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Abstract Scientists measure rate constants associated with biochemical reactions in
an optical biosensor—an instrument in which ligand molecules are convected through
a flow cell over a surface to which receptors are immobilized. We quantify transport
effects on such reactions by modeling the associated convection-diffusion equation
with a reaction boundary condition. In experimental situations, the full PDE model
reduces to a set of unwieldy integrodifferential equations (IDEs). Employing common
physical assumptions, we may reduce the system to an ODE model, which is more
useful in practice, and which can be easily adapted to the inverse problem of finding
rate constants. The results from the ODE model compare favorably with numerical
simulations of the IDEs, even outside its range of validity.

Keywords Biochemistry · Optical biosensors · Kinetic rate constants · Partial
differential equations · Asymptotic analysis · Numerical methods

Mathematics Subject Classification 92E20 · 35Q92 · 41A60 · 65D99

This work was done with the support of the NSF, under award number NSF-DMS 1312529. The first
author would also like acknowledge the support of the National Research Council in the form of a
postdoctoral fellowship.

B Ryan M. Evans
ryan.evans@nist.gov

David A. Edwards
dedwards@udel.edu

1 Applied and Computational Mathematics Division, Information and Technology Laboratory,
National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899,
USA

2 Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00285-017-1158-x&domain=pdf


796 R. M. Evans, D. A. Edwards

1 Introduction

Many biochemical reactions involve a stream of chemical reactants (ligandmolecules)
flowing through a fluid-filled volume, and another reactant (the receptor) confined to a
surface. Such surface-volume reactions occur during platelet adhesion (Austin 2009),
drug absorption (Bertucci et al. 2007), antigen–antibody interactions (Raghaven et al.
1994), and DNA damage repair (Zhuang et al. 2008). Fundamental to understanding
these reactions is getting accurate quantitativemeasurements of the underlying reaction
rate constants. To measure rate constants associated with surface-volume reactions,
scientists use optical biosensors: see Fig. 1 for a schematic of one such instrument.

The first step of any biosensor experiment is to immobilize receptors on the sensor
surface. This is done by injecting receptors into the biosensor in a buffer fluid, and
letting them diffuse through the buffer onto the channel floor to bind with molecules
already confined to the surface. We note that this process is itself a surface-volume
reaction.

After receptors are deposited onto the surface, chemists inject ligand molecules
into the biosensor in the buffer—this is the injection phase. Ligand molecules are
transported through the buffer onto the channel floor to bind with the immobilized
receptors. During this process, an evanescent wave reflects off the channel floor and
passes to a detector which measures refractive changes on the surface due to ligand
binding. In particular, let B(x, t) denote the concentration of bound ligand molecules.
Then the refractive changes are averaged of a portion of the channel floor [xmin, xmax]
to produce real-time feedback in the form of a sensogram reading

Fig. 1 Cross-sectional schematic of binding/unbinding in an optical biosensor. Ligand molecules are
injected into the biosensor, and diffuse to bind with receptor sites on the surface. Mass changes on the
surface due to ligand binding are averaged over [xmin, xmax] to produce measurements of the form (1.1a)
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Receptor heterogeneity in optical biosensors 797

S(t) = s B(t), (1.1a)

B(t) = 1

xmax − xmin

∫ xmax

xmin

B(x, t) dx . (1.1b)

Note that even though we are using the standard bar notation for average quantities,
we are not averaging over the whole floor; just the subset [xmin, xmax] scanned by
the device (Edwards 1999). In (1.1a), s is proportional to the molecular weight of the
ligand.

After the bound state concentration reaches a chemical equilibrium, scientists pre-
pare the device for another experiment by washing it with the buffer—this is the wash
phase of the experiment. Only pure buffer is flowing through the biosensor during the
wash phase, not buffer containing the ligand molecules. This has the effect of causing
all of the bound ligand molecules at the surface to dissociate, thereby preparing the
device for another experiment.

Biosensor technology has become extremely popular in recent years. Rich observes
inRich andMyszka (2011) that 10,000 papers have cited the use of an optical biosensor
as of 2009 alone. Since interpreting biosensor data relies on a mathematical model,
models for biosensor experiments have been proposed and studied. Edwards et al.
quantify boundary layer transport effects on unimolecular reactions inEdwards (1999),
Edwards et al. (1999); the effects of a dextran gel layer in Edwards (2001); and arrays
of reacting zones in Edwards (2011), Zumbrum and Edwards (2014). Effects of signal
decay associated with the measuring wave were studied in Edwards (2004), Liedberg
et al. (1993), Schuck (1996) by Edwards, Liedberg et al., and Schuck respectively.
Gervais and Jensen study mass transport and surface reactions in microfluidic sys-
tems in Gervais and Jensen (2006), with a particular emphasis on the transport-limited
parameter regime. In Goldstein et al. (1999), Goldstein and coworkers identify condi-
tions under which transport procceses have a negligible effect on reaction kinetics, and
propose a spatially homogenous two-compartment model for when transport effects
must be taken into account. Lagrée conducts a comparison of simplified models of
microfluidic surface reacting flows in Lagrée and Ivan-Fernolendt (2004). Jenkins and
coworkers take a computational approach in Jenkins et al. (2004), by solving a Partial
differential Equation (PDE)model for protein adsorption in amicrofluidic systemwith
computational fluid dynamics software. In Myszka et al. (1998) Myszka uses a com-
bination of numerical simulations and physical experiments to determine the accuracy
of a spatially homogeneous two-compartment model (similar to the one proposed in
Goldstein et al. (1999)), and in Rich et al. (2008) Rich and Myszka extend this work
to systems with arrays of reacting zones. Hu and coworkers model and numerically
study the effects of an electrokinetically driven microfludic flow on surface-volume
reactions in Hu et al. (2007).

Although the aforementioned models are limited to the presence of only a single
reacting species, many biochemical processes involve multiple interacting compo-
nents. One example of such amultiple-component process occurs duringDNAdamage
repair. In order to cope with harmful DNA lesions, cells engage in a process known as
DNA translesion synthesis. This process is described in great detail elsewhere (Fried-
berg 2005; Lehmann et al. 2007; Plosky and Woodgate 2004). For our purposes it
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798 R. M. Evans, D. A. Edwards

Ef Ep

L L
fka pka

Fig. 2 A ligand molecule binding with a free DNA receptor Ef and with a PCNA receptor Ep

is sufficient to know that DNA translesion synthesis involves three interacting com-
ponents: a Proliferating Cell Nuclear Antigen (PCNA) molecule, polymerase δ, and
polymerase η. Moverover, in order for a successful DNA translesion synthesis event
to occur, polymerase δ must bind with a PCNA molecule. A central question sur-
rounding DNA translesion synthesis is whether the PCNA and polymerase δ complex
forms as a result of direct binding, or a ligand switching process. The latter involves
the two polymerase molecules (the ligands) trading places on a PCNA molecule (the
receptor). In Evans and Edwards (2017), the authors study the polymerase switch by
modeling the associatedmultiple-ligand biosensor experiment with only a single type
of receptor on the reacting surface (i.e., the PCNA molecule). On the other hand, it
has been hypothesized that there are in fact two receptor types present during such
biosensor experiments: the PCNA molecules, and free DNA molecules.

Such heterogeneous receptor populations result from the receptor immobilization
phase of biosensor experiments. During this phase, scientists seek to deposit PCNA
molecules onto free DNA molecules already confined to the sensor surface. Although
scientists seek to saturate the sensor surface with PCNA molecules, not every single
free DNA molecule confined to the surface may be paired with a PCNA molecule, so
at the start of the injection phase there may be both free DNA receptors and free DNA
receptors with a PCNA molecule attached (henceforth we shall refer to the latter as
simply PCNA receptors). It follows that ligand molecules can bind with either free
DNA receptors or PCNAmolecules during the experiment. These reactions are shown
in Figs. 2 and 3, and stated precisely as

Ef + L
fka−−⇀↽−−
fkd

Ef L , (1.2a)

Ep + L
pka−−⇀↽−−
pkd

EpL . (1.2b)

In our notation L denotes a ligand molecule, Ef denotes a free DNA receptor, Ep
denotes a PCNA receptor, fka denotes the rate at which a ligand molecule binds with
a free DNA receptor, and fkd denotes the rate at which a ligand molecule dissociates
from a free DNA receptor; the parameters pka and pkd have similar interpretations.

We explore the single-receptor assumption made by the authors in Evans and
Edwards (2017) by modeling the multiple-receptor reactions (1.2). Though we have
the afforementioned application in mind, the model presented herein is general and
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Ef Ep

L L

Ef Ep

L Lfkd pkd

Fig. 3 Above a ligand molecule bound to a free DNA receptor Ef and to a PCNA receptor Ep. Below a
ligand molecule dissociating from a free DNA receptor Ef and a PCNA receptor Ep

multiple-receptor reaction kinetics is an experimentally relevant topic (Cooper 2009,
pp. 112–113; O’Shannessy 1994; O’Shannessy and Winzor 1996; Schuck 1997) that
has received little attention to date. To mathematically account for multiple receptor
types researchers commonly apply the well-stirred approximation, in which reaction
kinetics decouple from transport effects. In this case, the governing equations reduce
to a simple set of Ordinary Differential Equations (ODEs). Unfortunately this decou-
pling is accurate only inside a narrow parameter range, outside of whichmass transport
effects influence kinetic rate constant measurements. Indeed, the experimental rele-
vance of mass transport effects is well known (Balgi et al. 1995; Glaser 1993; Myszka
et al. 1998).

Svitel et al. attempt to quantify mass transport effects on ligand binding in the pres-
ence of a heterogeneous receptor population in Svitel et al. (2007). In this manuscript,
the authors consider a continuous distribution of functionally distinct and independent
receptor sites, which they ultimately discretize to a finite number of N different recep-
tors. Moreover, they account for mass transport effects through a two-compartment
model, inwhich each compartment is assumed to be internallywell-mixed and spatially
homogeneous [similar to the approaches proposed in Goldstein et al. (1999), Myszka
et al. (1998), Rich et al. (2008)]. This assumption reduces the governing equations
in each compartment to a set of ODEs. We consider a more sophisticated model of
transport in the present work by modeling the experiment with a convection-diffusion
equation with a reaction boundary. Given that mass transport effects and receptor
heterogeneity are the two most common reason why theoretical predictions deviate
from experimental data (Schuck and Zhao 2010), our approach has the advantage of
rigorously quantifying transport processes during multiple-receptor biosensor exper-
iments, thereby giving researchers a precise and efficient tool for measuring kinetic
rate constants.

The rest of the paper is organized as follows. In Sect. 2, we present the full PDE
model and show how this model simplifies to a set of nonlinear IDEs. In Sect. 3.1, we
show the latter further reduces to a set of nonlinear ODEs. In Sect. 3.2, we present a
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800 R. M. Evans, D. A. Edwards

numerical method for solving our IDE system.We verify the accuracy of the reduction
from the IDE system to the ODE system in Sect. 3.3, where we demonstrate that the
two solutions agree for a wide parameter range. Conclusions and plans for future work
are discussed in Sect. 4.

2 Governing equations

In this section we model the kinetics system (1.2). Since the multiple-receptor model
presented herein has not been considered before, we present the governing equations in
complete detail. To introduce our model we let B(x, t) = (Bp(x, t), Bf(x, t))T ∈ R

2

be a vector containing the concentration of ligand bound to a PCNA receptors Bp(x, t),
and free DNA receptors Bf(x, t). We begin with the injection phase of the experiment
by applying the law of mass action to (1.2) to find

∂Bp

∂t
= pka(Rp − Bp)C(x, 0, t) − pkdBp, (2.1a)

∂Bf

∂t
= fka(Rf − Bf)C(x, 0, t) − fkdBf , (2.1b)

B(x, 0) = 0, (2.1c)

where Rp and Rf denote the initial concentration of available PCNA and free DNA
receptors, and C(x, y, t) denotes the unbound ligand concentration. In addition, we
let

Rt = Rp + Rf (2.2)

be the total initial receptor concentration. The set of Eqs. (2.1) holds on the reacting
surface when y = 0 and x ∈ [0, l]. Here l denotes the length of the biosensor, which
is much greater than its height h—the aspect ratio ε = h/ l is small.

Though these equations appear to decouple,we shall see the coupling enters through
the diffusive flux condition

D
∂C

∂y
(x, 0, t) = ∂B�

∂t
(x, t), (2.3a)

for x ∈ [0, l] and y = 0. In (2.3a) D is the diffusion coefficient of the ligand L , and
B�(x, t) = Bp(x, t) + Bf(x, t). This equation states that the diffusive flux into the
surface (hence the positive sign) is used up in the reaction. In addition, we remark that
the receptors obviously have finite height and so the reaction strictly occurs in a thin
reacting zone above y = 0. However, it can be shown that the height of this zone is
negligible, and hence we may replace the reacting zone with the flat surface at y = 0
(Edwards 2006a, b).

In the channel C(x, y, t) obeys a standard convection equation with a Poisieulle
flow profile

∂C

∂t
= D∇2C − v · ∇C, v =

(
V y

h

(
1 − y

h

)
, 0

)
, (2.3b)
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Receptor heterogeneity in optical biosensors 801

for (x, y) ∈ (0, l) × (0, h) and t > 0. Here V is the characteristic velocity associated
with our flow. There is initially no unbound ligand in the channel

C(x, y, 0) = 0. (2.3c)

After t > 0, ligand is injected into the channel at a uniform concentration

C(0, y, t) = Cu. (2.3d)

A no-flux condition holds on the ceiling

∂C

∂y
(x, H, t) = 0. (2.3e)

Furthermore, the reacting zone doesn’t extend to the end of the channel, so the con-
centration equilibrates by the time it exits the channel

∂C

∂x
(L , y, t) = 0. (2.3f)

The presence ofmultiple receptor types on the surface changes the formof biosensor
feedback. The sensogram reading (1.1a) now takes the form

S(t) = s Bf(t) + s Bp(t) = s B�(t), (2.4a)

B j (t) = 1

xmax − xmin

∫ xmax

xmin

Bj (x, t) dx, (2.4b)

where the index j can equal p, f, or �. Observe that since the sensogram reading
is proportional to only the sum of the reacting species—not the individual reacting
species themselves—fitting the four kinetic rate constants in (1.2) directly to the signal
(2.4a) could lead to erroneous measurements, since different sets of rate constants
could lead to similar sensogram mass readings. Hence, in Sect. 3.1 we propose an
experimental design protocol for identifying the true set of rate constants (Table 1).

Edwards has shown that due to high Péclet number flow, transport effects are rel-
evant only in a thin unstirred layer near the surface (Edwards et al. 1999); thus, the
relevant dimensionless variables are

B̃p = Bp

Rt
, B̃f = Bf

Rt
, B̃� = B�

Rt
, B̃ =

(
Bp

Rt
,
Bf

Rt

)T

, C̃ = C

Cu
, t̃ = fkaCu t,

x̃ = x

l
, ỹ = y

h
, η̃ = Pe1/3y, Pe = Vh2

Dl
, p K̃a = pka

fka
, p K̃d = pkd

Cu · fka ,

f K̃a = fkd
Cu · fka .

(2.5)

123



802 R. M. Evans, D. A. Edwards

Ta
bl
e
1

B
ou

nd
s
fo
r
di
m
en
si
on

al
pa
ra
m
et
er
s
ar
e
lis
te
d
be
lo
w

D
im

en
si
on
al
pa
ra
m
et
er
s

Pa
ra
m
et
er

D
es
cr
ip
tio

n
R
an
ge

R
ef
er
en
ce
s

D
(c
m
2
/
s)

D
if
fu
si
on

co
ef
fic
ie
nt

4
×

10
−7

To
rr
e
et
al
.(
20

00
)

fk
a

(c
m
3
/
(m

ol
s)

)
A
ss
oc
ia
tio

n
ra
te
co
ns
ta
nt

in
(1
.2
a)

10
3
–3

×
10

9
B
IA

co
re

T
20

0
da
ta
fil
e
(2
01

3)
,R

ic
h
et
al
.(
20

08
),
Y
ar
m
us
h
et
al
.(
19

96
)

fk
d

(s
−1

)
D
is
so
ci
at
io
n
ra
te
co
ns
ta
nt

in
(1
.2
a)

10
−5

–1
B
IA

co
re

T
20

0
da
ta
fil
e
(2
01

3)
,R

ic
h
et
al
.(
20

08
),
Y
ar
m
us
h
et
al
.(
19

96
)

p
k a

(c
m
3
/
(m

ol
s)

)
A
ss
oc
ia
tio

n
ra
te
co
ns
ta
nt

in
(1
.2
b)

10
3
–3

×
10

9
B
IA

co
re

T
20

0
da
ta
fil
e
(2
01

3)
,R

ic
h
et
al
.(
20

08
),
Y
ar
m
us
h
et
al
.(
19

96
)

p
k d

(s
−1

)
D
is
so
ci
at
io
n
ra
te
co
ns
ta
nt

in
(1
.2
b)

10
−5

–1
B
IA

co
re

T
20

0
da
ta
fil
e
(2
01

3)
,R

ic
h
et
al
.(
20

08
),
Y
ar
m
us
h
et
al
.(
19

96
)

h
(c
m

)
B
io
se
ns
or

le
ng

th
0.
05

R
ic
h
et
al
.(
20

08
)

l
(c
m

)
B
io
se
ns
or

he
ig
ht

2
R
ic
h
et
al
.(
20

08
)

w
(c
m

)
B
io
se
ns
or

w
id
th

1.
3

R
ic
h
et
al
.(
20

08
)

R
t
(m

ol
/
cm

2
)

To
ta
lr
ec
ep
to
r
co
nc
en
tr
at
io
n

1.
11

×
10

−1
3
–2

.3
3

×
10

−1
1

R
ic
h
et
al
.(
20

08
),
Y
ar
m
us
h
et
al
.(
19

96
)

V
(c
m

/
s)

C
ha
ra
ct
er
is
tic

ve
lo
ci
ty

0.
00

1–
2.
88

B
IA

co
re

T
20

0
da
ta
fil
e
(2
01

3)
,R

ic
h
et
al
.(
20

08
),
Y
ar
m
us
h
et
al
.(
19

96
)

C
u

(m
ol

/
s)

L
ig
an
d
in
flo

w
co
nc
en
tr
at
io
n

2.
96

×
10

−1
2
–2

×
10

−1
0

R
ic
h
an
d
M
ys
zk
a
(2
01

1)

ν
(c
m
2
/
s)

K
in
em

at
ic
vi
sc
os
ity

10
−2

B
ir
d
(2
00

2)

A
s
ex
pe
ri
m
en
ta
ld

at
a
is
st
ill

fo
rt
hc
om

in
g,
fo
r
th
e
ki
ne
tic

ra
te
co
ns
ta
nt
s
w
e
ha
ve

lis
te
d
ex
tr
em

al
bo
un
ds

fr
om

th
e
lit
er
at
ur
e.
T
he

ch
ar
ac
te
ri
st
ic
ve
lo
ci
ty

V
w
as

ca
lc
ul
at
ed

fr
om

flo
w
ra
te
s
in

th
e
gi
ve
n
re
fe
re
nc
es

us
in
g
th
e
fo
rm

ul
a
V

=
6
Q

/
(w

h
)
de
ri
ve
d
in

E
dw

ar
ds

(2
01

1)
.P

er
co
nv
en
tio

n,
th
e
pa
ra
m
et
er

ν
de
no
te
s
th
e
ki
ne
m
at
ic
vi
sc
os
ity

of
w
at
er

at
20

◦ C
,a
nd

is
no

tr
el
at
ed

to
th
e
co
nv
ol
ut
io
n
va
ri
ab
le
us
ed

th
ro
ug

ho
ut

123



Receptor heterogeneity in optical biosensors 803

Observe that we have scaled the bound ligand concentrations Bf and Bp by the total
receptor concentration Rt (2.2). Physically, the free DNA molecules confined to the
sensor surface should be nearly saturated with PCNA molecules by the end of the
receptor immobilization phase, so we expect the ratio of the free DNA receptor con-
centration Rf to the total receptor concentration Rt to be small; i.e., R̃f = Rf/Rt � 1.
Similarly, we may define R̃p = Rp/Rt , so that R̃f + R̃p = 1.

In addition, we nondimensionalize the sensogram reading (2.4a) by setting

S̃(̃t) = S

s Rt
= 1

x̃max − x̃min

∫ x̃max

x̃min

B̃f (̃x, t̃) dx̃ + 1

x̃max − x̃min

∫ x̃max

x̃min

B̃p(̃x, t̃) dx̃ .

(2.6)

We use the values x̃min = 0.2 and x̃max = 0.8 in our numerical simulations [see
(Edwards 1999) for a unified table of experimental values from the literature].Hence-
forth, we drop the tildes on our dimensionless variables for simplicity. In particular,
from now on we shall use (2.4b) to denote the dimensionless average concentrations
B j (t), for j = p, f, or �.

Our new independent variables t , η, and x are the boundary layer coordinates.
Indeed, high Péclet number flow implies that convection dominates everywhere except
a thin region near the surface, in which convection and diffusion balance. Hence, to
study reaction in the boundary layer, in (2.5) we have scaled y with the boundary layer
width of Pe1/3 and time with the reaction rate fkaCu. A more detailed discussion of
these scalings is found in Edwards (1999).

In terms of the dimensionless variables (2.5), the system (2.1) is

∂Bp

∂t
= pKa(Rp − Bp)C(x, 0, t) − pKdBp, (2.7a)

∂Bf

∂t
= (Rf − Bf)C(x, 0, t) − fKdBf , (2.7b)

B(x, 0) = 0. (2.7c)

The dimensionless diffusive flux condition is given by

∂C

∂η
(x, 0, t) = Da

∂B�

∂t
. (2.8)

The parameter Da on the right hand side of (2.8) is the Damköhler number. In terms
of raw parameters Da is given by

Da = fkaRt(hl)1/3

(V D2)1/3
. (2.9)

The two experimentally relevant cases are Da � 1 and Da = O(1). When Da � 1,
the speed at which ligand molecules are transported to the surface is much faster
than reaction. Hence the rate at which the bound state concentrations Bp(x, t) and
Bf(x, t) evolve is limited by the intrinsic reaction rate, and we refer to this parameter
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804 R. M. Evans, D. A. Edwards

regime as the reaction-limited regime. Conversely, when Da = O(1), transport into
the surface and reaction proceed at the same rate. In this case, the evolution of Bp(x, t)
and Bf(x, t) depends upon both the speed of reaction and transport processes. It is
for these reasons that scientists seek to design biosensor experiments so that Da � 1,
because in this case reaction and diffusion occur on different time scales and one is in
a better position to measure reaction rate constants (Edwards et al. 1999).

In the boundary layer (2.3b) reduces to

∂2C

∂η2
= η

∂C

∂x
, (2.10a)

with the normalized inflow and matching conditions

C(0, η, t) = 1, (2.10b)

lim
η→∞C(x, η, t) = 1 (2.10c)

for all t . Equation (2.10c) expresses the requirement that the concentration in the layer
must match the uniform concentration of C(x, y, t) = 1 as one exits the layer.

Thus, in the boundary layer the bound state concentration is governed by (2.7),
(2.8), and (2.10). To proceed, we need a closed form for C(x, 0, t). First, we apply a
Laplace transform in x to transform (2.10a) into an Airy’s equation. Next, we use the
fact that the derivative of the transformed solution is known at η = 0 to show

C(x, 0, t) = 1 − Da

31/3
(2/3)

∫ x

0
B�(x − ν, t)

dν

ν2/3
. (2.10d)

For the interested reader, details of similar calculations may be found in Edwards et al.
(1999), Evans and Edwards (2017). From (2.10d) we see that transport effects couple
the reactions governed by (2.7). While (2.7) decouples in the well-stirred limit (when
Da approaches zero), stronger transport effects drive up Da and result in a stronger
coupling. Furthermore, the convolution integral reflects the phenomenon of upstream
ligand depletion. At the start of the experiment, ligand molecules diffuse to the surface
to bind with receptor sites upstream, before they diffuse to bind with receptor sites
downstream.

We now present the dimensionless governing equations for the wash phase. By the
time the wash phase starts, the bound state concentration will have reached a chemical
equilibrium. However, the unbound ligand evolution occurs on a faster time scale than
the bound state (Edwards 1999). Therefore, the initial condition for the wash phase
is the solution to the steady state of (2.7a)–(2.7b) with C(x, 0, t) replaced by the
steady-state unbound concentration of 1

0 = −AB + f, (2.11)

A =
(
pKa + pKd 0

0 1 + fKd

)
, f = (Rp · pKa, Rf)

T . (2.12)
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The solution of this linear system is

B(x, 0) = A−1f =
(

Rp · pKa

pKa + pKd
,

Rf

1 + fKd

)T

. (2.13)

Reaction kinetics during the wash phase are therefore governed by (2.7a)–(2.7b) with
(2.13) as the initial condition. The diffusive flux condition (2.8) still holds, and the
unbound ligand evolution is governed by (2.10a), with the inflow and matching con-
ditions

C(0, η, t) = 0, (2.14a)

lim
η→∞C(x, η, t) = 0. (2.14b)

Equation (2.14a) reflects the fact that no ligand is flowing into the biosensor during the
wash phase, while (2.14b) reflects the fact that the unbound ligand concentration must
match the concentration zero as one exits the layer; they both hold for all t . Similarly
to how we derived (2.10d), one can use (2.8), (2.10a), and (2.14) to show that during
the wash phase

C(x, 0, t) = − Da

31/3
(2/3)

∫ x

0

∂B�

∂t
(x − ν, t)

dν

x2/3
. (2.15)

Again, the coupling is due to transport effects. The convolution integral in (2.15)
captures the phenomenon of ligand rebinding: ligand molecules dissociating upstream
may rebind to receptor sites further downstream. We note that since Bp(x, t) and
Bf(x, t) are monotonically decreasing in time during the wash phase, C(x, 0, t) is
nonnegative. Additionally, the sensogram reading during the wash phase is still given
by (2.6).

3 Effective rate constant approximation and verification

3.1 Effective rate constant equations

Despite its wide applicability, the IDE systemderived in Sect. 2 is not typically used for
parameter estimation. In practice, one typically makes the assumption that transport
effects and reaction kinetics are completely decoupled. The governing equations in
this case are recovered in the limit that Da approaches 0 in (2.7a)–(2.7b), using (2.10d)
or (2.15). During the injection phase, these equations take the form

dBp

dt
= pKa(Rp − Bp) − fKdBp, (3.1a)

dBf

dt
= (Rf − Bf) − fKaBf , (3.1b)

Bp(0) = Bf(0) = 0. (3.1c)
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Data obtained by solving the linear decoupled ODE system (3.1) is then used in an
iterative algorithm to fit the solution of the linear ODEmodel to physical experimental
data (Rich and Myszka 2009, pp. 97–99).

The well-stirred assumption is valid only when Da � 1, and outside of this param-
eter regime the reduction from (2.7), (2.10d) to (3.1) is inappropriate. Even in the
well-stirred limit one commits an O(Da) error by replacing (2.7), (2.10d) with (3.1).
On the other hand, our IDE system (2.7), (2.10d) is hopeless to solve in closed form
and finding a numerical solution requires carefully handling the singularity in the inte-
grand of (2.10d) at ν = 0. However, we do not need the full solution of (2.7), (2.10d)
to compute the sensogram signal (2.6), since the signal is function only of the average
quantities Bp(t) and Bf(t). Hence, we proceed by deriving a set of nonlinear ODEs
directly in terms of Bp(t) and Bf(t). In what follows, we will be using the standard
bar notation introduced in the introduction to denote the spatial average of a function
over the interval [xmin, xmax].

We begin with the injection phase of the experiment by spatially averaging (2.7a)–
(2.7b), in the sense of (2.4b). Doing so we are immediately confronted with terms
such as

Bp(x, t)C(x, 0, t) = Bp(x, t)

(
1 − Da

31/3
(2/3)

∫ x

0

∂B�

∂t
(ν, t)

dν

(x − ν)2/3

)
. (3.2)

We approximate the nonlinear term (3.2) when Da � 1; i.e., in the reaction-limited
parameter regime in which ligand molecules are are transported to the surface at a
faster rate than reaction. In this case one may write a perturbation series for B(x, t) of
the form

B(x, t) = B(0)(t) + Da x1/3 B(1)(t) + O(Da2), (3.3)

where the factor of x1/3 comes from the convolution integral. Substituting (3.3) into
(2.7) using (2.10d), we note that to leading order C = 1 and the equation for 0B is
given by the unsteady form of (2.11)

dB(0)

dt
= −AB(0) + f . (3.4)

The solution of this equation is given by

B(0)(t) = (I − e−At )A−1f . (3.5)

Next, we substitute (3.3) into (3.2) to obtain

Bp(x, t)C(x, 0, t) = Bp(t) − Da h(x) B(0)
p

dB(0)
�

dt
+ O(Da2), (3.6)

h(x) = 1

xmax − xmin

∫ xmax

xmin

32/3x1/3


(2/3)
dx = 35/3(x4/3max − x4/3min)

4
(2/3)(xmax − xmin)
, (3.7)
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where we have used the spatial independence of the leading-order approximation.
Then, one may use the relation

Da B(t) = Da B(0)(t) + O(Da2) (3.8)

to show (3.6) is equivalent to

Bp(x, t)C(x, 0, t) = Bp

(
1 − Da h(x)

dB�

dt

)
+ O(Da2). (3.9)

By proceeding in this manner we can derive a nonlinear set of ODEs of the form

dB
dt

= M−1(B)(−AB + f) + O(Da2), (3.10a)

B(0) = 0, (3.10b)

where

M = I + Da N (B), (3.10c)

N (B) = h(x)

(
pKa(Rp − Bp) pKa(Rp − Bp)

(Rf − Bf) (Rf − Bf)

)
, (3.10d)

where A and f are as in (2.12). We refer to the set of Eqns. (3.10) as our Effective Rate
Constant (ERC) equations, or our ERC approximation. We have also derived an ERC
approximation for the wash phase of the experiment

dB
dt

= M−1(B)(−DB) + O(Da2), (3.11a)

B(0) = A−1f, (3.11b)

where

D =
(
fKd 0
0 pKd

)
, (3.11c)

and M , N are as in (3.10c) and (3.10d). The set of Eqs. (3.11) is derived from (2.7a)–
(2.7b), (2.13), and (2.15) in the same manner that we derived (3.10) from (2.7) and
(2.10d).

Since the ODE systems (3.10) and (3.11) are readily solved with a standard linear
multistep or multistage formula (like an Adams-Bashforth method) these systems
are far easier to solve numerically than their IDE counterparts. This simplicity and
efficiency renders our ERC equations particularly attractive for data analysis, and thus
can be used in iterative algorithms when fitting rate constants to reactions of the form
(1.2).
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Fig. 4 The solution to our ERC Eqs. (3.10) and (3.11). From 0 ≤ t ≤ 10 we have depicted the solution of
injection phase (given by (3.10)), while the last 10 s correspond to the wash phase of the experiment (given
by (3.11))

Table 2 Bounds for dimensionless parameters used in our numerical simulations are listed below, along
with the aspect ratio ε, and representative values for the Reynolds number Re = Vh2/(νl) and Péclet
number Pe = Vh2/(Dl)

Dimensionless parameters

Parameter Description Range

ε Aspect ratio 0.02–0.05

Re Reynolds number 0.019

Pe Péclet number 4.80 × 102

Da Damköhler number 0.02–150

fKd Dimensionless dissociation rate constant in (1.2a) 1

pKa Dimensionless association rate constant in (1.2b) 1–2

pKd Dimensionless dissociation rate constant in (1.2b) 0.5–2

Rf Ratio of free DNA receptors to total receptor concentration 0.1

Rp Ratio of PCNA receptors to total receptor concentration 0.9

We have depicted the solutions of our ERC equations in Fig. 4; a range of dimen-
sionless parameter values used in our simulations is given in Table 2. One may notice
that Bf reaches a much lower chemical equilibrium than Bp—this reflects the fact
that free DNA receptors account for only ten percent of the total receptor population.
Hence, in Fig. 4 we see that the sensogram signal is masked by ligand binding with
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PCNA receptors. Therefore, to fit the rate constants fka and fkd one could run two
separate experiments: a first with only free DNA receptors on the sensor surface, and
a second after depositing PCNA molecules onto the free DNA receptors. Doing an
experiment with only free DNAmolecules reduces our multiple-component system to
a unimolecular one, and since unimolecular reaction kinetics in optical biosensors are
well studied (see for example Edwards 1999, 2001; Edwards et al. 1999) this would
allow one to estimate fka and fkd. With estimates for fka and fkd in hand, one could
then proceed to deposit PCNA molecules on the sensor surface and measure the rate
constants pka and pkd.

It remains to show that our ERC equations are indeed accurate to O(Da2). To verify
this, we develop a numerical approximation to our IDE system (2.7a)–(2.7b), using
either (2.10d) or (2.15), and the appropriate initial conditions. We then use our numer-
ical approximation to Bp(x, t) and Bf(x, t) to compute a numerical approximation to
Bp(t) and Bf(t), and compare the latter with the solution of our ERC Eqs. (3.10), and
(3.11).

3.2 Numerical method

Our numerical method is based upon the algorithms described Edwards and Jackson
(2002), Evans and Edwards (2017). We outline our numerical method only for the
injection phase of the experiment, since the wash phase requires only straightforward
modifications. To find a numerical approximation to the solution of (2.7), (2.10d),
we discretize the spatial interval [0, 1] into N + 1 equally spaced nodes xi = i�x ,
for i = 0, . . . , N , and discretize time by setting tn = n�t for n = 0, . . .. Next,
we must discretize the convolution integral (2.10d) and the time derivatives. Turning
our attention to the former, we would like to spatially discretize (2.10d) with the
trapezoidal rule, although there is a singularity in the integrand when ν = 0. To
handle the singularity we subtract and add

∂B�

∂t
(x − ν, t)|ν=0 (3.12)

from the integrand of (2.10d). Doing so gives

C(x, 0, t) =1 − Da

31/3
(2/3)

∫ x

0

[
∂B�

∂t
(x − ν, t) − ∂B�

∂t
(x, t)

+ ∂B�

∂t
(x, t)

]
dν

ν2/3
.

(3.13)

Since the last term of the integrand does not depend upon ν, we may write (3.13) as

C(x, 0, t) =1 − Da

31/3
(2/3)

{ ∫ x

0

[
∂B�

∂t
(x − ν, t) − ∂B�

∂t
(x, t)

]
dν

ν2/3

+ 3x1/3
∂B�

∂t
(x, t)

}
.

(3.14)
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With (2.10d) written as (3.14) we discretize C(x, 0, t) in space using the trapezoidal
rule

C(xi , 0, t) =1 − Da

31/3
(2/3)

[
lim
ν→0

�x

2

(
∂B�

∂t
(xi − ν, t) − ∂B�

∂t
(xi , t)

)
ν−2/3

i−1∑
k=1

�x

(
∂B�

∂t
(xi − xk, t) − ∂B�

∂t
(xi , t)

)
x−2/3
k

�x

2

(
∂B�

∂t
(0, t) − ∂B�

∂t
(xi , t)

)
x−2/3
i + 3x1/3i

∂B�

∂t
(xi , t)

]

(3.15a)

when i > 1,

C(x1, 0, t) =1 − Da

31/3
(2/3)

[
lim
ν→0

�x

2

(
∂B�

∂t
(x1 − ν, t) − ∂B�

∂t
(x1, t)

)
ν−2/3

�x

2

(
∂B�

∂t
(0, t) − ∂B�

∂t
(x1, t)

)
x−2/3
1

]
,

(3.15b)

and
C(x0, 0, t) = 1. (3.15c)

We expect that Bf and Bp are regular enough that

lim
ν→0

�x

2

(
∂B�

∂t
(xi − ν, t) − ∂B�

∂t
(xi , t)

)
ν−2/3 = 0. (3.16)

We remark that at this point we have discretized (2.10d) in space only, so in this sense
(3.15) may be viewed as a semi-discretization of (2.10d). Towards a full discretization
of the convolution integral (2.10d) and our IDE system, we approximate the time
derivatives as

∂Bj

∂t
(xi , tn) ≈ �B j

i,n+1

�t
= B j

i,n+1 − B j
i,n

�t
, (3.17)

where j = p, f, �. In (3.17) B j
i,n is our discretized approximation to Bj (xi , tn), and

�B j
i,n+1 approximates the infinitesimal change in Bj (xi , tn+1). Although we have set

�B j
i,n+1 = B j

i,n+1 − B j
i,n , as we shall show below �B j

i,n+1 is treated as a separate

variable used to update B j
i,n+1 at each time step.
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The fully-discretized system is then given by

�Bp
i,n+1

�t
= pKa(Rp − Bp

i,n)Ci,n+1 − pKdB
p
i,n, (3.18a)

�Bf
i,n+1

�t
= pKa(Rf − Bf

i,n)Ci,n+1 − pKdB
f
i,n, (3.18b)

Bi,0 = 0, (3.18c)

where

Ci,n+1 =1 − Da

31/3
(2/3)

[ i−1∑
k=1

�x

(
�B�

i−k,n+1

�t
− �B�

i,n+1

�t

)
x−2/3
k

�x

2

(
�B�

0,n+1

�t
− �B�

i,n+1

�t

)
x−2/3
i + 3x1/3i

�B�
i,n+1

�t

] (3.18d)

for i = 2, . . . , N , with straightforwardmodifications toCi,n+1 when i = 0 or 1.Notice
that this choice of Ci,n+1 in (3.18) renders our method only semi-implicit, rather than
fully-implicit. Indeed, we could have chosen fully-implicit method by replacing all
instances of B j

i,n with B
j
i,n+1 in (3.18a)–(3.18b), but a fully-implicit method introduces

the expense and complication of solving a nonlinear system at each time step. On the
other hand, we could have chosen an explicit method by replacing B j

i,n+1 with B j
i,n in

(3.18d).
Tomotivate our semi-implicit algorithm, observe the ν-dependence in the integrand

of (2.10d) is only on 0 ≤ ν ≤ x . This enables us to use the updated approximations
for ∂Bj/∂t (xi , tn+1), rather than the previous approximation to ∂B/∂t (xi , tn), by
discretizing (2.10d) as (3.18d) and marching our way downstream from x0 to xN at
each time step. To wit, at a fixed time step tn+1 we start by taking i = 0 and using
(3.18) to solve for �B j

0,n+1 in terms of B j
0,n ; note both B j

0,n and �B j
0,n are known

from the previous time step tn . We then determine B j
0,n+1 by taking i = 0 in our

time-stepping formula

Bp
i,n+1 = Bp

i,n + 3

2
�Bp

i,n+1 − 1

2
�Bp

i,n, (3.19a)

Bf
i,n+1 = Bf

i,n + 3

2
�Bf

i,n+1 − 1

2
�Bf

i,n, (3.19b)

which is analogous to a second-order Adams-Bashforth method. Next we increment i
to i = 1 and use�B j

0,n+1 in (3.18) to solve for�B j
1,n+1, which is possible since (3.18)

is linear in �B j
i,n+1 thanks to the fact that our method is only semi-implicit. Then we

use �B j
1,n+1 in (3.19) to determine B j

1,n+1. We continue in this manner by iteratively

incrementing i and marching our way downstream until we have determined B j
i,n+1

for i = 2, . . . , N . This process may be repeated for as many time steps as desired.
To initialize our method, we replaced (3.19) with a single step of Euler’s method.
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With the above finite-difference approximation to Bp(x, t) and Bf(x, t), we may
use the trapezoidal rule to compute an approximation to Bp(t) and Bf(t). At a given
time-step tn , our approximations to Bf(tn) and Bp(tn) take the form

Bp(tn) ≈ B
p
n = 1

xmax − xmin

(
�x

2
Bp
m,n + �x

M−1∑
i=m+1

Bp
i,n + �x

2
Bp
M,n

)
, (3.20a)

Bf(tn) ≈ B
f
n = 1

xmax − xmin

(
�x

2
Bf
m,n + �x

M−1∑
i=m+1

Bf
i,n + �x

2
Bf
M,n

)
. (3.20b)

In (3.20), the indices i = m and i = M correspond to the nodes xm = xmin and xM =
xmax. Therefore, our grid was chosen to align with these points to avoid interpolation
errors.

We briefly comment on the temporal and spatial convergence properties of B
p
n and

B
f
n . These quantities converge at a rate of O(�t2) in time, thanks to our second-

order Adams-Bashforth method. Given the singular integrand in (2.10d), the issue of
spatial convergence is more delicate and requires care. Our method converges at a
rate of O(Da�x2) when Da � 1, and O(Da2�x4/3) when Da = O(1). We refer the
interested reader to Evans and Edwards (2017) for more details, where the authors
study the spatial and temporal convergence properties of this method applied to a
different problem.

3.3 ERC verification

To test the accuracy of our ERC equations, we now compare the solutions of the
ERC system (3.10) and (3.11) to the finite-difference approximation (3.20) for Bf(t)
and Bp(t) generated from the more complicated integrodifferential equation system.
The absolute difference between the solution of our ERC equations and our finite-
difference approximation is depicted in Fig. 5, and the absolute difference between
the corresponding sensogram readings is shown in Fig. 6. Upon inspecting the former,
we see that the solutions to our ERC Eqs. (3.10) and (3.11) agree quite well with
our finite-difference approximation. When Da = 0.1 the maximum absolute error is
O(10−4) for Bp, and O(10−5) for Bf . Since available free DNA receptors account
for only ten percent of the total receptor concentration, the absolute error for Bf is
an order of magnitude smaller than the error for Bp. Hence, we see the sensogram
error depicted on the left in Fig. 6 is almost indistinguishable from the error associated
with Bp in Fig. 5. Fortunately this does not pose an issue when measuring kinetic rate
constants, since one can determine fka and fkd through an experiment involving only
free DNA molecules on the surface (as outlined in Sect. 3.1).

From the plot on the right in Fig. 6, it is evident that the solutions to our ERC
Eqs. (3.10) and (3.11) agree with our finite-difference approximation not only for
small Da, but for moderate Da as well. Though Da = 0.45, the absolute error reaches
a maximum of only O(10−3). These findings, which are summarized in Table 3, are
consistent with the work of Edwards and Jackson (2002). In this work, the authors
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Fig. 5 Absolute error in Bp and Bp during both phases. From t = 0 to t = 10 we have depicted the
absolute error during the injection phase (3.10), and from t = 10 to t = 20 we have depicted the absolute
error during the wash phase (3.11). In both plots we have taken Da = 0.1 and all of the rate constants equal
to one
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Fig. 6 Absolute error in sensogram during both phases. We have depicted the error in the signal resulting
from (3.10) from t = 0 to t = 10, and the error in the signal resulting from (3.11) from t = 10 to t = 20.
On the left we took Da = 0.1, and on the right we took Da = 0.45. In both, all rate constants were taken
equal to one

Table 3 Summary of maximum
absolute error during both
phases

Bf Bp S

Injection

Da = 0.1 1.19 × 10−5 1.07 × 10−4 1.19 × 10−4

Da = 0.45 1.53 × 10−4 1.38 × 10−3 1.53 × 10−3

Wash

Da = 0.1 5.85 × 10−6 5.26 × 10−5 5.85 × 10−5

Da = 0.45 7.50 × 10−5 6.75 × 10−4 7.50 × 10−4

demonstrate that a unimolecular analog of our multiple-receptor ERC equations can
be used outside the range of which it is formally valid. Hence, motivated by Edwards
and Jackson (2002), we tested the validity of our ERC approximations for a wider
range of Da. The results are depicted in Fig. 7. To create the logarithmic plots in
Fig. 7 we ran a series of simulations for different values of Da, from Da ≈ 0.02
to Da = 150, and measured the error at each value of Da by taking the maximum
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Fig. 7 Left the red line corresponds to the line y = 1.8156x − 3.4394. Right the red line corresponds to
the line y = 1.8156x − 6.2233. In both plots, the rate constants were pKa = 1, pKd = 1/2, and fKd = 1.
Similar results hold for the wash phase (color figure online)

absolute difference between the solution to ERC Eqs. (3.10) and our finite-difference
approximation. Observe that the error starts off small, and increases at a rate which
agrees favorably with our theoretical O(Da2) prediction. The error then reaches an
asymptote corresponding to approximately a two percent absolute error. This indicates
that our multiple-receptor ERC equations are also useful outside of the range which
they are formally valid.

4 Conclusions

We developed and studied a mathematical model for surface-volume reactions in
optical biosensors involving multiple-receptor types on the sensor surface. Motivated
by current biosensor applications, we specifically considered the presence of both
PCNA and free DNA receptors on the reacting surface. To quantify transport effects
on such reactions, we modeled the biosensor experiment under consideration with a
convection-diffusion equation coupled to a set of PDEs describing the surface reactions
(1.2). Thanks to high Péclet number flow, transport effects are relevant only in a thin
region near the surface and our PDE system reduces asymptotically to a nonlinear
coupled set of IDEs forB(x, t) = (Bp(x, t), Bf(x, t))T (a vector inR2 containing the
concentration of ligand bound to PCNA receptors Bp(x, t) and free DNA receptors
Bf(x, t). These IDEs are difficult to solve analytically, and a numerical solution does
not readily lend itself to data analysis. Hence, we have further reduced these IDEs to
a nonlinear set of ODEs, from which we can construct the sensogram signal (2.6).

Our ERC equations are formally valid only when Da � 1; i.e., when transport into
the surface is much quicker than reaction and the two processes occur on different time
scales. However, the results presented in Sect. 3.3 demonstrate that our ERC approx-
imation agrees with our finite-difference approximation for Da = O(1) and larger.
Thus, our ERC approximation is useful not only in the reaction-limited parameter
regime, but also in parameter regimes in which mass transport effects are thought to
play a larger role. This flexibility, along with the fact that (3.10) and (3.11) are easily
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solved with a standard numerical method for ODEs, render our ERC approximation
particularly useful for data analysis. Though we have analyzed only two receptors
herein, the vector formulations (3.10) and (3.11) readily extend to N receptors. We
expect that the results discussed in Sect. 3.3 also generalize to N receptors, and future
work may include a verification of this. We are also interested in quantifying other
physical effects, such as: steric hindrance; random receptor orientation; or transport of
the ligand molecules through a dextran gel layer, in which receptor sites are typically
embedded.
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