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ABSTRACT 
For years (decades, in fact) a definition for datum planes 

has been sought by ASME and ISO standards writers that 

combines the contacting nature of traditional surface plate 

mating with a means of balancing rocking conditions when 

there is a centrally positioned extreme point or edge on the 

datum feature. This paper describes a completely self-

balancing method for datum plane establishment that matches 

traditional surface plate mating while automatically stabilizing 

rocker conditions. The method is based on a constrained L2 

(L2) minimization, which, when seen mathematically, elegantly 

combines the desirable contact properties of the constrained L1 

(L1) minimization with the stable properties of the 

unconstrained least-squares and does so in a manner that 

avoids the drawbacks of either of those two definitions. The 

definition is shown along with proofs of a mathematical 

development of an algorithm that relies on a strategically 

chosen singular value decomposition that allows for an elegant, 

robust solution. Concise code is included for the reader for 

actual use as well as to full clarify all the algorithmic details.  

Testing has shown the definition defined here does indeed 

provide attractive balancing of full contact with rocker stability, 

leading to guarded optimism on the part of the key standards 

committees as an attractive default definition. Since both the 

ISO and ASME standardization efforts are actively working to 

establish default datum plane definitions, the timing of such a 

rigorously documented study is opportune. 

 

1.  BACKGROUND AND INTRODUCTION 
In the world of Geometric Dimensioning and Tolerancing 

(GD&T), datums are used extensively to locate and orient 

tolerance zones [1-7]. Datum planes in particular are common 

and are established by mating planes to imperfect datum 

features on parts during inspection [3] (see Fig. 1). Distances 

and orientations on drawings and three-dimensional models are 

established from these datum planes, relative to which tolerance 

zones are located and oriented. In many cases there is a need 

for more than one datum plane. In fact a full Cartesian 

coordinate system in three dimensions is often established 

using datums. Datum planes, in particular, are widely used for 

this. The importance and prevalence of datum planes in 

specifications are given in greater detail in [8] and will not be 

revisited in this paper.  

 

 
Fig. 1. Deriving a datum plane from a datum feature. 

 

Given that datum planes are ubiquitous, it might be 

surprising that—short of standardization—there are several 

different yet reasonable approaches by which a datum plane can 

be established from a datum feature [9]. Furthermore, the 

International Organization for Standardization (ISO) and the 

American Society for Mechanical Engineering (ASME) are 

actively working to establish default datum plane definitions.
1
 

                                                           
1 The constrained 𝐿2 planar datum definition, as described in this paper, 

has been adopted as the default planar datum definition for by ISO for the Draft 

International Standard ballot to take place in 2015 for the revision of ISO 5459 
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Consequently, the timing of this paper is opportune, since we 

seek to demonstrate an algorithm that naturally combines a 

correspondence to physical, surface plate mating with 

automatic balancing in the case of rockers. 

Till now the ASME definitions (ASME Y14.5, Y14.5.1) 

have employed a complex “candidate” datum system, which 

they now desire to replace or supplement with a default, 

unambiguously defined planar datum. The ISO working group 

is also seeking to improve its default planar datum definition in 

its emerging replacement of the ISO 5459 standard. The ISO 

definition (ISO 5459) had, since 1982, relied on non-rigorous 

language that implies using the full contact of a surface plate 

with balancing in the case of rocking conditions (and an 

intermediate “improvement” has its own issues). Both 

standards groups seek a mathematical definition that makes 

sense in ordinary cases of surface plate mating but one that also 

balances rocking conditions. The purpose of this paper is to 

document a new and advantageous definition and algorithm for 

establishing a datum plane from a datum feature—one that is 

appropriate for national and international standard definitions. 

In Section 2 of this paper, we define what the 𝐿2 norm is in 

the context of datum planes. Section 3 gives details of another 

planar datum definition based on a constrained 𝐿1 norm that 

will give the appropriate context to understand the benefit of 

the constrained 𝐿2 solution. Section 4 details the constrained 𝐿2 

algorithm and gives mathematical details that show how it is 

actually a combination of traditional least-squares fitting and 

the constrained 𝐿1 datum. That section also gives mathematical 

means for an efficient algorithm. Section 5 is an important part 

of the paper, as it answers why 𝐿2 the constrained datum 

definition is appealing in that it automatically gives the desired 

result of a full contact or balancing solution. Section 6 gives 

our conclusions. Matlab code for the 2D case is included in the 

appendix for any readers who wish to independently examine 

the effects of the algorithm on various data sets.  

 

 

2. L2 NORM DEFINED IN THE CONTEXT OF DATUM 
PLANES 

 
First, we describe what is meant by a constrained 𝐿2 fit in 

our context.
2
 To fit a one-sided 𝐿2 plane to a surface patch in 

space, we pose the following optimization problem (with 

reference to Fig. 2): Given a bounded surface 𝑆, and a direction 

𝒂∗ (that points into the material), find the plane 𝑃 that 

minimizes ∫ |𝑑2(𝒑, 𝑃)|𝑑𝑠
 

𝑆
, subject to the constraint that 𝑃 lies 

entirely to one side (as determined by 𝒂∗ ) of the surface 𝑆. 

                                                                                                       
on datums. Thus it is likely that this datum plane definition will be adopted for 

worldwide use. 
2 The 𝐿2 norm is also known as a least-squares norm. However, in this 

paper, in order to avoid confusion, the datum definition we propose is 

consistently called the constrained 𝐿2 datum. It is not called a constrained least-
squares plane (though correct) in order to emphasize that this is different than 
the normal least-squares plane and also different from a shifted least-squares 

plane. 

Here 𝑑(𝒑, 𝑃) denotes the signed perpendicular (to 𝑃) 

distance of a point p on surface patch S from the plane P that 

will be fitted. We note that ∫ 𝑑𝑠
 

𝑆
 is the area of the surface patch. 

If the surface consists of several patches, then the integrals can 

be evaluated over each patch and then summed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Fitting a plane to a surface patch. 

 

The objective function cannot, in general, be evaluated in 

closed form. So we resort to numerical integration over the 

surface S. We can sample points on a surface patch after 

dividing up the patch into discrete areas ΔAi and approximate 

the objective function as 

 

∫ 𝑑2(𝒑, 𝑃)𝑑𝑠 ≈  ∑ 𝑑2(𝒑𝑖 , 𝑃)(∆𝐴𝑖) ,
𝑁
𝑖=1

 

𝑆
               (1) 

 

where pi are the N sampled points, one in each subdivision. 

Thus we are led to minimizing ∑ [|𝑑(𝒑𝑖 , 𝑃)| ∙ ∆𝐴𝑖 ]
𝑁
𝑖=1  over the 

parameters of the plane P, where ΔAi's are treated as the 

weights. 

The distance from a point 𝒑 to a plane 𝑃 defined by a point 

on the plane, 𝒑𝟎, and the unit normal to the plane, 𝒂, is 

 

𝑑(𝒑, 𝑃) = 𝒂 ∙ (𝒑 − 𝒑𝟎). 
 

The two-dimensional case is a readily-apparent restriction 

from the three-dimensional case shown above.  

 

 

3. A BRIEF LOOK AT THE CONSTRAINED L1 
MINIMIZATION DATUM PLANE DEFINITION 

 

Before examining the advantageous properties of the 

constrained 𝐿2, it is helpful to understand the constrained 𝐿1 

datum plane definition—both its advantages and disadvantages. 

Doing so will highlight how the new, constrained 𝐿2 definition 

largely keeps the advantages of the constrained 𝐿1, along with 

elegantly removing the issues with the constrained 𝐿1. 

P 

S 

ds 

p 

d(p,P) 
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In an earlier paper [8] and then improved in [10], we 

presented the theory and algorithms for datum plane 

establishment using a constrained minimization search based on 

the 𝐿1 norm. In short, the algorithm worked as follows: Given a 

surface (or set of sampled points), the datum plane was defined 

as the plane that (1) is constrained to lie on the nonmaterial side 

of the surface (or points), and (2) minimizes the integral (or 

sum) of absolute distances between the plane and the surface 

(or points). We showed that finding such a plane actually turns 

out to be quite simple, since we proved that it is equivalent to 

finding the plane that minimizes the distance between the 

centroid of the surface (or of the weighted points) and the 

plane. This simplification led to efficient algorithms (and code 

provided) for the primary and secondary planar datums (the 

tertiary case being trivial). 

The reader is encouraged to fill in details as desired from 

the earlier paper itself [10], but we give a summary of the 

constrained 𝐿1 algorithm as follows:  

1) Given a set of points sampled on a surface, compute 

the lower convex envelope of those points. This 

surface is the part of the convex hull of those points 

that lies to the outside of the material. The constrained 

𝐿1 definition will now be applied to this surface (as 

opposed to the points) 

2) Compute the centroid of the surface as the weighted 

combination of the centroids of the triangles making 

up the convex surface. In 2D, the centroid of the 

convex, piecewise linear curve would be computed as 

the weighted combination of the centroids (midpoints) 

of the line segments that it is comprised of. The 

weights are the relative areas of the triangles (or 

relative lengths of the line segments in 2D, one such 

length shown in fig. 3, middle picture). 

3) Find the plane containing a triangular facet of the 

convex hull closest to the computed centroid (or, in 

2D, find the line containing a line segment of the 

curve closest to the centroid). 

Figure 3 shows these three steps in a 2D case. 

 

 
 

 

 
Fig. 3. The three main steps of computing the constrained 

𝐿1 datum plane, given a discrete set of points. 

 

Theorems were proved in [10] that showed that the 

algorithm summarized above is an efficient means of exactly 

obtaining the constrained 𝐿1 datum plane. Some of the 

appealing properties of this method are: 

 

1) It mimics the contact achieved by the effect of gravity, 

if the surface were placed onto a mathematically 

perfect, horizontal plane. 

2) In a 3-2-1 datum reference frame, the primary datum 

plane always contacts three data points (minimum) 

and the secondary, always two minimum. This is in 

the context of discrete, sampled points.  

3) The method works well even for non-uniformly 

sampled data without needing any weights to be 

provided for the points or any part information. 

4) The method yields pleasing results for several example 

cases studied. 

Other advantages are given in [10], but these should suffice 

for our needs here. In summary, the appeal of the constrained 

𝐿1 definition is how closely it mimics many uniform-thickness, 

real parts sitting on surface plates under the influence of 

gravity.  

However, common practice with a surface plate also 

employs balancing rocker conditions as shown in fig. 4. 

 

 

Fig. 4. A planar datum feature of a wedge shape being 

stabilized to avoid rocking, thus giving the dashed line 

shown as the datum. 

 

If the constrained 𝐿1 definition were applied to the wedge 

shape shown in fig. 4, the datum plane would lie coincident 

with one side or the other of the datum feature. This drawback 

manifests itself in a few important ways. First, if the part were 

convex (bowl shaped) and sampled with five points (one in 

each corner and one in the middle) then the effect would be that 

of an upside-down pyramid, and the constrained 𝐿1 plane 

would coincide with one of its triangular faces. In a symmetric 

case, the choice of which triangular face would be chosen 

would depend on something as little as measurement error 

during the time of inspection.  
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Another case to consider is a 3D concave datum feature, 

where a rectangular feature has four low spots, one at each 

corner. In this case, the part would naturally sit on a horizontal 

plane like a four-legged chair. That is, it would rest along one 

diagonal (contacting two opposite corners) and rock between 

contacting either of the two corners off that diagonal. Here 

again, the desire among many in the standards communities is 

to balance that rock, a feature the constrained 𝐿1 definition does 

not employ. 

It does little good to seek to remedy the various rocking 

situations described by simply stating in words that the 

constrained 𝐿1 definition holds except in rocking situations, 

where the rock should be balanced. This is insufficient (1) due 

to the lack of rigor in defining a rocking condition and (2) due 

to the lack of rigor in defining how the rock should be 

balanced. But even if crisp definitions are added to the above 

words, there would still be discontinuities at the thresholds of 

rocking/non-rocking states that could lead to instability in the 

resulting datum plane from one measurement to the next. 

In contrast to the problems just described with the 

constrained 𝐿1 datum definition, it is well known that the 

traditional least-squares fitting plane is a smoothly varying, 

stable association to a planar feature.
3
 We will show that the 

constrained 𝐿2 takes the best of both worlds. It exactly matches 

the 𝐿1 solution when there is not a rocker condition and also 

(naturally and automatically) balances rocker conditions 

smoothly (like traditional least-squares) without any special 

“if” statements employed to do so. 

 

 

4. THE CONSTRAINED L2 DEFINTION AND EFFICIENT 
ALGORITHM 

 

As in the constrained 𝐿1 defintion above, the proposed 

constrained 𝐿2 datum plane definition first forms the lower 

convex surface of the datum feature and then finds the plane 

that minimizes the sum-of-squares (or integral, in the 

continuous case) of the distances from the plane to that convex 

surface. 

The reasons for forming the convex envelope first are 

given in detail in [10], but are summarized by these three 

points: (1) it represents the actual interaction of a plane with the 

feature (if one rocks a datum feature on a perfect plane, the 

plane never contacts the concave sections), (2) it prevents the 

need for weights or part information when given discrete data 

points, since the convex envelope allows appropriate weighting 

to be included in the algorithm itself, and (3) it better handles 

broken surfaces. 

For simplicity sake, the remainder of this section will often 

deal with the two-dimensional case, though we will still use the 

                                                           
3 We do not go into detail here about the disadvantages of a least-squares 

or shifted least-squares datum definition. That has been done in [10]. We only 

note here the advantage of its stability in order to show that the constrained 𝐿2 
definition contains a similar appealing property. 

terms “plane” and “surface” instead of “curve” and “line” since 

all these concepts will apply to the 3D case as well.  

Given a set of points (as shown in fig. 5), we compute the 

lower convex surface as shown.  

 

 
 

Fig. 5. Above: The lower convex envelope computed from a 

set of points. Below: A candidate datum plane P is shown 

along with its distance to a point of the surface. 

 

It is important to emphasize that we now seek find the 

plane that minimizes the constrained 𝐿2 objective function 

between the plane and convex surface, not the original points. 

So then, applying the constrained 𝐿2 norm to the convex 

surface, we seek to minimize, from Eq. (1), 

 

∫ 𝑑2(𝒙, 𝑃)𝑑𝑠 ,
 

𝑆
                                 (2) 

 

where the plane P is constrained to lie on the non-material side 

of the convex surface S. It is immediately clear that the P that 

minimizes the objective function will contact S, since, if it did 

not, the objective function could be lowered by shifting P 

closer to S. 

If S is obtained as the convex surface formed from discrete 

input points, then it is a piecewise linear surface. (In 3D it is a 

union of discrete triangles). For any candidate plane, P, the 

solution to equation (2) can be found by summing individual 

integrals along each line segment of S. But the solution to (2) 

over each line segment will be a 3
rd

 degree polynomial. 

However, the problem can be converted into a least-

squares problem, which will allow a much more efficient 

numerical solution. Simpson’s rule [11] is a numerical 

integration technique that uses three function values at the left, 

right, and middle of an interval to approximate the integral of a 

function over an interval (fig. 6) and a similar method for 

integrating over a triangle in our 3D case. While Simpson’s rule 

is generally an approximation, it has been proved that it is exact 

for integrals of functions that are polynomials of degree 2, 

which is the case here. Therefore, we can solve (2) exactly over 

each line segment (or triangle) that comprises S in order to 

solve a minimum sum-of-squares problem using well known 

methods. 
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Fig. 6. The locations and weights for function evaluations 

for numerical integration using Simpson’s rule over an 

interval and triangle. 

 

Simpson’s rule for integrating over an interval or triangle 

depends only on the weighted values of the function at the 

endpoints (vertices) and centroid. Over an interval, Simpson’s 

rule is given by: 

∫ 𝑓(𝑥)𝑑𝑥 ≈
𝑏

𝑎

(𝑏 − 𝑎) (
1

6
𝑓(𝑎) +

2

3
𝑓 (

𝑎 + 𝑏

2
) +

1

6
𝑓(𝑏)), 

and for integrating over a triangle, 𝑇, as shown in fig. 6,  

 

∫ 𝑓(𝒔)𝑑𝑇 ≈
𝑇

 

Area(𝑇) (
1

12
𝑓(𝑎) +

1

12
𝑓(𝑏) +

1

12
𝑓(𝑐) +

3

4
𝑓 (

𝑎 + 𝑏 + 𝑐

3
)). 

 

 

If each line segment of S is called 𝑆𝑖 having left endpoint 

𝒙𝒊, right endpoint 𝒙𝒊+𝟏, midpoint, 𝒎𝒊, and length 𝐿𝑖, (i = 1, 2, 

…, N, the number of edges and where L denotes the total 

length, 𝐿 = ∑ 𝐿𝑖
𝑁
𝑖=1  ) then Simpson’s rule gives  the integral 

evaluation as 

 

∫ |𝑑2(𝒙, 𝑃)|𝑑𝑠 =
𝐿𝑖

6

 

𝑆𝑖
[𝑑2(𝒙𝒊) + 4𝑑2(𝒎𝒊) + 𝑑2(𝒙𝒊+𝟏)].   (3) 

 

Because Simpson’s rule is exact for functions of degree 2, 

we note that in Eq (3) this is an exact calculation of the integral 

and not a mere approximation. (Simpson’s rule is also exact for 

our 3D case). The framing of this problem as a weighted sum-

of-squares now allows us to solve the objective function as a 

singular value decomposition problem. See [12] for a general 

treatment of the singular value decomposition as a method for 

minimizing the total least-squares problem, and [13] for an 

application of it applied to planar fitting with weighted points, 

which is our case here. 

In the Appendix, we prove theorems 1 and 2, which when 

applied to our applications give us the remarkable result, that 

(in 2D) the objective function for any candidate plane P is 

given by the efficient formula:  

 

𝜎1
2Cos2𝜃 + 𝜎2

2Sin2𝜃 + 𝐿𝑑𝑐
2,                    (4b) 

or equivalently 

𝜎1
2𝑎2 + 𝜎2

2𝑏2 + 𝐿𝑑𝑐
2,                           (4a) 

                         

where (see fig. 7) 𝑑𝑐 is the distance from the plane P to the 

centroid, 𝜎1 and 𝜎2  are the singular values from the singular 

value decomposition (SVD, of the matrix M below), and 𝜃 

represents the angle P makes with the singular vector 

corresponding to the smallest singular value, 𝜎1 . (Eq. (4b) is 

just a restatement of (4a), where (𝑎, 𝑏) = (Cos𝜃, Sin𝜃) is the 

unit normal to the candidate plane expressed as dot products 

with the singular vectors.) The 3𝑁 × 2 matrix, M, that is used 

in the singular value decomposition comes from the elements of 

Eq. (3), repeated for each of the N line segments: 

 

𝑴 = √
1

6

[
 
 
 
 
 
 
 
 
 
 √𝐿1(𝑥1) √𝐿1(𝑦1)

2√𝐿1 (
𝑥1 + 𝑥2

2
) 2√𝐿1 (

𝑦1 + 𝑦2

2
)

√𝐿1(𝑥2)

⋮

√𝐿𝑁(𝑥𝑁)

2√𝐿𝑁 (
𝑥𝑁 + 𝑥𝑁+1

2
)

√𝐿𝑁(𝑥𝑁+1)

√𝐿1(𝑦2)

⋮

√𝐿𝑁(𝑦𝑁)

2√𝐿𝑁 (
𝑦𝑁 + 𝑦𝑁+1

2
)

√𝐿𝑁(𝑥𝑁+1) ]
 
 
 
 
 
 
 
 
 
 

 

 

(The construction of M is done with the data translated so the 

centroid is at the origin. This translation is not shown explicitly 

in the matrix due to lack of space. See Theorem 1 in the 

appendix for further details.)  

 
Fig. 7. The objective function for any candidate datum can 

be found simply by finding the angle θ and distance dc and 

using Eq. (4). 

 

Using Eq. (4) to compute the objective function means that the 

singular value decomposition only has to be computed once and 

its result can be applied to any given candidate datum plane. 

This makes for a much more efficient minimization algorithm. 

What is fascinating about Eq. (4) is that the first two terms 

are exactly the objective function used in a traditional least-

squares minimization while the last term is the objective 

function in an 𝐿1 fit. And we will see that the objective function 

indeed does manifest itself as having the properties of both, 

which is what is desired. 
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This can extend to 3D as well, since we showed that there 

is an extension of Simpson’s rule that applies to integration 

over a triangular region. For the 3D case, the objective function 

for any candidate plane P is given by the efficient formula: 

 

𝜎1
2𝑎2 + 𝜎2

2𝑏2 + 𝜎3
2𝑐2 + 𝐴𝑑𝑐

2,                       (5) 

 

where 𝑑𝑐 is the distance from the plane P to the centroid, 

𝜎1 , 𝜎2 and 𝜎3  are the singular values from the singular value 

decomposition (SVD, of the matrix M below), and (𝑎, 𝑏, 𝑐) is 

the unit normal to the candidate plane P expressed as the dot 

product of that normal with each of the three singular vectors. 

Applying Simpson’s rule for each of the N triangles, the 

4𝑁 × 3 matrix, M, that is used in the singular value 

decomposition is: 

𝑴 = √
1

12

[
 
 
 
 
 
 
 
 
 
 
 
 
 √𝐴1𝑥1A √𝐴1𝑦1A √𝐴1𝑧1A

√𝐴1𝑥1B √𝐴1𝑦1B √𝐴1𝑧1B

√𝐴1𝑥1C √𝐴1𝑦1C √𝐴1𝑧1C

3√𝐴1�̅�1 3√𝐴1�̅�1 3√𝐴1𝑧1̅

⋮ ⋮ ⋮

√𝐴𝑁𝑥𝑁A √𝐴𝑁𝑦𝑁A √𝐴𝑁𝑧𝑁A

√𝐴𝑁𝑥𝑁B √𝐴𝑁𝑦𝑁B √𝐴𝑁𝑧𝑁B

√𝐴𝑁𝑥𝑁C √𝐴𝑁𝑦𝑁C √𝐴𝑁𝑧𝑁C

3√𝐴𝑁�̅�𝑁 3√𝐴𝑁�̅�𝑁 3√𝐴𝑁𝑧�̅�]
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

(The construction of M is done with the data translated so the 

centroid is at the origin. This translation is not shown explicitly 

in the matrix due to lack of space. See Theorem 1 in the 

appendix for further details.)  

 

 

The notation used in showing 𝑴 (just above)  assumes the 

surface is comprised of N triangles Ti , each having area 𝐴𝑖 and 

vertices (xiA, yiA, ziA), (xiB, yiB, ziB), and (xiC, yiC, ziC), their 

average being (�̅�𝑖 , �̅�𝑖 , 𝑧�̅�) 

 

We can summarize the 3D constrained 𝐿2 algorithm as follows 

(the 2D case being similar):  

Given:  

1) Data points 𝒙1,  𝒙2,  𝒙3, ⋯ ,  𝒙𝑀, where each 𝒙𝑖 =

(𝑥𝑖 ,  𝑦𝑖 ,  𝑧𝑖 , ), and 

2) A direction, 𝒂∗ that indicates the direction into the 

material, 

then the datum plane is established using the following steps: 

 

1) Compute the convex hull of the data points and 

represent it by the union of a set of triangles. 

2) Select the N triangles (where N < M) that are exterior 

to the material (i.e., the triangles that comprise the 

lower convex envelope). This can be accomplished by 

computing the normal to each triangle (pointing into 

the hull) and comparing its direction to  𝒂∗. (The sign 

of the dot product can easily be used here). 

3) Compute the centroid, �̅�, of the convex surface of Step 

2. The centroid of each triangle can be trivially 

computed as the average of its vertices. The sum of 

these centroids when weighted by their relative areas 

is the centroid of the lower convex envelope. If the 𝑁 

triangles each has area 𝐴𝑖, then each relative weight is 

𝑤𝑖 = 𝐴𝑖 ∑ 𝐴𝑖
𝑁
𝑖=1 .⁄  

4) Construct the matrix M as defined above and compute 

its singular value decomposition to obtain the singular 

values 𝜎1 , 𝜎2 and 𝜎3 and their corresponding 

singular vectors. 

5) The objective function can now be used efficiently in a 

minimization algorithm to find the optimal plane that 

is constrained to lie on one side of the material. Given 

any candidate orientation, the candidate plane can be 

found easily by shifting it just to the outer edge of the 

material. The objective function of this candidate 

plane can be easily computed using Eq. (5). 

Before moving on to the next section that highlights why 

the algorithm is so appealing to the standards writers, we note 

that the only three nontrivial mathematical functions needed for 

implementation of this algorithm are (1) a convex hull function, 

(2) a singular value decomposition function, and (3) a 

minimization function. All three of these are well researched, 

documented, and available to the numerical community. In fact, 

the minimization algorithm (3) can be eliminated, as is 

explained in the code in the appendix, where an even more 

efficient solution is explained. 

 

5. THE APPEALING PROPERTIES OF THE 
CONSTRAINED L2 DATUM PLANE DEFINITION 

 

When we saw that the 𝐿2 constrained objective function in Eq. 

(4) was in fact a combination of 𝐿1 and traditional least-squares 

objective functions, we suspected that this datum plane 

definition might manifest itself as combining the advantageous 

properties of them both. This turns out to be the case. Figure 8 

shows two typical cases where, on the left, one would seek to 

balance the rocking condition, and on the right, one would seek 

for the datum plane to be stably flush with the edge of the 

datum feature. This is what the constrained 𝐿2 solution does 

automatically.  



This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for public release; 

distribution is unlimited. 

 

 
 

Fig. 8. Two typical cases of datum features with the 

associated constrained 𝐿2 datums shown. The balanced 

rocking case is on the left and the stable, flush case is on the 

right. 

 

For the rocker condition pictured on the left side of fig. 8, 

if the line segment on the right were made longer, the 

constrained 𝐿2 datum plane would roll to the right smoothly. 

For the stable case pictured on the right side of fig. 8, if the line 

segment on the right were made somewhat longer, the 𝐿2 

constrained datum plane would not move from its stable state. 

It would remain flush with the edge of the datum feature until 

the line segment on the right grew long enough to make a 

rocker condition, at which point the 𝐿2 constrained datum 

would smoothly begin to roll to the right to balance the rocker. 

In contrast, the shifted least-squares solution would 

achieve a flush mating with the datum feature (as pictured on 

the right of fig. 8) for only an instant. That is, as the line 

segment on the right began to be extended, there would only be 

one length that resulted in a flush mating. This contrast shows 

the fascinating feature of the constrained 𝐿2, which stays flush 

with the datum feature—even while the line segment extends—

until it reaches such a length that a rocking condition exists, 

like shown in fig. 9. 

 

 
 

Fig. 9. The line segment on the right is long enough for the 

constrained 𝐿2 datum to treat it as a rocking condition and 

separate from the flush contact it had in the right hand 

picture of fig. 8. 

 

6. CONCLUSIONS 
 

The constrained 𝐿2 datum definition for planes has the 

remarkable benefit of combining desired properties from both 

the constrained 𝐿1 definition and traditional least-squares 

definition, which each have their deficiencies by themselves. 

We have shown that the objective function in the constrained 𝐿2 

definition actually can be mathematically broken down to be 

seen (perhaps unexpectedly) as a combination of the objective 

functions of the constrained 𝐿1 and traditional least-squares. 

Furthermore, a careful application of Simpson’s rule and 

singular value decomposition (which is widely available) 

allows for the objective function to be evaluated efficiently and 

solved with popular optimization algorithms. 2D code in 

Matlab is provided in the appendix for the reader and has been 

evaluated in numerous test cases to be found appealing in its 

behavior and stable in its results. 
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APPENDIX: PROOF OF THE EFFICIENT OBJECTIVE 
FUNCTION FORMULAS 

Two theorems need to be proved in order to justify Eqs (4) 

and (5). They are closely related to the well-known principal 

axis theorem and parallel axis theorem. The 3D and 2D proofs 

are similar, and one can infer one straightforwardly from the 

other, so to minimize cumbersome notation, we show the 3D 

case. 

 

Theorem 1. Assume that we are given a set of data points 
{𝒙1,  𝒙2, ⋯ ,  𝒙𝑁}, where 𝒙𝑖 = (𝑥𝑖 ,  𝑦𝑖 ,  𝑧𝑖), and the 

corresponding positive weights: 𝑤1,  𝑤2, ⋯  𝑤𝑁, where all the 

weights are positive and where the centroid (i.e. the weighted 

centroid, 
∑ 𝑤𝑖𝒙𝑖

𝑁
𝑖=1

∑ 𝑤𝑖
𝑁
𝑖=1

) is expressed as 𝒙 = (�̅�, �̅�, 𝑧̅). Then the sum 

of the squares of the distances from these points to a plane 

passing through the centroid is 𝜎1
2𝑎2 + 𝜎2

2𝑏2 + 𝜎3
2𝑐2, where 

𝜎1 , 𝜎2 and 𝜎3 are the singular values of  M (as defined below) 

and (𝑎, 𝑏, 𝑐) is the unit normal to the plane expressed in terms 

of the eigenvectors of M. 

  

Proof: For a plane passing through the centroid, having 

unit normal 𝒏 = (𝑛1, 𝑛3, 𝑛3), define the sum-of-squares of the 

distances as 

 

𝐹(𝒏) = ∑ 𝑤𝑖𝑑𝑖
2

𝑁

𝑖=1
= ∑ 𝑤𝑖[𝒏 ∙ (𝒙𝑖 − 𝒙)]2

𝑁

𝑖=1
. 

 

Let 𝐺(𝒏) = 0 be the constraint that n be a unit vector (where 

𝐺(𝒏) = |𝒏|2 − 1). Using the method of Lagrange multipliers, 

we know that the critical points of 𝐹(𝒏) subject to the 

constraint that 𝐺(𝒂) = 0 occurs when ∇𝐹 = 𝜆∇𝐺. In this case 

we have,  

∇𝐹 =

[
 
 
 
 
 
 
𝜕𝐹

𝜕𝑛1

𝜕𝐹

𝜕𝑛2

𝜕𝐹

𝜕𝑛3]
 
 
 
 
 
 

 , 

 

which, when expanded becomes: 

2

[
 
 
 
 
 
 ∑ 𝑤𝑖[𝒏 ∙ (𝒙𝑖 − 𝒙)](𝑥𝑖 − �̅�)

𝑁

𝑖=1

∑ 𝑤𝑖[𝒏 ∙ (𝒙𝑖 − 𝒙)](𝑦𝑖 − �̅�)
𝑁

𝑖=1

∑ 𝑤𝑖[𝒏 ∙ (𝒙𝑖 − 𝒙)](𝑧𝑖 − 𝑧̅)
𝑁

𝑖=1 ]
 
 
 
 
 
 

, 

 

which can be rewritten as 

 

2 [

𝑤𝑖(𝑥𝑖 − �̅�)2 𝑤𝑖(𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�) 𝑤𝑖(𝑥𝑖 − �̅�)(𝑧𝑖 − 𝑧̅)

𝑤𝑖(𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�) 𝑤𝑖(𝑦𝑖 − �̅�)2 𝑤𝑖(𝑦𝑖 − �̅�)(𝑧𝑖 − 𝑧̅)

𝑤𝑖(𝑥𝑖 − �̅�)(𝑧𝑖 − 𝑧̅) 𝑤𝑖(𝑦𝑖 − �̅�)(𝑧𝑖 − 𝑧̅) 𝑤𝑖(𝑧𝑖 − 𝑧̅)2

] [

𝑛1

𝑛2

𝑛3

], 

 

where each entry in the 3 × 3 matrix is understood as being 

summed from 1 to N. However, the 3 × 3 shown can be written 

as 𝑴𝑇𝑴 where 𝑴 is defined as the 𝑁 × 3 matrix  

 

𝑴 =

[
 
 
 
 √𝑤1(𝑥1 − �̅�)

√𝑤2(𝑥2 − �̅�)

√𝑤1(𝑦1
− �̅�)

√𝑤2(𝑦2
− �̅�)

√𝑤1(𝑧1 − �̅�)

√𝑤2(𝑧2 − �̅�)

⋮

√𝑤𝑁(𝑥𝑁 − �̅�)

⋮

√𝑤𝑁(𝑦
𝑁

− �̅�)

⋮

√𝑤𝑁(𝑧𝑁 − �̅�)]
 
 
 
 

. 

 

We also have ∇𝐺 = 2𝒏 making ∇𝐹 = 𝜆∇𝐺 become a 3 × 3 

eigen-problem given by 

 

𝑴𝑇𝑴[

𝑛1

𝑛2

𝑛3

] = 𝜆 [

𝑛1

𝑛2

𝑛3

]. 

 

These three equations can be written: 

 

∑ 𝑤𝑖(𝑥𝑖 − �̅�)[𝒏 ∙ (𝒙𝑖 − 𝒙)]
𝑁

𝑖=1
= 𝜆𝑛1 

∑ 𝑤𝑖(𝑦𝑖 − �̅�)[𝒏 ∙ (𝒚𝑖 − �̅�)]
𝑁

𝑖=1
= 𝜆𝑛2 

∑ 𝑤𝑖(𝑧𝑖 − 𝑧̅)[𝒏 ∙ (𝒛𝑖 − �̅�)]
𝑁

𝑖=1
= 𝜆𝑛3 

 

Multiplying these equations by 𝑛1, 𝑛2, and 𝑛3 respectively, 

then summing the equations gives 

 

∑ 𝑤𝑖[𝒏 ∙ (𝒙𝑖 − 𝒙𝑨)]2𝑁
𝑖=1 = 𝜆|𝒏|𝟐 = 𝜆                 (6) 

 

But the sum on the left is just the objective function, 𝐹(𝒂), 

hence the sum of squares of the distances to a plane passing 

through the centroid (when the plane’s normal is an eigenvector 

of 𝑴𝑇𝑴) is equal to the eigenvalue (𝜆) corresponding to that 

eigenvector. We note 𝑴𝑇𝑴 is a real, symmetric matrix and thus 

its eigenvectors are orthogonal (and can be assumed to 

orthonormal by simple scaling). 

Now consider the more general case of any plane P passing 

through the centroid (not necessarily having its normal as one 

of the eigenvectors) whose unit normal is 𝒂 = (𝑎, 𝑏, 𝑐) when 

expressed in terms of the orthonormal eigenvectors of 𝑴𝑇𝑴. 

https://en.wikipedia.org/wiki/Singular_value_decomposition
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(The eigenvectors are being used as a basis to express the 

normal to the plane.) The Pythagorean Theorem can be used to 

show the square of the orthogonal distance from each point to 

the plane is equal to the sum of the squares of the distances 

from the point to the three orthogonal planes formed by the 

eigenvectors. (Figure 10 shows a 2D depiction).  

 

 
Fig. 10.  The distance from a point to a plane is decomposed 

into separate distances to the orthogonal planes formed as 

normal to the eigenvectors. 

 

Therefore, the sum of the squares of the distances from the 

points to P can be grouped by distances to each orthogonal 

plane and then the sum of the squares for each group can be 

replaced by the eigenvalue associated with its plane as we 

showed. Thus if the eigenvalues are labeled 𝜆1,  𝜆2, and 𝜆3, then 

the sum of the squares of the orthogonal distances to the plane 

P is simply 

 

𝑎2𝜆1 + 𝑏2𝜆2 + 𝑐2𝜆3. 
 

Because the singular vectors from the singular value 

decomposition of M are the same as the eigenvectors of 𝑴𝑇𝑴 

[14], and since the singular values of 𝑴 are the square root of 

the singular values of 𝑴𝑇𝑴 [14], we have that the sum of the 

squares of the distances can be restated as  

 

𝑎2𝜎1
2 + 𝑏2𝜎2

2 + 𝑐2𝜎3
2.                               █ 

 

Theorem 1 is related to the principal axis theorem. The 

following theorem, related to the parallel axis theorem, states 

that when a plane is translated away from passing through the 

centroid, the increase to the sum-of-squares of the distances 

increases by an easily computed amount, namely the square of 

the distance moved times the sum of the weights. In our 

application, the sum of the weights is the total area (in 3D) or 

the total length (in 2D). 

 

 Theorem 2. Assume that we are given a set of data points 
{𝒙1,  𝒙2, ⋯ ,  𝒙𝑁}, where 𝒙𝑖 = (𝑥𝑖 ,  𝑦𝑖 ,  𝑧𝑖), and the 

corresponding positive weights: 𝑤1,  𝑤2, ⋯  𝑤𝑁, where all the 

weights are positive and where the centroid (i.e. the weighted 

centroid, 
∑ 𝑤𝑖𝒙𝑖

𝑁
𝑖=1

∑ 𝑤𝑖
𝑁
𝑖=1

) is expressed as 𝒙 = (�̅�, �̅�, 𝑧̅). Assume also 

that 𝛼 represents the sum of squares of the distances from that 

plane to a plane P passing through the centroid. If P* is 

parallel to P but separated from by a distance 𝑑𝑐, then the sum 

of squares of the distances from the points to P* is 𝛼 +
𝑑𝑐

2 ∑ 𝑤𝑖
𝑁
𝑖=1 . 

 

Proof: Given that 𝛼 = ∑ 𝑤𝑖𝑑𝑖
2𝑁

𝑖=1 , we seek to find 

∑ 𝑤𝑖(𝑑𝑖 + 𝑑𝑐)
2𝑁

𝑖=1 . Expanding the square yields  

∑ 𝑤𝑖𝑑𝑖
2

𝑁

𝑖=1
+ 𝑑𝑐

2 ∑ 𝑤𝑖

𝑁

𝑖=1
+ 2𝑑𝑐 ∑ 𝑤𝑖𝑑𝑖

𝑁

𝑖=1
. 

But the first term is just 𝛼 and the last term is zero. The last 

term must be zero, since 

∑ 𝑤𝑖𝑑𝑖

𝑁

𝑖=1
= ∑ 𝑤𝑖[𝒏 ∙ (𝒙𝑖 − 𝒙)]

𝑁

𝑖=1
= 

𝒏 ∙ [∑ 𝑤𝑖

𝑁

𝑖=1
𝒙𝑖 − 𝒙∑ 𝑤𝑖

𝑁

𝑖=1
], 

And substituting 
∑ 𝑤𝑖𝒙𝑖

𝑁
𝑖=1

∑ 𝑤𝑖
𝑁
𝑖=1

 for 𝒙 causes the bracketed term to 

vanish. Thus the shift by 𝑑𝑐 caused the sum of squares to 

become 

𝛼 + 𝑑𝑐
2 ∑ 𝑤𝑖

𝑁
𝑖=1                                       █ 

 

In our application of this theorem, the weights are the areas 

of the triangles (or the the lengths of the line segments in 2D) 

so the sum of the weights is the total area A (or total length L in 

2D). The shift of a plane by an amount 𝑑𝑐 as shown in fig. 7 

results in an addition to the sum-of-squares of A𝑑𝑐
2 in 3D or 

L𝑑𝑐
2 in 2D. 

 

 

APPENDIX: 2D CODE IN MATLAB 
The algorithm documented in this paper showed how the 

objective function could be efficiently expressed and used in a 

minimization algorithm. However, the (2D) code below 

employs an even faster method. Specifically, Eq. (4) is used to 

find the line coincident with a line segment of the convex 

surface that minimizes the objective function. Then both 

endpoints of that line segment are evaluated to see if balancing 

a rocker condition on either vertex improves the objective 

function. These tests on the two endpoints are achieved using 

two other calculations of the singular value decomposition. 

While the details of this are not gone into in this paper, it has 

been tested in over 250,000 test cases with simulated data sets 

to ensure the exact equivalence. Thus the faster algorithm is 

given here. 

Though 3D code is not included here, Eq. (5) can be used 

to find the triangle that minimizes the objective functions. Then 

similar tests could be used to check the vertices and edges of 

that triangle to see if balancing a rocker condition (on an edge 

or point) improves the sum-of-squares.  

 
function [point, direction] = L2C2Dline(originalpts, 

refdir) 

% L2C2Dline returns the line that minimizes the sum- 

% of-squares of distances between the line and the  

% lower convex envelope of a set of points ("lower"  

% as determined by refdir) and such that the line is 

% constrained to lie on the lower side of the convex  

% envelope. The function can be used, for example, as 

% [point, direction] = L2C2Dline(originalpts, refdir)  
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% 

%  The function returns [point, direction] where  

% "point" is a point on the line and "direction" is a  

% unit vector giving the direction of the line.  

% "orignalpts" is an N X 2 matrix of points: [x1  

% y1;x2 y2;...;xN yN] and "refdir" is a direction [x  

% y] (not = {0, 0}) that points into the material.  

% "refdir" allows the algorithm to know on which side  

% of the points the line must lie. Generally, refdir  

% does not need to be known very accurately. The  

% number of points, N, must be at least two. 

%    

% Check for the two point case: 

% 

if (size(originalpts,1) == 2) 

    point = sum(originalpts)/size(originalpts,1); 

    direction = originalpts(2,:)-originalpts(1,:); 

    direction = direction/norm(direction); 

    if ([refdir(2) -refdir(1)]*[direction]' < 0) 

        direction = -direction; 

    end 

    else 

 

% 

% Translate and rotate the original data set, so that  

% the points are close to the origin and so that  

% refdir points in the direction of the +y-axis. 

% 

translation = sum(originalpts)/size(originalpts,1); 

pts = bsxfun(@minus,originalpts,translation); 

dir = refdir/norm(refdir); 

pts = pts*[dir(2) dir(1);-dir(1) dir(2)]; 

% 

% Now that the point lie somewhat along the x-axis,  

% sort them according to increasing x-values 

% 

[~,indices]=sort(pts(:,1)); 

pts = pts(indices,:); 

 

indices = convhull(pts(:,1),pts(:,2)); 

pts = pts(indices,:); 

 

midpts = (pts(2:end,:) + pts(1:end-1,:))/2; 

vectors = pts(2:end,:) - pts(1:end-1,:); 

pts = pts(1:end-1,:); 

normals = [-vectors(:,2) vectors(:,1)]; 

indices = normals(:,2) > 0; 

pts = pts(indices,:); 

midpts = midpts(indices,:); 

vectors = vectors(indices,:); 

normals = normals(indices,:); 

pts = [pts;pts(end,:)+vectors(end,:)]; 

% 

% Now "pts" contains only the vertices of the lower 

% convex envelope. We now compute a single Singular  

% Value Decomposition that can be used to obtain the  

% objective function values for all the lines  

% containing edges of the lower convex envelope. 

% 

normals = bsxfun(@rdivide,normals,rssq(normals,2)); 

lengths = rssq(vectors,2); 

L = sum(lengths); 

centroid = lengths'*midpts/L; 

 

weights = ([lengths;0] + [0;lengths])/6; 

shiftedpts = bsxfun(@minus,pts,centroid); 

weightedpts = 

bsxfun(@times,shiftedpts,sqrt(weights)); 

shiftedmidpts = bsxfun(@minus,midpts,centroid); 

weightedmidpts = 

bsxfun(@times,shiftedmidpts,sqrt((2/3)*lengths)); 

allweightedpts = [weightedpts; weightedmidpts]; 

 

[~,S,V] = svd(allweightedpts,0); 

ssq1 = S(2,2)^2; 

ssq2 = S(1,1)^2; 

direction = V(:,1)'; 

if direction(1) < 0 

    direction = -direction; 

end 

 

angleSVD = atan2(direction(2),direction(1)); 

angles = atan2(vectors(:,2),vectors(:,1)); 

anglediffs = angles - angleSVD; 

objfunangle = ssq1*(cos(anglediffs)).^2  + 

ssq2*(sin(anglediffs)).^2; 

ds = dot(normals',-shiftedmidpts')'; 

objfunedges = objfunangle + L*ds.^2; 

 

[bestobjvalue,minedgeindex] = min(objfunedges); 

bestdirection = 

[cos(angles(minedgeindex)),sin(angles(minedgeindex))]

; 

bestpoint = midpts(minedgeindex,:); 

% 

% Now that the best edge has been found, we look at  

% the endpoints of that edge to see if a line  

% (external to the material) passing through either 

% endoint gives a better objective function. This  

% will involve one Singular Value Decomposition for  

% each of the two endpoints. 

% 

for ii = minedgeindex:minedgeindex+1 

    pt = pts(ii,:); 

    shiftedpts = bsxfun(@minus,pts,pt); 

    weightedpts = 

(bsxfun(@times,shiftedpts,sqrt(weights))); 

    shiftedpts = bsxfun(@minus,midpts,pt); 

    weightedmidpts = 

bsxfun(@times,shiftedpts,sqrt((2/3)*lengths)); 

    allweightedpts = [weightedpts; weightedmidpts]; 

     

    [~,S,V] = svd(allweightedpts,0); 

    direction = V(:,1)'; 

    if direction(1) < 0 

        direction = -direction; 

    end 

     

    normal = [-direction(2) direction(1)]; 

    shiftedpts=(bsxfun(@minus,pts,pt)); 

    dists = (normal*shiftedpts')'; 

    [~,minindex]=min(dists); 

     

    if (minindex == ii && S(2,2)^2 < bestobjvalue) 

        bestobjvalue = S(2,2)^2; 

        bestdirection = direction; 

        bestpoint = pt; 

    end 

end 

point = translation + bestpoint*[dir(2) -

dir(1);dir(1) dir(2)]; 

direction = bestdirection*[dir(2) -dir(1);dir(1) 

dir(2)]; 

end 

end 

 

 


