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�) 𝑤𝑖(𝑦𝑖 − �̅�)2 𝑤𝑖(𝑦𝑖 − �̅�)(𝑧𝑖 − 𝑧̅)

𝑤𝑖(𝑥𝑖 − �̅�)(𝑧𝑖 − 𝑧̅) 𝑤𝑖(𝑦𝑖 − �̅�)(𝑧𝑖 − 𝑧̅) 𝑤𝑖(𝑧𝑖 − 𝑧̅)2

] [

𝑛1

𝑛2

𝑛3

],

where each entry in the 3 × 3 matrix is understood as being

summed from 1 to N. However, the 3 × 3 shown can be written

as 𝑴𝑇𝑴 where 𝑴 is defined as the 𝑁 × 3 matrix

𝑴 =

[

 √𝑤1(𝑥1 − �̅�)

√𝑤2(𝑥2 − �̅�)

√𝑤1(𝑦1
− �̅�)

√𝑤2(𝑦2
− �̅�)

√𝑤1(𝑧1 − �̅�)

√𝑤2(𝑧2 − �̅�)

⋮

√𝑤𝑁(𝑥𝑁 − �̅�)

⋮

√𝑤𝑁(𝑦
𝑁

− �̅�)

⋮

√𝑤𝑁(𝑧𝑁 − �̅�)]

.

We also have ∇𝐺 = 2𝒏 making ∇𝐹 = 𝜆∇𝐺 become a 3 × 3

eigen-problem given by

𝑴𝑇𝑴[

𝑛1

𝑛2

𝑛3

] = 𝜆 [

𝑛1

𝑛2

𝑛3

].

These three equations can be written:

∑ 𝑤𝑖(𝑥𝑖 − �̅�)[𝒏 ∙ (𝒙𝑖 − 𝒙)]
𝑁

𝑖=1
= 𝜆𝑛1

∑ 𝑤𝑖(𝑦𝑖 − �̅�)[𝒏 ∙ (𝒚𝑖 − �̅�)]
𝑁

𝑖=1
= 𝜆𝑛2

∑ 𝑤𝑖(𝑧𝑖 − 𝑧̅)[𝒏 ∙ (𝒛𝑖 − �̅�)]
𝑁

𝑖=1
= 𝜆𝑛3

Multiplying these equations by 𝑛1, 𝑛2, and 𝑛3 respectively,

then summing the equations gives

∑ 𝑤𝑖[𝒏 ∙ (𝒙𝑖 − 𝒙𝑨)]2𝑁
𝑖=1 = 𝜆|𝒏|𝟐 = 𝜆 (6)

But the sum on the left is just the objective function, 𝐹(𝒂),

hence the sum of squares of the distances to a plane passing

through the centroid (when the plane’s normal is an eigenvector

of 𝑴𝑇𝑴) is equal to the eigenvalue (𝜆) corresponding to that

eigenvector. We note 𝑴𝑇𝑴 is a real, symmetric matrix and thus

its eigenvectors are orthogonal (and can be assumed to

orthonormal by simple scaling).

Now consider the more general case of any plane P passing

through the centroid (not necessarily having its normal as one

of the eigenvectors) whose unit normal is 𝒂 = (𝑎, 𝑏, 𝑐) when

expressed in terms of the orthonormal eigenvectors of 𝑴𝑇𝑴.

https://en.wikipedia.org/wiki/Singular_value_decomposition

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for public release;

distribution is unlimited.

(The eigenvectors are being used as a basis to express the

normal to the plane.) The Pythagorean Theorem can be used to

show the square of the orthogonal distance from each point to

the plane is equal to the sum of the squares of the distances

from the point to the three orthogonal planes formed by the

eigenvectors. (Figure 10 shows a 2D depiction).

Fig. 10. The distance from a point to a plane is decomposed

into separate distances to the orthogonal planes formed as

normal to the eigenvectors.

Therefore, the sum of the squares of the distances from the

points to P can be grouped by distances to each orthogonal

plane and then the sum of the squares for each group can be

replaced by the eigenvalue associated with its plane as we

showed. Thus if the eigenvalues are labeled 𝜆1, 𝜆2, and 𝜆3, then

the sum of the squares of the orthogonal distances to the plane

P is simply

𝑎2𝜆1 + 𝑏2𝜆2 + 𝑐2𝜆3.

Because the singular vectors from the singular value

decomposition of M are the same as the eigenvectors of 𝑴𝑇𝑴

[14], and since the singular values of 𝑴 are the square root of

the singular values of 𝑴𝑇𝑴 [14], we have that the sum of the

squares of the distances can be restated as

𝑎2𝜎1
2 + 𝑏2𝜎2

2 + 𝑐2𝜎3
2. █

Theorem 1 is related to the principal axis theorem. The

following theorem, related to the parallel axis theorem, states

that when a plane is translated away from passing through the

centroid, the increase to the sum-of-squares of the distances

increases by an easily computed amount, namely the square of

the distance moved times the sum of the weights. In our

application, the sum of the weights is the total area (in 3D) or

the total length (in 2D).

 Theorem 2. Assume that we are given a set of data points
{𝒙1, 𝒙2, ⋯ , 𝒙𝑁}, where 𝒙𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖), and the

corresponding positive weights: 𝑤1, 𝑤2, ⋯ 𝑤𝑁, where all the

weights are positive and where the centroid (i.e. the weighted

centroid,
∑ 𝑤𝑖𝒙𝑖

𝑁
𝑖=1

∑ 𝑤𝑖
𝑁
𝑖=1

) is expressed as 𝒙 = (�̅�, �̅�, 𝑧̅). Assume also

that 𝛼 represents the sum of squares of the distances from that

plane to a plane P passing through the centroid. If P* is

parallel to P but separated from by a distance 𝑑𝑐, then the sum

of squares of the distances from the points to P* is 𝛼 +
𝑑𝑐

2 ∑ 𝑤𝑖
𝑁
𝑖=1 .

Proof: Given that 𝛼 = ∑ 𝑤𝑖𝑑𝑖
2𝑁

𝑖=1 , we seek to find

∑ 𝑤𝑖(𝑑𝑖 + 𝑑𝑐)
2𝑁

𝑖=1 . Expanding the square yields

∑ 𝑤𝑖𝑑𝑖
2

𝑁

𝑖=1
+ 𝑑𝑐

2 ∑ 𝑤𝑖

𝑁

𝑖=1
+ 2𝑑𝑐 ∑ 𝑤𝑖𝑑𝑖

𝑁

𝑖=1
.

But the first term is just 𝛼 and the last term is zero. The last

term must be zero, since

∑ 𝑤𝑖𝑑𝑖

𝑁

𝑖=1
= ∑ 𝑤𝑖[𝒏 ∙ (𝒙𝑖 − 𝒙)]

𝑁

𝑖=1
=

𝒏 ∙ [∑ 𝑤𝑖

𝑁

𝑖=1
𝒙𝑖 − 𝒙∑ 𝑤𝑖

𝑁

𝑖=1
],

And substituting
∑ 𝑤𝑖𝒙𝑖

𝑁
𝑖=1

∑ 𝑤𝑖
𝑁
𝑖=1

 for 𝒙 causes the bracketed term to

vanish. Thus the shift by 𝑑𝑐 caused the sum of squares to

become

𝛼 + 𝑑𝑐
2 ∑ 𝑤𝑖

𝑁
𝑖=1 █

In our application of this theorem, the weights are the areas

of the triangles (or the the lengths of the line segments in 2D)

so the sum of the weights is the total area A (or total length L in

2D). The shift of a plane by an amount 𝑑𝑐 as shown in fig. 7

results in an addition to the sum-of-squares of A𝑑𝑐
2 in 3D or

L𝑑𝑐
2 in 2D.

APPENDIX: 2D CODE IN MATLAB
The algorithm documented in this paper showed how the

objective function could be efficiently expressed and used in a

minimization algorithm. However, the (2D) code below

employs an even faster method. Specifically, Eq. (4) is used to

find the line coincident with a line segment of the convex

surface that minimizes the objective function. Then both

endpoints of that line segment are evaluated to see if balancing

a rocker condition on either vertex improves the objective

function. These tests on the two endpoints are achieved using

two other calculations of the singular value decomposition.

While the details of this are not gone into in this paper, it has

been tested in over 250,000 test cases with simulated data sets

to ensure the exact equivalence. Thus the faster algorithm is

given here.

Though 3D code is not included here, Eq. (5) can be used

to find the triangle that minimizes the objective functions. Then

similar tests could be used to check the vertices and edges of

that triangle to see if balancing a rocker condition (on an edge

or point) improves the sum-of-squares.

function [point, direction] = L2C2Dline(originalpts,

refdir)

% L2C2Dline returns the line that minimizes the sum-

% of-squares of distances between the line and the

% lower convex envelope of a set of points ("lower"

% as determined by refdir) and such that the line is

% constrained to lie on the lower side of the convex

% envelope. The function can be used, for example, as

% [point, direction] = L2C2Dline(originalpts, refdir)

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for public release;

distribution is unlimited.

%

% The function returns [point, direction] where

% "point" is a point on the line and "direction" is a

% unit vector giving the direction of the line.

% "orignalpts" is an N X 2 matrix of points: [x1

% y1;x2 y2;...;xN yN] and "refdir" is a direction [x

% y] (not = {0, 0}) that points into the material.

% "refdir" allows the algorithm to know on which side

% of the points the line must lie. Generally, refdir

% does not need to be known very accurately. The

% number of points, N, must be at least two.

%

% Check for the two point case:

%

if (size(originalpts,1) == 2)

 point = sum(originalpts)/size(originalpts,1);

 direction = originalpts(2,:)-originalpts(1,:);

 direction = direction/norm(direction);

 if ([refdir(2) -refdir(1)]*[direction]' < 0)

 direction = -direction;

 end

 else

%

% Translate and rotate the original data set, so that

% the points are close to the origin and so that

% refdir points in the direction of the +y-axis.

%

translation = sum(originalpts)/size(originalpts,1);

pts = bsxfun(@minus,originalpts,translation);

dir = refdir/norm(refdir);

pts = pts*[dir(2) dir(1);-dir(1) dir(2)];

%

% Now that the point lie somewhat along the x-axis,

% sort them according to increasing x-values

%

[~,indices]=sort(pts(:,1));

pts = pts(indices,:);

indices = convhull(pts(:,1),pts(:,2));

pts = pts(indices,:);

midpts = (pts(2:end,:) + pts(1:end-1,:))/2;

vectors = pts(2:end,:) - pts(1:end-1,:);

pts = pts(1:end-1,:);

normals = [-vectors(:,2) vectors(:,1)];

indices = normals(:,2) > 0;

pts = pts(indices,:);

midpts = midpts(indices,:);

vectors = vectors(indices,:);

normals = normals(indices,:);

pts = [pts;pts(end,:)+vectors(end,:)];

%

% Now "pts" contains only the vertices of the lower

% convex envelope. We now compute a single Singular

% Value Decomposition that can be used to obtain the

% objective function values for all the lines

% containing edges of the lower convex envelope.

%

normals = bsxfun(@rdivide,normals,rssq(normals,2));

lengths = rssq(vectors,2);

L = sum(lengths);

centroid = lengths'*midpts/L;

weights = ([lengths;0] + [0;lengths])/6;

shiftedpts = bsxfun(@minus,pts,centroid);

weightedpts =

bsxfun(@times,shiftedpts,sqrt(weights));

shiftedmidpts = bsxfun(@minus,midpts,centroid);

weightedmidpts =

bsxfun(@times,shiftedmidpts,sqrt((2/3)*lengths));

allweightedpts = [weightedpts; weightedmidpts];

[~,S,V] = svd(allweightedpts,0);

ssq1 = S(2,2)^2;

ssq2 = S(1,1)^2;

direction = V(:,1)';

if direction(1) < 0

 direction = -direction;

end

angleSVD = atan2(direction(2),direction(1));

angles = atan2(vectors(:,2),vectors(:,1));

anglediffs = angles - angleSVD;

objfunangle = ssq1*(cos(anglediffs)).^2 +

ssq2*(sin(anglediffs)).^2;

ds = dot(normals',-shiftedmidpts')';

objfunedges = objfunangle + L*ds.^2;

[bestobjvalue,minedgeindex] = min(objfunedges);

bestdirection =

[cos(angles(minedgeindex)),sin(angles(minedgeindex))]

;

bestpoint = midpts(minedgeindex,:);

%

% Now that the best edge has been found, we look at

% the endpoints of that edge to see if a line

% (external to the material) passing through either

% endoint gives a better objective function. This

% will involve one Singular Value Decomposition for

% each of the two endpoints.

%

for ii = minedgeindex:minedgeindex+1

 pt = pts(ii,:);

 shiftedpts = bsxfun(@minus,pts,pt);

 weightedpts =

(bsxfun(@times,shiftedpts,sqrt(weights)));

 shiftedpts = bsxfun(@minus,midpts,pt);

 weightedmidpts =

bsxfun(@times,shiftedpts,sqrt((2/3)*lengths));

 allweightedpts = [weightedpts; weightedmidpts];

 [~,S,V] = svd(allweightedpts,0);

 direction = V(:,1)';

 if direction(1) < 0

 direction = -direction;

 end

 normal = [-direction(2) direction(1)];

 shiftedpts=(bsxfun(@minus,pts,pt));

 dists = (normal*shiftedpts')';

 [~,minindex]=min(dists);

 if (minindex == ii && S(2,2)^2 < bestobjvalue)

 bestobjvalue = S(2,2)^2;

 bestdirection = direction;

 bestpoint = pt;

 end

end

point = translation + bestpoint*[dir(2) -

dir(1);dir(1) dir(2)];

direction = bestdirection*[dir(2) -dir(1);dir(1)

dir(2)];

end

end

