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Abstract—In this paper, we derive upper bounds for the num-
ber of Device-to-Device (D2D)-capable out-of-coverage (OOC)
User Equipments (UEs) that can share the Physical Sidelink
Discovery Channel (PSDCH) while maintaining a minimum
probability of discovery message decoding. We maximize these
upper bounds with respect to the UEs’ transmission probability
threshold by exploiting the fact that the upper bound is nearly
linear with respect to the number of resources in the discovery
resource pool. The resulting simple approximate bound is accu-
rate over a large range of parameter values. We validate our
results using Monte Carlo simulations in MATLAB and the ns-3
simulation tool.

I. INTRODUCTION

Device-to-device (D2D) communications offer a means for
improving cellular network efficiency by reducing the load at
the base station due to intra-cell traffic. The Proximity Services
(ProSe) working group in the Third Generation Partnership
Project (3GPP) has defined standards for D2D communica-
tions for UEs that are within a base station’s coverage area
and also for out-of-coverage (OOC) UEs, i.e., those that are
outside any cellular coverage [1]. The latter case affects public
safety users who may be deployed to remote areas or who may
have to operate in regions where cellular service is offline due
to a natural or other causes.

Each User Equipment (UE) in a group of UEs must discover
the D2D applications hosted by other UEs in the group before
it can establish D2D sessions with them. OOC UEs implement
the discovery function by transmitting discovery messages
over the Physical Sidelink Discovery Channel (PSDCH). The
UEs randomly choose Physical Resource Block (PRB) pairs
from a periodically recurring discovery resource pool whose
dimensions are Nt , the number of subframe sets allocated
for a transmission, by Nf , the number of PRB pairs in the
frequency domain. There are Nr = Nf Nt PRB pairs, i.e.,
PSDCH resources, in the discovery resource pool. Because
they choose resources randomly, multiple UEs can select the
same resource, which causes message collisions that reduce
the PSDCH’s throughput and delay UE discovery. The ProSe
standard tries to fix this problem by incorporating a transmis-
sion probability threshold, θ, that UEs can use to throttle their
transmissions; a UE will transmit on the PSDCH only if an
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internally randomly generated number in the unit interval [0,1]
is less than θ [2, Clause 5.15.1.1]. The value of θ determines
how many UEs can participate in the D2D discovery process
while maintaining a given level of performance, i.e., at least
a minimum discovery message decoding probability.

Our previous work found the optimal value of θ that
maximizes the probability of a successful discovery message
transmission from one UE to another [3]. In this paper, we
extend this work by deriving an expression for the maximum
number of OOC UEs whose members’ probability of decoding
discovery messages is above a given minimum threshold.
In Section II, we obtain an expression for the group size,
Nu , as a function of other PSDCH parameters and use it
to derive the maximum group size that supports at least a
minimum discovery message decoding probability, Pmin. In
Section III, we maximize the group size upper bound with
respect to θ. Because direct methods are not tractable, we
obtain approximate closed-form expressions for the critical
value of θ, and use them to get the maximum group size upper
bound. In Section IV, we validate our model using simulations
and discuss the implications of the results, and in Section V,
we summarize our results.

II. THE MAXIMUM GROUP SIZE

Let Nu be the number of OOC UEs. We assume that every
UE can communicate with every other UE in its neighborhood,
and that the UEs are using Model A discovery, i.e., they
are continuously sending discovery announcement messages.
In each discovery period, each UE generates a discovery
message, selects a pool resource, and transmits its message
with probability θ. We randomly select two UEs from their
group and designate them as UE X and UE Y . From [3],
PY→X , the probability that UE X successfully decodes UE Y ’s
discovery message during a given period, is

PY→X = θ

(
1 − θ

Nt

) (
1 − θ

Nr

)Nu−2
. (1)

Solving Eq. (1) for Nu gives

Nu =

⌊
2 +

log
(
PY→X/θ

)
− log

(
1 − θ/Nt

)
log

(
1 − θ/Nr

) ⌋
, (2)

Since PY→X ≤ 1, θ ≤ 1, and both Nt and Nr are pos-
itive integers, it follows from Eq. (1) that PY→X < θ and
log

(
PY→X/θ

)
< 0.

Let Pmin be the minimum allowable value of PY→X . We are
interested in determining the largest number of UEs that the
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Fig. 1. Plots of N∗
u (θ; Nr , Nt ) versus Nt and Nr , for various values of θ

and Pmin.

discovery resource pool can support so that PY→X ≥ Pmin.
The derivative of the argument of the floor function in Eq. (2)
with respect to PY→X is

(
PY→X log(1 − θ/Nr )

)−1. Since
log(1 − θ/Nr ) < 0, the argument of the floor function is
monotonically decreasing with respect to PY→X . Therefore the
maximum value of Nu given PY→X ≥ Pmin is

N∗
u(θ; Nr,Nt ) =

⌊
2 +

log
(
Pmin/θ

)
− log

(
1 − θ/Nt

)
log

(
1 − θ/Nr

) ⌋
. (3)

Eq. (3) does not hold if Nt > Nr , since it is not possible
for the number of subframes spanned by the resource pool to
exceed the number of pool resources. Also, if N∗

u(θ; Nr,Nt ) <
0, then PY→X < Pmin for all values of Nu . This occurs when

Nt <
θ2

θ − Pmin(1 − θ/Nr )2
≤ θ2

θ − Pmin
, (4)

where the higher upper bound is the limit of the lower upper
bound as Nr → ∞. Eq. (4) indicates that Pmin > PY→X for
all values of Nu when Nt is sufficiently small, because of the
half duplex effect.

Fig. 1 shows the effect of variations in θ and Pmin
on N∗

u(θ; Nr,Nt ). In every subfigure in Fig. 1, we set
N∗
u(θ; Nr,Nt ) = 0 when Nt > Nr , because the number of

resources in the pool cannot be less than the number of
subframes spanned by the pool. Also, when Eq. (4) holds,
we set N∗

u(θ; Nr,Nt ) = 0, which produces the flat regions on
the left side of each plot in Fig. 1a and Fig. 1b. Also, setting
Pmin close to θ reduces N∗

u(θ; Nr,Nt ); for example, Fig. 1b
shows that when Nr = 100 resources, at most two UEs can
achieve PY→X ≥ 0.99 when θ = 1.

Fig. 1 shows that the slope of the N∗
u(θ; Nr,Nt ) surface is

nearly linear in the Nr direction when Nr and Nt are large.

The first and second order partial derivatives of N∗
u(θ; Nr,Nt )

with respect to Nr are

∂N∗
u(θ; Nr,Nt )
∂Nr

= −
θ
(
log(Pmin/θ) − log(1 − θ/Nt )

)
Nr (Nr − θ) log2(1 − θ/Nr )

(5)

and

∂2N∗
u(θ; Nr,Nt )
∂N2

r

=
(
log(Pmin/θ) − log(1 − θ/Nt )

)
× 2θ2 + (2θNr − θ2) log(1 − θ/Nr )

N2
r (Nr − θ)2 log3(1 − θ/Nr )

. (6)

From Eq. (5), when Nr is large the derivative approaches

lim
Nr→∞

∂N∗
u(θ; Nr,Nt )
∂Nr

=
log(1 − θ/Nt ) − log(Pmin/θ)

θ
. (7)

As Nt increases, the slope in Eq. (7) approaches a constant
value: limNr→∞,Nt→∞ ∂N∗

u(θ; Nr,Nt )/∂Nr ≈ − log(Pmin/θ)/θ.
We confirm this by letting Nr → ∞ in Eq. (6), which gives
limNr→∞ ∂2N∗

u(θ; Nr,Nt )/(∂N2
r ) = 0.

Thus, for any value of Nt , we can approximate N∗
u(θ; Nr,Nt )

as a linear function of Nr . We use a Taylor series expansion
about the point Nr = Nt . If we retain only the constant and
linear terms, we get

N∗
u(θ; Nr,Nt ) ≈

(
1 +

log(Pmin/θ)
log(1 − θ/Nt )

)
−
θ
(
log(Pmin/θ) − log(1 − θ/Nt )

)
Nt (Nt − θ) log2(1 − θ/Nt )

(Nr − Nt ).

(8)

We want to find the maximum group size, given a pool of
Nr resources, over the range of values for Nt . We define this
upper bound as follows:

Nmax
u (θ; Nr ) = max

Nt

N∗
u(θ; Nr,Nt ). (9)

We can use Eq. (3) to derive Nmax
u (θ; Nr ). The derivative of

the argument of the floor function in Eq. (3) with respect to
Nt is −θ/[Nt (Nt − θ) log(1 − θ/Nr )]. Since log(1 − θ/Nr ) < 0
and θ < Nt ≤ Nr , the derivative is positive over the interval
of interest, so that N∗

u(θ; Nr,Nt ) is a non-decreasing function
of Nt . Setting Nt = Nr gives

Nmax
u (θ; Nr ) =

⌊
1 +

log
(
Pmin/θ

)
log

(
1 − θ/Nr

) ⌋ ≥ N∗
u(θ; Nr,Nt ). (10)

III. MAXIMUM GROUP SIZE BOUNDS WITH RESPECT TO θ

In this section, we maximize N∗
u in Eq. (3) and Nmax

u in
Eq. (10) with respect to θ. We assume that all Nu UEs use the
same value for θ. We let θ∗ be the value of θ that maximizes
N∗
u(θ; Nr,Nt ), and we let θmax be the value of θ that maximizes

Nmax
u (θ; Nr ).
We can simplify the problem by showing that θ∗ is nearly

constant with respect to Nr and Nt , and by showing that θ∗ ≈
θmax unless Nt is small. Consider a set of pool dimensions
where Nr ≤ 100 resources and Nt ≤ Nr subframes. For each
ordered pair (Nr,Nt ), we use numerical methods to find θ∗,
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Fig. 2. Plots of θ∗, which is the value of θ that minimizes Eq. (3), versus
Nt and Nr , for various values of Pmin.

and we use the following values of Pmin: 0.10, 0.25, 0.35, and
0.50; the resulting plots of θ∗ are shown in Fig. 2.

Fig. 2 shows that θ∗ is insensitive to Nr and Nt , except
when Nt is small (i.e., Nt < 10 subframes). Fig. 2a shows
that when Pmin is small, θ∗ is nearly constant over all values
of Nr and Nt , and Fig. 2d shows that θ∗ varies with respect
to Nt only when Nt = 1 subframe. Fig. 2b and Fig. 2c show
more variation of θ∗ with respect to Nt , but this occurs when
Nt < 10 subframes.

The insensitivity of θ∗ to Nr and Nt , and the fact that θ∗ =
θmax when Nr = Nt , implies that θ∗ ≈ θmax unless Nt is very
small. Additional analysis shows that if Pmin = 1/e, θ∗ = 1
over almost the entire set of values for Nt and Nr . Thus, we
can obtain a good approximation for θ∗ by finding θmax.

As we will show, Nmax
u (θ; Nr ) is linear with respect to the

pool size, Nr . We expand Nmax
u (θ; Nr ) in a Taylor series about

Nr = a:

Nmax
u (θ; Nr ) =

⌊(
1 + log(Pmin/θ)

log(1−θ/a))

)
− θ log(Pmin/θ)

a(a−θ) log2(1−θ/a)) (Nr − a)

+ 1
2

log(Pmin/θ)[2θ2−(θ2−2aθ) log(1−θ/a)]
a2(a−θ)2 log3(1−θ/a) (Nr − a)2

+ O
(
(Nr − a)3

) ⌋
. (11)

Derivatives of order two and higher in Eq. (11) vanish as a
becomes very large, so the limit as a → ∞ is

lim
a→∞

Nmax
u (θ; Nr ) =

⌊
lim
a→∞

(
1 + [θ+(a−θ) log(1−θ/a)] log(Pmin/θ)

(a−θ) log2(1−θ/a)

)
− Nr lim

a→∞

θ log(Pmin/θ)
a(a−θ) log2(1−θ/a)

⌋
=

⌊
1 +

(
1
2 − Nr

θ

)
log(Pmin/θ)

⌋
. (12)

To find our approximate value for θmax, we take the derivative
of the argument of the floor function with respect to θ:

d
dθ

[
1 +

(
1
2 − Nr

θ

)
log( Pmin

θ )
]
=

2Nr (1 + log(Pmin/θ)) − θ
2θ2

.

(13)
Setting the numerator in Eq. (13) equal to zero and rearranging
the resulting expression gives:

ePmin

2Nr
=
θmax

2Nr
eθmax/(2Nr ). (14)

To solve Eq. (14) for θmax, we use Lambert’s W function,
W(z), which is defined ∀z ∈ C as z = W(z) exp

(
W(z)

)
[4,

Eq. (1.5)]. We match Eq. (14) to the W function’s definition
by letting z = ePmin/(2Nr ) and W(z) = θmax/(2Nr ), giving

θmax = 2Nr W(z) = 2Nr W
(
ePmin/(2Nr )

)
. (15)

We also obtain a simple approximate value for θmax as
follows. The Taylor series expansion of the W function about
the point x = 0 has the form [4, Eq. (3.1)]

W(x) =
∞∑
n=1

(−n)n−1

n!
xn, (16)

and from this and Eq. (15), we get the series expansion for
θmax:

θmax = ePmin −
(ePmin)2

2Nr
+ O

(
(Pmin)3

N2
r

)
. (17)

Since Pmin > 0 and W(0) = 0, letting Nr → ∞ gives

lim
Nr→∞

θmax = ePmin exp
(
−W(0)

)
= ePmin, (18)

Thus we have the following approximation for θmax:

θmax ≈
{

ePmin, 0 < Pmin ≤ 1/e
1, 1/e < Pmin ≤ 1 (19)

Using Eq. (19) with Eq. (10), we get the following approx-
imate expression for the maximum group size:

Nmax
u (θ; Nr ) ≈



⌊
1 − 1

log
(
1− ePmin

Nr

) ⌋ , 0 < Pmin ≤ 1/e⌊
1 + log(Pmin)

log
(
1− 1

Nr

) ⌋ , 1/e < Pmin ≤ 1

(20)
If we expand the two terms in Eq. (20) as a pair of Taylor
series about Nr = a and then let a → ∞, we get

1 − 1

log
(
1 − ePmin

Nr

) = Nr

ePmin
+ 1

2 − ePmin
12Nr

− e2P2
min

24N2
r
+ O

((
1
Nr

)3
)

(21a)

1 +
log(Pmin)

log
(
1 − 1

Nr

) = −Nr log(Pmin) +
(
1 + log(Pmin)

2

)
+

log(Pmin)
12Nr

+
log(Pmin)

24N2
r
+ O

((
1
Nr

)3
)
.

(21b)



If Nr is large, we can use Eq. (21) to get the following
approximate expression for Nmax

u (θ; Nr ):

Nmax
u (θ; Nr ) ≈


⌊ 1

2 + Nr/(ePmin)
⌋
, 0 < Pmin ≤ 1/e⌊

1 −
(
Nr − 1

2

)
log(Pmin)

⌋
, 1/e < Pmin ≤ 1

(22)
The approximations are very close to the actual values.

In Fig. 3 we plot the approximation error for θmax and
Nmax
u (θ; Nr ) versus Nr . First, in Fig. 3a, we plot the absolute

error between the exact value of θmax and its approximate
value from Eq. (19). The error decreases as Nr increases and
Pmin decreases. By increasing Pmin, the error increases to an
asymptotic value associated with Pmin = 1/e, for any Nr . Be-
yond Pmin = 1/e, θmax = 1, and the error remains at the level
associated with Pmin = 1/e. The error is significant for high
values of Pmin and small pool sizes; for example, it is greater
than 0.1 for Nr < 5 resources when Pmin ≥ 1/e. However,
discovery resource pools that are so small do not seem likely
to be implemented in practical systems. For Nr > 50 resources,
the greatest error in the value of θmax is less than 0.01, and
the error is less than 0.001 for Nr > 500 resources.

We plot the absolute error in Nmax
u (θ; Nr ) versus Nr in

Fig. 3b, comparing the exact value from Eq. (10) with the
approximation from Eq. (22). We use a different set of values
for Pmin to show the effect when Pmin > 1/e. In this case,
the error is less than 1/2 over the full range of values of Nr .
Thus, the approximation in Eq. (22) is accurate enough that it
can be used in all cases.

IV. VALIDATION AND NUMERICAL RESULTS

We validated our results from Section II and Section III
by performing Monte Carlo simulations of discovery pool
resource selection in MATLAB, and we compared the resulting
maximum group size with what was predicted by Eqs. (3)
and (10). We also examined the impact of the discovery pool
dimensions on the group size upper bound by performing
simulations in ns-3 of a group of OOC UEs exchanging
discovery messages over the PSDCH, in which we obtained
the maximum group size N∗

u(θ; Nr,Nt ) versus Pmin, using the
following four values for θ: 1/4, 1/2, 3/4, and 1.

A. Monte Carlo Simulations

We simulated the discovery resource selection process for a
discovery pool size of Nr = 40 resources, using the parameters
shown in Table I. As the extent of the resource pool in the time
domain decreases, the half-duplex effect has a greater impact
on the ability of UEs to decode discovery messages. This
will reduce the maximum OOC group size that can achieve
PY→X ≥ Pmin.

For each set of pool parameters, we used the following three
values for Pmin: 0.2, 0.3, and 0.4. We used Eq. (19) to generate
the following respective values of θ: 0.5437, 0.8155, and 1.
We assigned the generated value of θ to each UE in the OOC
group, and we computed N∗

u(θ; Nr,Nt ) and Nmax
u (θ; Nr ), which

are listed in Table I.
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TABLE I
MONTE CARLO SIMULATION PARAMETERS

N f Nt Pmin θ N∗
u Nmax

u

0.2 0.5437 74 74
1 40 0.3 0.8155 49 49

0.4 1.0000 37 37
0.2 0.5437 70 74

4 10 0.3 0.8155 46 49
0.4 1.0000 34 37
0.2 0.5437 64 74

10 4 0.3 0.8155 39 49
0.4 1.0000 26 37

For each set of pool parameters and value of Pmin, we
simulated Nu UEs, where Nu varied from N∗

u − 2 to Nmax
u + 2,

because we are interested in examining the behavior of PY→X

in the vicinity of the theoretical upper bounds on Nu . For
each value of Nu we performed Nruns = 100 runs, with
Ntrials = 1000 trials per run. For each trial, we designated a



random UE as UE0, the transmitter of interest, and we chose a
second random UE to be the receiver. Each UE independently
generated a random transmission decision variable, p1. If
p1 ≤ θ, the UE transmitted; otherwise, it did not. UEs that
decided to transmit discovery messages chose one of the Nr

resources in the pool with uniform probability. Each UE’s
resource choice was independent of the choices of all other
UEs. UEs kept track of which subframe set they were using
to send their discovery messages. The trial was a success if
UE0 decided to transmit, no other UE chose UE0’s resource,
and the receiver did not transmit in the same subframe set as
UE0. Any other outcome was a failure.

The estimated value of PY→X for each run is the ratio of the
number of successful trials to the number of trials in the run.
The output of each simulation was a set of Nruns estimates for
PY→X : {P̂Y→X (n)}Nruns

n=1 . The estimate of PY→X is

P̂Y→X =
1

Nruns

Nruns∑
n=1

P̂Y→X (n) (23)

The standard deviation of the set of estimates of PY→X is:

σ̂P̂Y→X
=

√√√
1

Nruns − 1

Nruns∑
n=1

(
P̂Y→X (n) − P̂Y→X

)2
(24)

Using Eqs. (23) and (24), we plot the 95 % confidence interval
associated with the simulation result, whose limits are

P̂Y→X ± 1.96 σ̂P̂Y→X
/
√

Nruns. (25)

Fig. 4 shows the simulation results that we obtained using
the parameters listed in Table I. In each subfigure, we plot
PY→X versus Nu for a given set of pool parameters, with
different markers for each of the three values of Pmin that we
used. We show the theoretical values of N∗

u , listed in Table I,
in each subfigure with additional ticks on the Nu-axis. In each
subfigure, PY→X decreases with respect to Nu , so that N∗

u is the
largest value of Nu such that PY→X ≥ Pmin, which validates
the model. The slope of PY→X decreases as Pmin decreases, so
that PY→X becomes less sensitive to Nu . Note that in Fig. 4a,
N∗
u = Nmax

u . Also, the sensitivity of N∗
u to Pmin increases as

Pmin becomes small.
Figs. 4b and 4c show the effect of modifying the discovery

resource pool parameters while keeping Nr constant. For a
pool with Nf = 4 PRB pairs and Nt = 10 subframe sets, N∗

u is
below Nmax

u by 5.71 %, 6.52 %, and 8.82 % for Pmin values
of 0.2, 0.3, and 0.4, respectively. The effect is greater when
Nf = 10 PRBs and Nt = 4 subframe sets, where N∗

u is below
Nmax
u by 15.63 %, 25.64 %, and 42.31 % for Pmin values of

0.2, 0.3, and 0.4, respectively.

B. Simulations using ns-3

Our ns-3 simulations examine the impact of the pool pa-
rameters on the group size upper bound. We examined four
values of θ: 0.25, 0.50, 0.75, and 1.00. For each value of
θ, we created groups of UEs whose sizes were multiples of
15, up to a maximum of 150 UEs, and we examined groups
consisting of 2 UEs. All UEs used the same value of θ. For

each combination of group size and θ, we considered the same
three discovery resource pool configurations that we examined
in Section IV-A, each of which has Nr = 40 resources.

For each set of parameters, we conducted 10 runs, with
10 trials per run. We obtained estimates of PY→X for each
trial, and obtained estimates of the mean and standard devi-
ation using Eqs. (23) and (24), and used Eq. (25) to obtain
95 % confidence intervals. Fig. 5 shows the results; we use
connecting lines to make the graphs legible and to illustrate
trends in the data.

We compared our results to the theoretical model and found
excellent agreement; we do not show the theoretical results in
Fig. 5 for the sake of clarity in the subfigures. The figures
collectively show that the group size upper bounds are most
sensitive to Pmin when θ is large, since increasing each UE’s
transmission rate increases the offered load, which increases
the collision rate. Also, the effect of the pool parameters on
the upper bound is more pronounced when Pmin is small and
when θ is large. The plots show that if we want Pmin to be
close to θ (e.g., within 90 %), Nu must be small. For example,
when θ = 0.25, we can satisfy Pmin ≈ 0.9 θ with a group that
comprises at most about 15 UEs. Larger upper bounds for the
group size are achievable only with a larger resource pool,
preferably one where Nt > Nf .

V. SUMMARY

In this paper, we derived an upper bound for the size of a
group of OOC UEs whose members’ probability of decoding
discovery messages is at least Pmin. We showed that the
value of θ that maximizes the group size upper bound is
insensitive to the discovery pool dimensions. By using a linear
approximation for the upper bound, we developed a closed-
form expression for the optimal value of θ. We then showed
that the optimal value of θ is proportional to Pmin, which yields
a simple expression for the maximum group size. We validated
our results using both Monte Carlo simulations in MATLAB
and simulations of the PSDCH used by OOC UEs in the ns-3
network simulation tool.
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(a) N f = 1 PRB and Nt = 40 subframe sets

(b) N f = 4 PRBs and Nt = 10 subframe sets

(c) N f = 10 PRBs and Nt = 4 subframe sets

Fig. 4. Monte Carlo simulation results showing estimates of PY→X versus
OOC UE group size Nu , for various pool size parameters and values of Pmin,
with 95 % confidence intervals shown.

(a) θ = 0.25

(b) θ = 0.50

(c) θ = 0.75

(d) θ = 1.00

Fig. 5. Simulation results from ns-3 showing estimates of Nu ∗ (θ; Nr , Nt )
versus Pmin, for various values of θ, with 95 % confidence intervals shown.


