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Abstract 
 
We have numerically studied the geometrical effects on the performance of an H-type cylindrical resonant photoacoustic cell, composed of one 

resonator and two symmetrical buffer cylinders, by performing simulations on the generation of acoustic waves in the cell. Here, the acoustic 
response (pressure), resonance frequency and quality factor are calculated for the cell performance, while the lengths and diameters of both reso-
nator and buffer cylinders are considered for the geometrical parameters or dimensions. Our calculation solves linearized forms of the conti-
nuity equation, Navier-Stokes equation, energy equation, and equation of state using a finite element method under an assumption that the heat 
addition due to the laser passage and thus the variations in the velocity, pressure and temperature fields inside the cell are small enough. 
First, we performed a statistical analysis using a design of experiment method to evaluate the relative impacts of the cell dimensions on the 
acoustic response. Subsequently, we performed a parametric study to quantify the cell performance with the dimensional variations. Our 
results, along with the response surface methodology, provide guidance for a systematic design optimization of the cell for the best acoustic 
response. The approach in this study may be applied to the design of various types of resonant photoacoustic spectroscopy devices.  
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1. Introduction 

The generation of sound when a material is irradiated with 
non-stationary light, a well-known photoacoustic phenomenon, 
was first reported by Bell [1, 2] in his path- breaking papers 
“On the production and reproduction of sound by light” and 
“The production of sound by radiant energy”, published in 
1880 and 1881, respectively. A molecule in a material, upon 
absorption of photon, gets excited and if it does not lose this 
excess energy other than by collision with other molecules, the 
net kinetic energy of the molecules increases, thereby increas-
ing the temperature of the material. If the excitation by light is 
periodic, the temperature rise in the material is also periodic, 
leading to alternating expansion and contraction of the mate-
rial to trigger sound waves. This phenomenon can be used to 
develop various kinds of sensors for environmental, biological 
and medical applications [3-6].  

The photoacoustic spectroscopy, because of its non-
destructive nature and versatility, has a wide range of applica-
bility in various materials, ranging from soft tissues to liquids 
and gases. It is recognized as an effective and inexpensive 

method to investigate and characterize the properties of a mat-
ter. Since the absorption of photons is needed for the genera-
tion of a photoacoustic signal, the scattered or transmitted 
radiation does not affect the photoacoustic response. This 
feature is excellent for trace gas analysis, where the number of 
absorbing molecules is very small. Thus, a variety of photo-
acoustic sensors developed based on these characteristics have 
shown excellent sensitivity on the level of a part per trillion 
(ppt) [7]. Since the amount of energy absorbed by the gas is 
miniscule, the acoustic response is also very weak. However, 
the constructive interference contributed by the boundary at 
acoustic resonance may be used to achieve high acoustic re-
sponse amplitudes (pressure) which are detectable by a micro-
phone. The resonant frequencies corresponding to various 
modes of longitudinal or radial resonance in the case of a cy-
lindrical photoacoustic cell can be calculated by analytical 
methods. If the frequency of the light source is the same as the 
natural frequency corresponding to a particular mode of the 
photoacoustic cell, the resonance can be achieved. Such a 
resonant photoacoustic cell has widely been used for various 
spectroscopic applications [7, 8]. 

The ability to generate high amplitudes of acoustic pressure 
at a microphone for a given amount of absorbed radiation is 
one of the most pertinent design objectives for resonant 
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photoacoustic cells. The sensitivity of the photoacoustic cell 
depends strongly on its geometry. Up to now, different shapes 
such as H, T and ‘banana’ have been proposed to enhance the 
acoustic response [8-11]. In the H-type cell which has a reso-
nator cylinder and two buffer cylinders, the buffer structure 
strongly affects the acoustic response. Selection of the dimen-
sions of the buffer cylinders becomes a significant part of the 
design of an H-type photoacoustic cell. As the laser beam 
passes through windows of the photoacoustic cell, some quan-
tity of light energy may be absorbed by the windows, which 
can generate acoustic waves. Such undesirable waves are 
known as window noises. Bijnen et al. [3] suggested that the 
ideal buffer cylinder length should be a quarter of the acoustic 
wavelength in order to minimize the window noises, whereas 
the resonance frequency and quality factor are not much af-
fected by the buffer cylinder length. Cai et al. [7] also sug-
gested that the buffer cylinder length should be equal to a 
quarter of the acoustic wavelength in order to extract the best 
acoustic signal. However, they reported significant variations 
in the resonance frequency with the buffer cylinder length.  

The acoustic wave motion at a monofrequency is governed 
by the Helmholtz equation [12]. Since the heat added to the 
gas by the photoacoustic effect acts as a source for the genera-
tion of sound waves, the acoustic waves in a photoacoustic 
cell can also be described by the Helmholtz equation with a 
source term corresponding to the photoacoustic generation. In 
the literature, the governing equations have typically been 
solved by the method of expansion of eigenmodes [8]. The 
eigenmode expansion method was introduced to solve the 
inhomogeneous Helmholtz equation, where the exact eigen-
modes can be found by solving the homogenous Helmholtz 
equation [8]. However, the analytical solution based on the 
Helmholtz equation is possible only for regular geometries, 
limiting its utility in real applications. To overcome this limi-
tation, numerical simulations have been performed by cou-
pling the finite element method (FEM) technique with the 
eigenmode expansion method in order to find the acoustic 
response in photoacoustic cells of various shapes [9, 10]. Here, 
the thermal and viscous losses in the cells can be well ac-
counted for by including the quality factor in the calculation of 
the acoustic pressure. Most of the studies on modelling of 
resonant photoacoustic cells developed for spectroscopic ap-
plications, reported in the last decade, are based on this meth-
od [9, 10, 13, 14]. However, when the eigenmode expansion 
method, in which the acoustic pressure field alone is deter-
mined by superimposing the eigenmodes, is applied to model 
the acoustic response in a photoacoustic cell, the expansion is 
truncated after the first eight modes to simplify the calculation 
[9, 10]. Therefore, the error in the eigenmode expansion meth-
od is expected to be large. Another drawback of this method is 
that it is not a direct way of calculating the acoustic pressure. 
Even if we use a commercial software to calculate the eigen-
modes, further calculations are needed, which include the 
estimation of quality factor, to find out the amplitude of acous-
tic pressure at the point of interest. Instead of using the eigen-

mode expansion method, an alternative method to solve for all 
the acoustic variables would be beneficial for the improved 
simulation of photoacoustic response in a resonant cell. 

Compared to the eigenmode expansion method, it would be 
highly accurate to predict the acoustic response by directly 
solving the full set of the continuity equation, Navier-Stokes 
equation, energy equation, and equation of state. By this 
method, we can develop a model that includes the thermal and 
viscous losses associated with the wave propagation and solve 
for all the acoustic variables, which makes it more realistic 
than the eigenmode expansion method. The aforementioned 
method has been used by a few researchers to solve various 
acoustic problems [15-17]. In the present study, we want to 
extend it to the case of an H-type resonant photoacoustic cell. 
For accurate and effective estimation of thermal and viscous 
losses, we adopt a combination of a very fine mesh near the 
walls, where viscous and thermal boundary layers exist, and a 
normal mesh in the bulk region, where the thermal and vis-
cous losses are negligible. If such a holistic approach is fol-
lowed, we will be able to more accurately analyze the effect of 
geometry on the key design features of a resonant photoacous-
tic cell than the previously reported numerical studies on the 
same topic [3, 7]. Apart from the above, considering the range 
of applications, optimization of the geometrical parameters or 
dimensions of a resonant photoacoustic cell is an interesting 
topic of research. The existing literature [3, 7], which touches 
upon the topic of the optimization of resonant photoacoustic 
cells, is not based on any standard procedure to follow in the 
optimization problems. The study reported by Kost et al. [10] 
deals with the shape optimization of a cell, not with the opti-
mal dimensions of a predefined shape. To the best of our 
knowledge, however, any statistical study of the geometrical 
effects on the performance of a cylindrical resonant photo-
acoustic cell, which would provide the foundation needed to 
develop a metamodel (or surrogate model) based optimization 
technique, has not so far been reported. So, if an accurate nu-
merical simulation method, which is much closer to the actual 
physics, is used as a tool to conduct a statistical analysis, it 
would save resources needed to carry out an equivalent num-
ber of physical experiments. This strongly motivates the pre-
sent study. 

The main objective of the present study is to numerically 
investigate the geometrical effects on the performance of an 
H-type cylindrical resonant photoacoustic cell, composed of 
one resonator and two symmetrical buffer cylinders. Here, the 
H-type cell is chosen because it is one of the simplest and 
most widely used designs for gas spectroscopic applications. 
An FEM-based software was used to perform simulations on 
the generation of acoustic waves in the cell under an assump-
tion that the heat addition due to the laser passage and thus the 
variations in the velocity, pressure and temperature fields in-
side the cell are sufficiently small. For this study, we solve the 
full set of linearized forms of the continuity equation, Navier-
Stokes equation, energy equation and equation of state for the 
key performance parameters such as the acoustic response, 
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resonance frequency and quality factor. First, we perform a 
statistical analysis using a design-of-experiment (DOE) 
method to see the relative effects of the dimensions of the H-
type cell on the acoustic response. Next, we perform a para-
metric study to further understand the variation of the cell 
performance in response to the dimensional changes. Lastly, 
we carry out a design optimization of the cell by employing a 
response surface methodology (RSM) to explore the possibil-
ity of systematically optimizing the resonant photoacoustic 
cell based on a metamodel or surrogate model. 

 
2. Numerical methods  

This section explains the H-type photoacoustic cell consid-
ered in this study and then presents the governing equations 
and numerical methods used to predict the performance of the 
cell according to the geometrical parameters or dimensions. 

 
2.1 H-type photoacoustic cell  

In this study, a numerical analysis was performed on an H-
type resonant photoacoustic cell, composed of one cylindrical 
resonator with a size of Lr×Dr (length and diameter) and two 
symmetric buffer cylinders (volumes) with a size of Lb×Db 
attached at both ends of the resonator, as shown in Fig. 1. The 
cell is assumed to be filled with a gaseous medium, butane, at 
a temperature of 300 K and a pressure of 100 kPa (1 atm) in 
an equilibrium state, whose properties used for the simulations 
are listed in Table 1. The laser beam supplied on the left-hand 
side passes through the longitudinal axis of the resonator to-
wards right. The photoacoustic response was measured in 
terms of the acoustic pressure at the position of microphone, 
located at the center of the resonator. 

 
2.2 Mathematical modelling 

The photoacoustic response, characterized by the acoustic 
pressure at the position of microphone, can be numerically 
predicted by solving for the pressure field inside the cell, in 
close relation with the acoustic waves generated by the photo-
acoustic effect. Assuming the fluid flow (butane gas) to be 
compressible, viscous and Newtonian, the acoustic waves 
triggered by the photoacoustic effect are governed by the con-
tinuity equation, Navier-Stokes equation, energy equation, and 
equation of state [17]. In the case of acoustic wave propaga-
tion in a gaseous medium, it is assumed that the ranges of 
variations in the density, velocity, pressure and temperature 
fields should be much smaller than their respective back-
ground values at an equilibrium state. The density, velocity, 
pressure, and temperature fields, therefore, can be approxi-
mately expressed as small harmonic oscillations about their 
background values. Under such an assumption, each of the 
variables can be decomposed into an equilibrium part and a 
fluctuating part in the frequency domain. For example, the 
velocity u can be decomposed as u = u0+ u'eiωt, where the first 
and second terms represent the equilibrium part and fluctuat-

ing part, respectively. The final equations after linearization of 
the basic equations can be written as follows [18]: 
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where ρ, p and T are respectively the density, pressure and 
temperature fields, μ, μB, Cp, α, βT and k denote respectively 
the dynamic viscosity, bulk viscosity, specific heat at a con-
stant pressure, thermal expansion coefficient, isothermal com-
pressibility, and thermal conductivity, H is the heat source, t is 
the time, and I is the identity matrix. ω is the angular fre-
quency of the laser beam, given by 2πf where f is the pulsation 
frequency (the inverse of the pulse repetition rate) of the laser, 
and i is the imaginary unit. In addition, the subscript ‘0’ de-
notes the equilibrium steady state (ρ0, T0 and α0) and the prime 
(') represents the small fluctuating amplitude of each variable. 
The heating of the gas by the absorption of laser beam can be 
modelled using the primed heat source, H'. Assuming the 
Gaussian profile for the laser beam, the heat source, at a radial 
position relative to the centerline of the resonator can be ap-
proximated as [13] 
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Table 1. Properties of butane considered in the present study. 
 

Property Value 

Specific heat at constant pressure, Cp 1675 J/(kg K) 

Density, ρ 2.376 kg/m3 

Ratio of specific heats, γ 1.085 

Coefficient of thermal expansion, α 8.750×10-4 /K 

Speed of sound, c 210.59 m/s 

Thermal conductivity, k 0.016 W/(m K) 

Dynamic viscosity, μ 7.600×10-6 Pa s 

 

 
 
Fig. 1. Schematic diagram of the H-type resonant photoacoustic cell 
considered in the present study. 
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where r is the radial coordinate, w is the radius of laser 
beam, a is the absorption coefficient and I0 is the power of 
the laser. 

The actual propagation of acoustic waves in a photoacous-
tic cell is damped by the thermal and viscous losses. When 
we consider the bulk region of the medium away from the 
surface, the wave motion can be considered nearly adiabatic 
and the effect of viscosity is also marginal. Hence, the losses 
in the bulk region, which are minimal, are termed as volume 
losses. On the other hand, the losses caused by the thermal 
conduction and viscous friction near the wall, termed as 
surface losses, form a significant part of the total losses. To 
account for the loss mechanism in the photoacoustic cell, 
generally the concept of quality factor is used. In the eigen-
mode expansion method, we need to calculate the quality 
factor at various eigenmodes to find the amplitude of pres-
sure. In the present study, to the contrary, estimation of the 
quality factor is not needed at all because we directly solve 
the governing equations. However, for the purpose of ana-
lyzing the effect of geometrical parameters on the loss 
mechanism of the cell, we calculated the quality factor only 
at the operating mode ‘j’ of the cell. The quality factor, Qj, at 
the resonance frequency corresponding to the j-th mode is 
defined as the ratio of the resonance frequency to its full 
width half maximum (FWHM): 

 
j

j
j

f
Q

f
=
D

  (6) 

 
where fj is the resonance frequency and Δfj is the FWHM.  

Although the requirements of the desired resonant photo-
acoustic cell are subjective depending on the applications, the 
high sensitivity, which ensures that the photoacoustic response 
has a detectable magnitude, is a key requirement in all the 
cases. The amplitude of the photoacoustic response (pressure) 
becomes high when the resonance frequency is low. However, 
the microphone noise would be of considerable magnitude at a 
low frequency, which makes it necessary to keep the reso-
nance frequency above the widely accepted lower threshold, 
1000 Hz. A larger cell volume would increase the quality 
factor, but a smaller volume is favourable for increasing the 
amplitude of response. In real applications, an appropriate 
trade-off between the sensitivity and the other key parameters 
such as resonance frequency and quality factor would be nec-
essary. For the effective measurement of the acoustic pressure 
generated from the target gas species, the signal to noise ratio 
at the position of microphone should be as high as possible. 
However, an experimental investigation is the most suitable 
method to properly quantify the noise at the position of mi-
crophone. In the present numerical analysis, therefore, the 
window noise is not considered. Here, we want to focus on 
three parameters, the acoustic response (pressure), resonance 
frequency and quality factor, when we analyze the perform-
ance of the H-type photoacoustic cell.  

2.3 Numerical formulation and validation 

The numerical formulation and validation necessary for 
simulating the photoacoustic response in an H-type resonant 
photoacoustic cell are discussed in this section. For the study, 
we numerically solved linearized forms of the governing Eqs. 
(1)-(4) for the photoacoustic response and resonance fre-
quency using the thermoacoustic interface of the acoustic 
module of COMSOL Multiphysics software based on an FEM 
[18]. Here, the resonance was identified as a spike in the fre-
quency response plot, in which the acoustic pressure is plotted 
against the pulsation frequency of the laser, f [9]. Through the 
simulations, we can predict the key performance parameters 
of the cell, such as the acoustic response (pressure), resonance 
frequency and quality factor, by varying the geometrical pa-
rameters, such as lengths and diameters of the resonator and 
two symmetric buffer cylinders. At the last stage of the pre-
sent study, we executed a systematic design optimization of 
the cell by employing an RSM and then found the optimal 
dimensions for maximizing the acoustic response in order to 
explore the possibility of application of our method to optimal 
sizing of the cell. 

The photoacoustic response was calculated in terms of the 
acoustic pressure at the position of microphone. Since the 
response is actually measured as an amplified microphone 
signal, an arbitrary value can be assigned for the term, aI0, in 
Eq. (5) [13]. Here, we assign aI0 = 1 for all the simulations. A 
radius of 2 mm was considered for the laser beam in all simu-
lations. At all the boundaries, the isothermal and no-slip con-
ditions were applied. Non-uniform, free tetrahedral elements 
were chosen for discretizing the domain. In the numerical 
modelling of the sound waves, a rule of thumb is to have at 
least five elements per wavelength [13]. In the present study, 
since we are interested only in the first longitudinal mode of 
resonance while simulating cells with different sizes, the fre-
quencies range from 1000 Hz to 3000 Hz. A frequency step of 
1 Hz was used between two consecutive frequency values. 
The minimum wave length of acoustic waves in our simula-
tions, which would correspond to the maximum frequency of 
laser beam, given by (c/3000 Hz), approximately equals to 70 
mm. We chose to use a maximum element size of 2 mm so 
that the minimum number of elements per wavelength is 
around 35, ensuring a high degree of accuracy. However, the 
thermoacoustic modelling demands finer mesh to incorporate 
the heating effect due to the laser beam passing through the 
longitudinal axis of the resonator. In the laser beam path, the 
maximum element size was restricted to 1 mm. In order to 
verify the mesh independence, the mesh sizes in the beam 
path and in the rest of the cell were restricted to 0.5 mm and 1 
mm, respectively, and the effects on the acoustic pressure and 
resonance frequency were simulated. The variations in the 
acoustic pressure and resonance frequency were less than 
0.8 % of the corresponding values at the previous mesh sizing. 
Based on the mesh independence test, to optimize the compu-
tational time for all simulations, the maximum element size in 
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the laser beam path and in the rest of the cell were fixed at 1 
mm and 2 mm, respectively. In addition, the presence of 
thermal and viscous boundary layers needs to be taken care at 
all the boundaries. For the range of frequencies under investi-
gation in the present study, the thickness of boundary layers is 
between 50 and 250 μm. In the corresponding part of the mesh, 
the maximum element size was limited to 10 μm.   

We validated the numerical method employed in the present 
study by adopting three different resonance problems whose 
theoretical, numerical or experimental results are available in 
literature: The first one is an H-type cell, the second one is a 
Helmholtz cell and the third is a simple closed cell. Here, we 
assumed that the cells were filled with nitrogen gas in the first 
and third problems, whereas it was with air in the second one. 
In all the three problems, a temperature of 293 K and a pres-
sure of 101 kPa (1 atm) were assumed. The above assump-
tions were made to match the present conditions with the cor-
responding ones specified in the experimental or numerical 
studies available in literature. Kost et al. [10] performed both 
numerical analysis based on the eigenmode expansion method 
and experimental study for an H cell and they are taken as the 
reference for validation in the present study. We performed 
numerical simulations on the same H-type photoacoustic cell 
considered in the reference and compared our results with 
theirs. The resonance frequency corresponding to the first 
longitudinal mode is found to be 2743 Hz in the present study 
and the experimental result reported in the reference is 2753 
Hz. The relative deviation is just 0.36 %, whereas the corre-
sponding value from the eigenmode expansion based method 
reported in the above reference is 1.2 %. The frequency re-
sponses obtained by the present method in the range of fre-
quencies of 2500 Hz to 3000 Hz, which has equal spread on 
either side of the first longitudinal resonance frequency, were 
compared with the corresponding experimental and numerical 
results reported in the reference. To allow a reasonable com-
parison between microphone responses obtained from the 
experiment with pressure responses obtained from the nu-
merical analysis in the reference, both have been normalized 
with respect to their maximum values. We also followed the 
same procedure. Fig. 2 shows the comparison between our 
results and the reference results. The normalized response 
obtained by the present method is much closer to the experi-
mental result, in comparison with the numerical result ob-
tained by the eigenmode expansion method. So, it can be de-
duced that the present model estimates the photoacoustic re-
sponse with better accuracy than the eigenmode expansion 
based model.  

Gliere et al. [16] used similar numerical method employed 
in the present study to simulate the photoacoustic response in 
a Helmholtz photoacoustic cell. We also numerically pre-
dicted the acoustic pressure in two chambers of the micro-
sized Helmholtz photoacoustic cell described in the above 
reference and then compared our results with theirs as shown 
in Fig. 3. Excellent agreement between our results and the 
previous numerical results confirms the validity of the present 

numerical model. 
Subsequently, we performed numerical simulations on the 

acoustic waves in a simple cell, composed of a single cylindri-
cal resonator closed at both ends, and then compared their 
result with the available analytical solution [9] given as  

 

1,anal 2 r

cf
L

=   (7) 

 
where f1 is the natural resonance frequency corresponding to 
the first longitudinal mode of the cylinder. Fig. 4 shows the 
variation of the resonance frequency, computed with the pre-
sent numerical method, with the resonator length. Here, the 
numerical resonance frequency was obtained by identifying 
the peak position corresponding to the first longitudinal mode 

 
 
Fig. 2. Validation of the present numerical method for the H-type 
photoacoustic cell: Frequency response curve obtained in the present 
study, after normalizing with the peak response, compared with the 
results of the experimental and numerical studies of Kost et al. [10].  

 

 
 
Fig. 3. Validation of the present numerical method for the Helmholtz
photoacoustic cell: Frequency response curves in two chambers of the 
Helmholtz cell obtained in the present study, compared with the results 
of the numerical study of Gliere et al. [16].  
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in the acoustic pressure versus frequency plot for each simula-
tion. In addition, the present result was also compared with the 
analytical solution in the same figure. The comparison indi-
cates that the present result is in fairly good agreement with 
the analytical solution with the maximum deviation of around 
1.4 %, validating the present numerical method. From the 
three different validations mentioned above, we concluded 
that our numerical method and simulations are meaningful 
enough for the purpose of the present study. 

 
3. Results and discussion 

In order to understand the effects of the geometrical pa-
rameters on the photoacoustic response of the H-type resonant 
photoacoustic cell, in this section, we perform numerical sim-
ulations on the cell using an FEM based software and then 
discuss their results.  

 
3.1 Statistical analysis of the H-type cell 

We applied the Taguchi method of robust design [19], 
which is a well-known design of experiment (DOE) method, 
to the H-type cell and then conducted a series of numerical 
experiments to statistically analyze the effects of the geomet-
rical parameters on the photoacoustic response. In the DOE 
method, one variable out of different variables associated with 
the physical problem is identified as a response parameter, 
while the other ones, whose values can be controlled so that 
the response parameter can be either maximized or minimized, 
are termed as control parameters. In the present study, the 
acoustic pressure at the position of microphone is the response 
parameter because we want to maximize it by adjusting the 
geometrical parameters of the cell. We chose four control 
parameters: length and diameter of the resonator, Lr and Dr, 
and length and diameter of both symmetric buffer cylinders, 
Lb and Db. In the Taguchi method, to analyze the effects of 
variations of the control parameters on the response, we need 
to assign certain values to the control parameters. These val-
ues are called levels. Since all the parameters are continuous 
variables, two levels were adopted for each of these parame-
ters for the initial set of experiments, as suggested by Ross et 
al. [19].  

The initial levels adopted for the control parameters are 
listed in Table 2. The basic idea in the DOE method is to find 
out the effects of variations of the control parameters and their 
interactions on the response with a possible minimum number 
of experiments. Here, interactions indicate the effects of com-
bined variations of multiple control parameters on the re-
sponse data. Therefore, we need to intelligently pick combina-
tions of levels of the control parameters for each experiment. 
The orthogonal array, which is a well-known combinatorial 
design, is widely used in such problems. In the present study, 
since we have four control parameters, eleven number of in-
teractions are possible among them. So, an impact analysis of 
variations of a total number of fifteen control parameters and 
interactions is discussed here. The data needed for such an 

analysis can be generated by performing simulations with the 
control parameters at the stipulated levels, as given in an L16 
orthogonal array [19]. Table 3 shows the assignment of the 
control parameters and their mutual interactions in the L16 

Table 2. Values of the control parameters corresponding to the two 
levels adopted for the present study. 
 

Level 
Lr /  
mm 
A 

Dr /  
mm 
B 

Lb/  
mm 
C 

Db/ 
mm 
D 

1 40 6 20 14 

2 80 12 40 28 

               
Table 3. Assignment of the control parameters and their interactions in 
the L16 array used for the present study. 
 

Column number of L16 array Control parameter 
/ interaction 

1 A 

2 B 
3 A×B 

4 C 

5 A×C 

6 B×C 

7 A×B×C 

8 D 
9 A×D 

10 B×D 

11 C×D 

12 A×B×D 

13 A×C×D 

14 B×C×D 
15 A×B×C×D 

 

 
 
Fig. 4. Validation of the present numerical method for the simple cell: 
variation of the resonance frequency corresponding to the first longitu-
dinal mode with the resonator length, compared with the analytical 
solution, Eq. (7).  
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array. Subsequently, we conducted a series of simulations 
according to the standard L16 array configuration, which are 
termed as initial experiments in the DOE terminology, and 
then presented their results in Table 4. Table 4 shows the 
acoustic pressure at the microphone position measured as a 
photoacoustic response corresponding to each of different 
trials in the initial experiments. 

Next, we analyzed the effects of the control parameters on 
the acoustic pressure based on the response data collected 
from the experiments using the analysis of variance 
(ANOVA), which forms the crux of the design of experiment 
philosophy. Various terms used in ANOVA applicable to the 
present study are briefly explained below. Let the response 
value for a particular trial be yi and the total number of ex-
periments be N. The total sum of squares, SST, which shows 
the net variation from a mean value of response considering 
all the trials in the initial experiments, is calculated by 

 
2
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1 1

1 .
N N
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The average response, kX , for any parameter X correspond-

ing to its level k is the mean of yi for all the n trials associated 
with the parameter value, Xk. Therefore, the sum of squares 
corresponding to a particular parameter, X, denoted by SSX is 
given by 

 

( )
2

2

1 1

1 .
n N

kX i
k i

SS n X y
N= =

æ ö æ ö= -ç ÷ ç ÷
è ø è ø
å å   (9) 

The sum of squares for each particular parameter is the 
measure of deviation of the response from the mean value, 
which can be attributed to that parameter. However, if we 
consider all the parameters and their interactions, some of 
them may not have a considerable effect on the response. To 
identify the control parameters and interactions which have 
significant effects on the response, we used the so-called F test. 
The sums of squares for all of the control parameters and in-
teractions are compared through the F test to find the signifi-
cant sources of variations. All the individual sums of squares 
were arranged in an ascending order and then the second 
smallest one was divided by the smallest one, which would 
give the F ratio. The significant F ratio for a control parame-
ter/interaction can be referred from the standard statistical 
tables [19]. If the F ratio from the first two smallest sums of 
squares is not significant, then, their sum was calculated and 
the third smallest sum of square was divided by it. This proc-
ess continued until we found a significant F ratio. In order to 
use the standard tables for the F test, we need to know the 
degree of freedom corresponding to each control parame-
ter/interaction. The degree of freedom, ,Xf  is given by the 
number of its levels minus one and the total degree of freedom, 

,Tf  is the total number of trials. When we add individual 
sums of squares of two control parameters/interactions, their 
degrees of freedom also get added. Finally, when we found 
the first significant F ratio, individual sums of squares of all 
control parameters/interactions, which were considered prior 
to that, were added together to constitute the error, which 
represents the portion of total sum of squares, that can be at-
tributed to insignificant control error parameters/interactions. 
In other words, the sum of squares due to error is given by  

 
e T XSS SS SS= -å   (10) 

 
where ∑SSX represents the sum of sums of squares with sig-
nificant F ratios for all the parameters and interactions. There-
fore, the degree of freedom of the error term is calculated by  

 
.e T Xf f f= -å   (11) 

 
Then the variance of a control parameter, VX, is given by 
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The F ratio of a control parameter is given by  
 

X
X

e
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where Ve is the variance of error.  

The results obtained from ANOVA performed on the initial 
experiments are summarized in Table 5. While all four control 
parameters have significant effects on the response, their in-

Table 4. Acoustic pressures measured from the initial experiments for 
the present study. 
 

Trial  
number Lr / mm Dr / mm Lb / mm Db / mm Acoustic  

pressure / mPa 

1 40 6 20 14 4.014×10-1 

2 40 6 20 28 6.105×10-1 

3 40 6 40 14 3.099×10-4 

4 40 6 40 28 3.117×10-4 

5 40 12 20 14 1.324×10-4 

6 40 12 20 28 1.976×10-1 

7 40 12 40 14 1.877×10-4 

8 40 12 40 28 8.000×10-4 

9 80 6 20 14 5.057×10-1 

10 80 6 20 28 6.875×10-1 

11 80 6 40 14 5.531×10-1 

12 80 6 40 28 6.358×10-1 

13 80 12 20 14 2.100×10-4 

14 80 12 20 28 3.933×10-1 

15 80 12 40 14 2.668×10-4 

16 80 12 40 28 1.762×10-1 
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teractions do not cause any significant variation of the re-
sponse. So, the sum of sums of squares of all the interactions 
can be clubbed together as the error. The individual sum of 
squares and percentage contribution toward the total sum of 
squares for each control parameter, as shown in this table, 
clearly show that the diameter of the resonator has the most 
significant effect on the photoacoustic response. From the 
statistical tables, for each F ratio, the corresponding confi-
dence level is also shown. For example, from the present 
study, it can be said with 95 % confidence that the length of 
the resonator is a significant factor which determines the 
photoacoustic response. Since the sensitivity in a photoacous-
tic cell is usually inversely proportional to the volume of the 
cell, selecting the smallest possible diameter of the resonator 
would yield the highest photoacoustic response. In practice, 
however, it would not be possible to arbitrarily minimize the 
resonator diameter. In general, the radius of laser beam used in 
the photoacoustic cells is around 1.5 mm to 2 mm [5]. There-
fore, the radius of resonator needs to be greater than 2 mm, the 
microphone needs to be placed at the center of the resonator, 
and the buffer cylinders have to be mechanically assembled 
with the resonator. Considering these constraints, we decided 
to fix the resonator diameter at 6 mm. Note that the same val-
ue was already used in Gillis et al. [5] to fabricate an experi-
mental setup associated with the H-type cell. To understand 
the effects of the other control parameters except the resonator 
diameter, therefore, we continued to perform more simulation 
by varying Lr, Lb and Db and then discussed the effects in the 
next subsection. 

 
3.2 Parametric study on the H-type cell 

To understand the geometrical effects on the performance 
of the H-type cell, we considered three factors: photoacoustic 
response measured as acoustic pressure at the location of mi-
crophone, the quality factor of the cell and the resonance fre-
quency. 

In order to understand the geometrical effects on the photo-
acoustic response, two different sets of simulations were per-
formed. In the first set, Lr and Lb were varied while the diame-
ter of the buffer cylinder is kept constant at Db = 14 mm. Fig. 5 

shows the acoustic pressure measured at the location of micro-
phone, plotted against the buffer cylinder length for various 
lengths of the resonator. Results indicate that the acoustic pres-
sure is significantly influenced by Lr and Lb. It is seen that the 
acoustic pressure when Lr = 40 mm, which is the shortest 
length of the resonator under consideration in the present study, 
is lower than the corresponding values when Lr = 60 mm and 
80 mm, at all the lengths of Lb. As the length of the resonator 
decreases, the resonance frequency corresponding to the first 
longitudinal mode increases, which leads to a drop in the am-
plitude of the acoustic pressure since the resonance frequency 
and acoustic pressure have an inverse relationship between 
them. It is also seen that, even though the changes in the 
acoustic pressure with increasing buffer cylinder length follow 
different trends when Lr = 60 mm and 80 mm, the highest 
acoustic pressure is found at Lb = 40 mm in both cases. In 
contrast to the above, a sharp drop in the acoustic pressure is 
seen where Lr = 40 mm and Lb = 40 mm. In Fig. 6, the pres-
sure profile along the longitudinal axis of the cell (depicted as 
Xh in Fig. 1) indicates the presence of wave forms of half the 
wavelength in both buffer cylinders (Xh = 0 mm to 40 mm and 
Xh = 80 mm to 120 mm) and in the resonator (Xh = 40 mm to 
80 mm). It clearly shows the triggering of the first longitudinal 
mode of resonance in the resonator and the second longitudi-
nal mode in the buffer cylinders. In fact, the second longitudi-
nal mode does not exist for a single half open cylinder. If a 
single half open cylinder is combined with a fully opened 
cylinder as in the H-type cell, however, the second mode 
should also be excited. It can be inferred, therefore, that the 
combination of dimensions of the resonator and buffer cylin-
ders, which simultaneously triggers the resonance in both 
resonator and buffer cylinders, needs to be avoided because 
the resonance may reduce the amplitude of the photoacoustic 
response. We believe that this observation should be an im-
portant design consideration for the H-type cell.  

In the second set, simulations were performed by varying Lb 
and Db while the length in the resonator is kept constant at Lr 
= 40 mm. Fig. 7 shows the acoustic pressure at the location of 

Table 5. Results of ANOVA obtained from the initial experiments for 
the present study. 
 

Parameter Xf  Sum of 
Squares, SS 

Percentage 
contribu-

tion 

F 
ratio 

Confidence 
level 

A 1 1.900×10-7 17.00 7.74 95 % 
 

B 1 4.310×10-7 38.70 17.60 99 % 

C 1 1.280×10-7 11.50 5.22 95 % 

D 1 9.610×10-8 8.63 3.92 90 % 

Error 11 2.700×10-7 - - - 

Total 15 1.110×10-6 - - - 

 
 

 
 
Fig. 5. Variations of the acoustic pressure at the position of micro-
phone with the length of the buffer cylinder at different resonator 
lengths for the H-type cell. Here, the diameter of the buffer cylinder is 
kept constant at Db = 14 mm.  
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microphone plotted against the buffer cylinder length at dif-
ferent diameters of the buffer cylinders. As the diameter of the 
buffer cylinder increases, the acoustic pressure also increases. 
This may be due to the fact that, as the buffer cylinder diame-
ter increases, the standing wave gets confined to the resonator, 
thereby increasing the wave amplitude. When the diameter of 
the buffer cylinders is small and comparable to that of the 
resonator, the waveforms, which otherwise would have been 
confined to the resonator, start propagating to the buffer vol-
umes as well. Coupling of the acoustic fields in the resonator 
and buffer cylinders distributes the standing wave over both of 
them, resulting in a lower amplitude of the acoustic pressure. 
A sharp drop in the acoustic pressure at Lb = 40 mm, where 
the resonance is excited in both resonator and buffer cylinders, 
is observed in all the cases irrespective of the buffer cylinder 
diameter.  

To understand how the dimensions of the cell affect the en-
ergy losses within the cell, the quality factors were calculated 
for all the simulations mentioned earlier in this section. The 
quality factors for the simulations shown in Fig. 5 are plotted 
in Fig. 8. The quality factor decreases with increasing length 
of the resonator, which is expected because the quality factor 

is inversely proportional to the square root of the resonator 
length [3]. The quality factor decreases with increasing buffer 
cylinder length. As the length increases, the increases in the 
surface losses dominate the net energy stored in the volume, 
which results in a lower quality factor. However, a sharp in-
crease in the quality factor for the case where Lr = 40 mm and 
Lb = 40 mm is because of the excitation of both resonator and 
buffer cylinders explained in the previous section, which is not 
favourable in any case. From the above results, we concluded 
that a smaller buffer cylinder length is preferred for a high 
quality factor in the H-type cell. 

Even if the first mode of longitudinal resonance frequency 
corresponding to the resonator length selected is above 1 kHz, 
the resonance frequency of the cell may vary according to the 
dimensions of the buffer cylinders. To understand the geomet-
rical effects of the buffer cylinders on the resonance frequency 
of the cell, the resonance frequency of the first longitudinal 
mode is plotted against the buffer cylinder length for various 
simulations, where the resonator length is kept constant at 40 
mm as shown in Fig. 9. The resonance frequency varies con-
siderably with the buffer cylinder length. However, the varia-
tion in the resonance frequency is minimal if the cylinder 
length is between 20 mm and 30 mm, implying that the di-
ameter of the buffer cylinders has little effect on the resonance 
frequency within this range. Similar observation was reported 
by Cai et al. [7]. 

 
3.3 Optimization of the H-type cell 

Based on the results from the statistical analysis and para-
metric study described above, it is evident that, for the H-type 
cell, a prudent selection of the geometrical parameter is criti-
cal to maximize the photoacoustic response within the accept-
able limit of resonance frequency. Since numerical simula-
tions on all the combinations of dimensions within the domain 
of interest may not be possible, a functional relationship be-
tween the acoustic pressure at the position of microphone and 
the geometrical parameters has to be developed. In RSM, the 

 
 
Fig. 6. Variation in the acoustic pressure along the longitudinal axis at 
Lb = Lr = 40 mm for the H-type cell. 

 

 
 
Fig. 7. Variations of the acoustic pressure at the position of micro-
phone with the length of the buffer cylinder at different diameters of 
the buffer cylinders for the H-type cell. Here, the length of the resona-
tor is kept constant at Lr = 40 mm. 

 

 
 
Fig. 8. Variations of the quality factor with the length of the buffer 
cylinder, at different resonator lengths for the H-type cell. Here, the 
diameter of the buffer cylinders is kept constant at Db = 14 mm. 
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response data has to be expressed as a function of independent 
control parameters, which can be plotted as a surface. As dis-
cussed in Subsec. 3.1, though our DOE analysis shows that all 
four control parameters considered are significant in determin-
ing the acoustic pressure, there is a practical constraint in 
minimizing the diameter of the resonator. So, the other three 
geometrical dimensions are to be optimized while keeping Dr 
constant at 6 mm in order to maximize the acoustic pressure, 
which would be the highest point in the response surface.  

In general, a second degree polynomial is widely used for 
modelling the response in terms of the control variables in a 
matrix form as follows [20]: 

 
1

2
0

1 1 1 1

m m m m

i i ij i j i i i
i i j i i

y x x x xb b b b e
-

= = = + =

= + + + +å åå å   (14) 

 
where y and xi are the response and control variables respec-
tively, m is the number of control variables, βi and βij are the 
regression coefficients to be determined, and ε is the error 
between the modelled and actual responses. 

Because of the nonlinear nature of the relationship between 
the acoustic response and control parameters, it is impossible 
to develop a single functional relationship between a wide 
domain of values of the control parameters and the corre-
sponding responses. In this study, a 3-D space created by the 
three control parameters, whose upper and lower limits are 
selected based on practical considerations, forms the domain 
of interest. The responses corresponding to various sample 
points in the domain, which are the combinations of different 
levels of the control parameters, have to be calculated. The 
number of sample points should be reasonably chosen so that 
a meaningful relationship between the response and control 
parameters can be established with a minimum number of 
simulations. In order to generate the sample points at which 
numerical simulations have to be executed, we selected a 
scheme of central composite design (CCD) [20] which is 
commonly used in real applications. The domain in the CCD 
is a cubical space extending to two axial points outside the 

cube for each axis. The sample points in the CCD are com-
posed of eight corner points, six axial points and one center 
point. The corner points take care of the first order nature of 
the response, whereas the axial points, placed away at a dis-
tance q from the center, account for the second order relation-
ship between the response and control parameters. Here, the 
distance is given by q = Z0.25, where Z is the number of the 
corner points. Since Z = 8 is used in this study, therefore, five 
different levels, 0, 1, -1, 1.682 and -1.682 were assigned to 
each parameter, corresponding to the center, corner and axial 
points, respectively. The center and corner points of each con-
trol parameter should be chosen based on the actual domain of 
interest after considering the necessary practical constraints. 
From the initial experiments conducted in Subsec. 3.1, the 
maximum response was found for the combination of Lr = 80 
mm, Lb = 20 mm and Db = 28 mm. So, it would be ideal to fix 
the center point of the cubical domain around the above set of 
control parameters. In the case of Lr, the domain of values is 
constrained by the minimum allowable frequency, which is 
determined by electrical noises associated with the microphone 
and the inverse relationship between the frequency and ampli-
tude of the acoustic pressure. So, we chose to keep the mini-
mum frequency corresponding to the first longitudinal mode at 
which we wish to operate the cell above 1000 Hz, which is a 
widely accepted lower cut-off. Considering this constraint, the 
‘0’ level of the control parameter Lr is selected as 80 mm. 
Since we limit the sample points to 15, the domain should be 
short enough so that the functional relationship, which would 
be developed based on the correlation between the control 
parameters and response at the sample points, is realistic.  

To minimize the domain, in this study, the corner points are 
kept at 60 mm and 100 mm. So, the axial points, correspond-
ing to the levels 1.682 and -1.682, are at 113.64 mm and 46.36 
mm respectively. In the case of Lb, the center point is at 30 
mm and the corner points are at 20 mm and 40 mm. This 
range of values are chosen based on the theoretical considera-
tion that the buffer length should be approximately a quarter 
of the wavelength corresponding to the first longitudinal mode. 
For Db, since the acoustic pressure is highly sensitive to it, a 
wider domain of values cannot be represented by our model, 
which is built on the data from 15 sample points. So, its center 
is fixed at 28 mm, with the corners at 26 mm and 30 mm. The 
range of values of Db considered here is between 4 to 5 times 
that of Dr, which would minimize the coupling of acoustic 
waves in the resonator and buffer cylinders, without making 
the buffer cylinders unnecessarily bulky. For a real life applica-
tion, this study can be extended to a wider domain of control 
parameters, which would in turns need the evaluation of re-
sponse at more number of sample points using numerical simu-
lations. However, since the objective of the present study is only 
to explore the feasibility of application of the RSM in sizing the 
cell for the optimal acoustic response, the miniature model to be 
discussed here would suffice for a demonstrative purpose. The 
acoustic pressures, measured as responses, are listed in Table 6 
according to the design matrix made using CCD. 

 
 
Fig. 9. Variations of the resonance frequency with the length of the 
buffer cylinders at different diameters of the buffer cylinders, Db = 14
mm, 21 mm and 28 mm. 
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By using the least square method, all the regression coeffi-
cients of the second order polynomial suggested in Eq. (14) 
were determined based on the data listed in Table 6. The re-
gression model obtained is as follows: 
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The coefficient of determination, R2, was 0.89 between the 

modelled and calculated acoustic pressure data. Since there is 
a nonlinear dependency of the response on the control pa-
rameters, which is clearly seen in Figs. 5 and 7, it is hard to 
obtain a higher coefficient of determination. Using the above 
equation, an RSM model was developed, which is valid within 
the cubical space of the chosen levels of the CCD. In this op-
timization problem, the objective is to maximize the acoustic 
pressure while maintaining a lower cut off frequency of 1000 
Hz for the first longitudinal mode and as mentioned in the 
Subsec. 3.1, the diameter of the resonator is already fixed at 6 
mm. 

The result obtained by the RSM model was confirmed by 
performing a simulation at the optimum setting. The optimal 
dimensions of the cell and the deviation in the values of 
acoustic pressure predicted by the model and from the simula-
tion are summarized in Table 7. The variation of acoustic 
pressure calculated by the optimization model on either side of 
the optimal value of Lr, while keeping the values of Lb and Db 

at the optimal setting, is shown in Fig. 10. Similar plots for Lb 

and Db are also shown in Figs. 11 and 12, respectively. All the 
above three plots confirm the peaking of acoustic pressure at 
the optimal settings. The deviation between the model and 
simulation at the optimal setting was found to be within the 
acceptable range. Hence, the optimal setting of dimensions 
found by the RSM model can be used for designing the photo-
acoustic cell with the best sensitivity for the problem consid-
ered in the present study. It also shows that the RSM model 
can be successfully implemented for the optimal dimensions 
of the H-type cell. 

 
4. Conclusion 

In this study, we calculated the photoacoustic response in a 
resonant photoacoustic cell using linearized forms of the con-
tinuity equation, Navier-stokes equation, energy equation and 
equation of state. The above method, which has already been 
reported in literature as an effective way of solving various 
acoustic problems, is also found to be useful enough to build a 
physically realistic metamodel for dimensional optimization 
of an H-type resonant photoacoustic cell. We discovered that 
the simultaneous excitation of resonance in both resonator and 
buffer cylinders results in a lower acoustic pressure at the 
position of microphone, which is unfavorable for spectro-
scopic applications. In order to avoid it, the length of the buff-
er cylinders should be selected in such a way that the reso-
nance frequency corresponding to any of the modes is not 
equal to the first longitudinal frequency of the resonator. The 
effects of the geometrical parameters on the resonance fre-

Table 6. Acoustic pressures at the position of microphone obtained 
from the numerical simulations at the sample points generated using 
CCD for the H-type cell. 
 

Trial number Lr / mm Lb / mm Db / mm Acoustic 
pressure / mPa 

1 80 30 28 6.986×10-1 

2 60 20 26 5.336×10-1 

3 100 20 26 5.532×10-1 

4 60 40 26 6.018×10-1 

5 100 40 26 5.988×10-1 

6 60 20 30 6.514×10-1 

7 100 20 30 6.986×10-1 

8 60 40 30 6.950×10-1 

9 100 40 30 6.870×10-1 

10 80 13.18 28 6.110×10-1 

11 80 46.82 28 6.534×10-1 

12 113.64 30 28 6.040×10-1 

13 46.36 30 28 6.290×10-1 

14 80 30 31.364 5.797×10-1 

15 80 30 24.636 4.335×10-1 

                                  

 

Table 7. Optimal dimensions of the H-type cell predicted by the RSM 
model and the comparison of acoustic pressure between the RSM 
model and numerical simulation at the optimal setting. 
 

Lr/ 
mm 

Lb / 
mm 

Db / 
mm 

Acoustic pressure 
predicted by the 

RSM model / mPa 

Acoustic pressure
from the simula-

tion / mPa 

Devia-
tion / % 

76.9 36.8 28.8 7.0517×10-1 7.1471×10-1 1.33 

    

 
 
Fig. 10. Variation of the acoustic pressure with the length of resonator 
cylinder on either side of the optimum length found from the RSM 
model. Here, the other parameters are kept at the optimal settings sug-
gested by the RSM model.  
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quency and quality factor for the H-type cell have been ana-
lyzed. This study also shows that the optimization of dimen-
sions of the H-type cell can be done by applying the response 
surface methodology. The optimization based on a metamodel 
would be beneficial in the design and analysis of resonant 
photoacoustic cells. The optimized model developed in the 
present study, however, does not take the window noise into 
consideration. An experimental investigation on the same is 
necessary to ensure the effectiveness of the optimized cell for 
practical applications. Apart from that, considering the nonlin-
ear relationship between the geometrical parameters and 
photoacoustic response, development of a more sophisticated 
surrogate model such as Kriging technique would be useful, 
which could be an interesting topic for the future research. 
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Nomenclature------------------------------------------------------------------------ 

a : Absorption coefficient of the medium 
Cp : Specific heat at constant pressure 
C : Speed of sound in the medium 
Db : Diameter of the buffer cylinder 
Dr : Diameter of the resonator 
FX : F ratio of a control parameter ‘X’ 
f : Pulsation frequency of the laser 
fj : Resonance frequency corresponding to mode ‘j’ 
f1,anal   : Resonance frequency corresponding to first longitudinal 

mode , obtained from the analytical expression 

H' : Heat addition by laser source 
I : Identity matrix 
I0 : Power of the laser 
i : Imaginary unit 
j : Mode of the resonance 
k : Thermal conductivity 
Lb : Length of the buffer cylinder 
Lr : Length of the resonator 
N : Number of experiments 
p : Pressure 
q : Distance of axial points from the center in CCD 
Qj : Quality factor corresponding to mode ‘j’ 
r : Radial coordinate of the H- type cell 
SST : Total sum of squares 
SSX     : Sum of squares corresponding to a particular parameter ‘X’ 
SSe : Sum of squares due to error 
t : Time 
T : Temperature 
u : Velocity 
yi : Response value for a trial 
Ve     : Variance of error 
VX  : Variance of a control parameter ‘X’ 
w : Radius of the laser beam 
Xh : Longitudinal axis of H-type cell 
Z : Number of corner points in CCD 
Δfj : Full width half maximum (FWHM) at mode ‘j’ 
α : Thermal expansion coefficient 
βT  : Isothermal compressibility 
βi, βij : Regression coefficients 
μ      : Dynamic viscosity 
μB : Bulk viscosity 
ρ : Density 

Tf   : Total degrees of freedom 

 
 
Fig. 11. Variation of the acoustic pressure with the length of buffer 
cylinder on either side of the optimum length found from the RSM 
model. Here, the other parameters are kept at the optimal settings sug-
gested by the RSM model. 

 

 
 
Fig. 12. Variation of the acoustic pressure with the diameter of the 
buffer cylinder on either side of the optimum diameter found from the 
RSM model. Here, the other parameters are kept at the optimal settings 
suggested by the RSM model. 
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Xf       : Degrees of freedom corresponding to parameter ‘X’ 
ω : Angular frequency of the laser 
0 : Equilibrium steady values 
'(prime) : Small fluctuation representing the acoustic part of vari-

ables 
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