
Nanoscale

PAPER

Cite this: Nanoscale, 2017, 9, 7922

Received 13th February 2017,
Accepted 25th May 2017

DOI: 10.1039/c7nr01087g

rsc.li/nanoscale

Interacting nanoscale magnetic superatom cluster
arrays in molybdenum oxide bronzes
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Tiglet Besara, e Jifeng Sun,f David J. Singh,f Theo Siegrist,e,g David G. Seilera and
Curt A. Richtera

In this study, we examine several reduced ternary molybdates in the family of yellow rare earth molyb-

denum bronzes produced by electrochemical synthesis with composition LnMo16O44. These compounds

contain an array of electrically isolated but magnetically interacting multi-atom clusters with composition

Mo8O36. These arrayed superatom clusters support a single hole shared among the eight molybdenum

atoms in the unit, corresponding to a net spin moment of 1μB, and exhibit magnetic exchange between

the units via the MoO4 tetrahedra (containing Mo6+ ions) and the LnO8 cubes (containing Ln3+ ions). The

findings presented here expand on the physics of the unusual collective properties of multi-atom clusters

and extend the discussion of such assemblages to the rich structural chemistry of molybdenum bronzes.

Introduction

The reduced ternary transition metal oxides, or bronzes, are a
class of materials with a vast variety of structures and chem-
istries.1 These materials systems, which include reduced
ternary tungsten and molybdenum oxides, have been shown to
display remarkable physical phenomena such as superconduc-
tivity,2,3 charge density waves,4–11 and electronic properties
associated with low dimensionality.12–15 These electronic fea-
tures arise from the combination of hybridization of the Mo
4d states with O p-orbitals and ordered O vacancies that are a
function of the structural chemistry of the bronze, leading to a
combination of orientation-dependent itinerancy and reduced
dimensionality. Here, we discuss such a system that contains a
periodic array of Mo8O36 superatoms—multi-atom clusters,
that behave electronically similarly to single atoms—which are
electrically isolated and separated from each other by nano-
meter spacings. Such superatom cluster systems are the
subject of increasing research interest as a materials platform

to study how macroscopic matter can mimic atomic
behavior16–19 with intercluster interactions analogous to inter-
atomic interactions.20,21

This study describes a system of nanoscale superatom clus-
ters arrayed in a fashion analogous to individual atoms in a
crystal lattice, building upon such studies on multi-atom
cluster magnet systems in transition metal cluster compounds,
such as GaT4S8 (where T is a transition metal like V or Mo)22,23

and LiZn2Mo3O8.
24,25 Unlike the former of these systems, the

system studied here does not undergo a temperature-depen-
dent structural phase transition,26 but rather the Mo8O36 clus-
ters are arrayed in rhombohedral lattice at all temperatures
with a small relative volume expansion coefficient of the order
of approximately 1.1 × 10−5 K−1.27 Furthermore, the magnetic
clusters in our system do not exist in a frustrated geometry,
such as those in LiZn2Mo3O8. The system studied here displays
antiferromagnetic magnetic ordering arising from the
exchange between clusters. The clusters themselves are com-
posed of molybdenum and oxygen atoms that, similar to the
Mo4S4 cluster units in GaMo4S8 and the Mo3O11 cluster units
in LiZn2Mo3O8, support a net magnetic moment of 1μB, and
the inter-cluster interaction is governed by the collective clus-
ters properties that exhibit physical properties beyond those
available from the constituting atoms alone.

To improve our understanding of these unique materials
with ordered arrays of nanosized magnetic superatom clusters,
we measured the temperature and field dependence of the
magnetic susceptibility and the resistance of crystal samples of
LaMo16O44, YMo16O44, NdMo16O44 and GdMo16O44. The
results reported here show magnetic properties corresponding
to predicted magnetic order in these materials,27 providing
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insight into how the remarkable structural chemistry of super-
atom-based materials contributes to intriguing physical
phenomena. The emergent properties of this system reveal
that it is an exemplary case of a material in which control of
the coupling and exchange between superatom clusters can
produce new types of magnetic and conductive materials.

Results and discussion

The yellow molybdenum bronzes, reduced rare earth molyb-
denum oxides of composition LnMo16O44, where Ln is a lantha-
nide ion such as La, Y, Gd or Nd, have a structure formed from
corner shared MoO4 tetrahedra and MoO6 octahedra, with the
lanthanide ions situated in a cubic cavity formed by eight MoO4

tetrahedra (Fig. 1a). Key structural features of these compounds
are electrically isolated zero-dimensional Mo8O36 clusters that
are a subunit of the ReO3-type structure,28 formed from eight
MoO6 octahedra corner-sharing a total of 12 oxygen atoms
(Fig. 1b). These Mo8O36 clusters are linked via MoO4 tetrahedra
and LnO8 cubes to adjacent Mo8O36 clusters in these phases.
The ReO3-type cubic Mo8O36 clusters are arranged as shown in

Fig. 1c, where the Mo ions at the centers of the MoO6 octahedra
are shown as blue dots and the Ln ions are shown as green
dots. The Mo8O36 clusters are separated by a distance of 10.8 Å
(the value of the rhombohedral unit cell a-lattice constant) and
11.1 Å between the center of the nearest neighbor and next
nearest neighbor Mo8O36 clusters, respectively (changes in these
distances for different LnMo16O44 compositions due to different
Ln radii are less than 0.02 Å), corresponding to a distance of
about 5.9 Å between nearest Mo atoms in different Mo8O36 clus-
ters. Nearest neighbor Mo atoms within a cluster are separated
by distances of about 3.7 Å for all compositions. Details of the
crystal structures were given earlier (ref. 27) and the crystallo-
graphic information files (CIFs) may be obtained from the
Fachinformationszentrum Karlsruhe29 on quoting the depo-
sition numbers CSD 428592–428597. Importantly, within the
clusters the Mo ions have a octahedral coordination with three
short Mo–O bonds (≈1.85 Å) with the oxygen along the cube
edges connecting to the next Mo in the cluster and three long
bonds (≈2.05 Å). The short bonds (cf. perovskite BaMoO3 with a
bond length of 2.02 Å) may be expected to lead to enhanced
crystal field splitting, which is in fact the case based on our
density functional calculations.

The stoichiometry of the compound LnMo16O44 indicates
mixed valence Mo: all the molybdenum atoms located in the
MoO4 tetrahedra are clearly hexavalent (Mo6+), whereas the
molybdenum atoms located in the Mo8O36 clusters have an
average valence of +4.625, given by bond valence sums calcu-
lations, suggesting octahedral sites contain both Mo4+ and
Mo5+.27 A magnetic moment is therefore expected with the
spins located within the Mo8O36 clusters. Specifically, a single
hole is distributed among the eight Mo atoms in the Mo8O36

cluster, giving moments of approximately 1/8μB per octahedral
Mo atom. The crystal structure has two symmetry inequivalent
octahedral Mo atoms, denoted Mo1 contributing two atoms to
each cube and Mo3 contributed the remaining six. We did
density functional calculations using the experimental struc-
ture of the CeMo16O44 compound from ref. 29, but with Ce
substituted by La to simulate the LaMo16O44 studied here and
to avoid complications from the Ce moments. These were
done with the linearized augmented planewave method
similar to our previously reported calculations.27 Fig. 2 shows
the electronic density of states (DOS) and a schematic for the
formation of the active cluster orbitals. We find that the
moments are practically equal on the Mo1 and Mo3 sites. The
moments arise from a single hole in set of six bands that com-
prise the lowest Mo d orbitals. These bands give rise to a
narrow 0.5 eV wide peak in the electronic density of states.
This peak is well separated by gaps from both the lower lying
O p derived bands and higher lying Mo d bands. The peak can
be understood as follows using a Cartesian coordinate system
where the cube edges form the axes. In this case, octahedral
crystal field splits the five d-orbitals into three lower energy t2g
orbitals and two higher energy eg orbitals. The t2g orbitals can
be labeled xy, xz and yz, and are actually π antibonding combi-
nations of the metal d and O p states. In any case, this gives 24
orbitals from the eight Mo on the cube corners. The orbitals

Fig. 1 a, Structure of LnMo16O44. The green cube is the Ln coordination
polyhedron that is corner connected to yellow MoO4 tetrahedra; linked
to the blue MoO6 octahedra. Eight MoO6 octahedra form a ReO3-type
Mo8O36 cluster. b, Detailed view of the Mo8O36 cluster with the orien-
tation rotated to more easily see the cubic arrangement of the Mo
atoms at the centers of the blue MoO6 octahedra; the oxygen atoms at
the corners of the polyhedra are not shown. c, The arrangement of the
cubes formed by the eight Mo atoms, where the Mo–Mo contacts are
shown in blue and Ln ions shown in green; oxygen atoms and MoO4

tetrahedra are omitted to show the periodic cluster array. Intracluster
and intercluster nearest-neighbor Mo–Mo distances (3.7 Å and 5.9 Å,
respectively) and rhombohedral unit cell a-lattice constant, 10.8, which
represents both Ln–Ln distance and the distance between the centers
of nearest-neighbor Mo8O36 clusters, are shown.
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from atoms sharing an edge of the cube hybridize, and this
hybridization is important because of the Mo–O bond lengths.
This hybridization occurs when orbitals have lobes directed
towards each-other, with a common O p π orbital, e.g., xy-py-xy,
but not for example xy-py-xz. The result is that each cube face
has one maximally bonded orbital, which are the symmetric
combinations with 90 degree rotations along an edge as
depicted in Fig. 2b, where we consider the z face. This face has
a bonded orbital consisting of xy orbitals on the Mo at the four
corners, anti-bonding hybridized with O px and py along the
edges running along y and x, respectively. Orbitals of this type
on a face are orthogonal to the orbitals along neighboring
faces because of the orthogonality of the xy, xz and yz orbitals.
The six bonding orbitals, corresponding to the six faces of a
cube are the origin of the six bands making up the active DOS
peak, occupied by 11 electrons, thus providing a spin moment
of 1μB per cluster.

As temperature decreases, exchange interactions mediated
by delocalized carriers within the metallic Mo8O36 cluster even-
tually lead to ferromagnetic ordering of the spins on the eight
Mo atoms in the Mo8O36 cluster that gives the cluster a net 1μB
moment below a cross-over temperature, which does not
correspond to a true phase transition, but is rather something
analogous to the transition at the Burns temperature in relaxor
ferroelectrics. Once the spins of individual Mo atoms in an
individual cluster are aligned, a magnetic exchange interaction
is predicted to occur between Mo8O36 clusters, with magnetic
ordering below a certain temperature, TN. In addition to intra-
cluster ferromagnetic order within the Mo8O36 cluster and
inter-cluster antiferromagnetic order below TN, additional
paramagnetic behavior is expected to occur for magnetic
lanthanides, such as Nd and Gd, at all temperatures according
to the Curie–Weiss law.

Magnetometry

Both LaMo16O44 and NdMo16O44 samples were synthesized by
electrocrystallization whereas YMo16O44 and GdMo16O44

samples were synthesized by direct reaction per the procedures
described in the methods section. To test that the magnetic
ordering in this class of reduced molybdate bronzes arises
from Mo8O36–Mo8O36 intercluster interactions, a collection of
very small single crystals of LaMo16O44 (YMo16O44) were placed
together in a non-magnetic glycerin capsule and mounted in a
vibrating sample magnetometer (VSM), where the total mag-
netic moment of the sample as a function of temperature was
measured. LaMo16O44 and YMo16O44 were selected for this
measurement because both La and Y are non-magnetic ions;
therefore, any observations of magnetic ordering in LaMo16O44

(YMo16O44) arise from inter-cluster interactions. The magnetic
susceptibility, χ, of LaMo16O44 and YMo16O44 measured at 0.1 T
is shown in Fig. 3a. No significant differences between zero-
field-cooled and field-cooled measurements were observed.

Both LaMo16O44 and YMo16O44 show increasing magnetic
susceptibility as the temperature is decreased from room
temperature, with a transition at approximately 6.5 K for
LaMo16O44 and 3.1 K for YMo16O44, that is consistent with an
antiferromagnetic phase transition, indicative of interactions
between Mo8O36 clusters (Fig. 3a). The broadening of the tran-
sition in both LnMo16O44 samples is likely due to the assembly
of numerous small crystals instead of an oriented large single
crystal, as the axial orientations of the individual crystals com-
prising the sample will have different orientations relative to
the magnetic field. The inverse susceptibility versus tempera-
ture, shown in Fig. 3b, reveals a linear relationship above the
6.5 K and 3.1 K transition temperatures for LaMo16O44 and
YMo16O44, respectively, signifying paramagnetic behavior in
accordance with the Curie–Weiss law. The linear fits to these
plots have small non-zero, negative T-intercepts indicative of
antiferromagnetic interactions in both materials. Fits of the
susceptibility data above the transition temperatures to χ =
C/(T − θ), parameter values for which are given in Table 1, yield
Weiss constants of −5.43 K and −3.61 K for LaMo16O44 and
YMo16O44, and are in good agreement with the antiferro-

Fig. 2 a, Calculated electronic density of states without spin polariz-
ation with the bonding cluster state labelled “F” and the projections
onto the d-orbitals of the octahedral and tetrahedral Mo atoms, as
defined by an LAPW sphere radius 1.8 bohr. b, Schematic showing the
formation of the bonding orbital on one face of the cube. Note that
there are six faces leading to the six bands making up peak “F”.

Fig. 3 a, Magnetic susceptibility of LaMo16O44 and YMo16O44,
measured at 0.1 T, with temperature shown on a log scale. The magnetic
phase transition due to Mo–Mo interactions is visible at 6.5 K for
LaMo16O44 and a 3.1 K for YMo16O44 and is labeled. b, The inverse sus-
ceptibility versus temperature of LaMo16O44 and YMo16O44, showing the
paramagnetic behavior down to the transition temperature. The linear fit
to the Curie–Weiss law is indicated, together with the Weiss constant, θ.
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magnetic transition temperatures, TN, of 6.5 K and 3.1 K
labeled in Fig. 3a.

Magnetic susceptibility measurements on NdMo16O44 and
GdMo16O44 shown in Fig. 4a are primarily dominated by the
paramagnetic signal of the magnetic Ln ions Nd and Gd (local
magnetic moments of 3.6μB and 7.94μB, respectively), as
shown in the inverse susceptibility versus temperature plots
(Fig. 4b and c); the non-zero, negative T-intercepts indicate
antiferromagnetic interactions. Fits of the susceptibility data
to the Curie–Weiss law χ = C/(T − θ), parameter values for
which are given in Table 1, yield negative Weiss constants of
−11.65 ± 0.08 K and −1.7 ± 0.01 K for NdMo16O44 and
GdMo16O44, respectively. The localized magnetic moments of
Nd and Gd are responsible for the order of magnitude
increases in the Curie constant for NdMo16O44 and GdMo16O44

compared to LaMo16O44 and YMo16O44. However, the antiferro-
magnetic order arising from Mo8O36–Mo8O36 interactions, as
with LaMo16O44 and YMo16O44 is still present in NdMo16O44

and GdMo16O4, but is only a small contribution relative to the
overall susceptibility that is due to the magnetic ions Nd and
Gd.

The effective magnetic moments above TN were calculated
from the Curie constants for each sample. LnMo16O44 samples
with nonmagnetic lanthanides, LaMo16O44 and YMo16O44,
were calculated to support effective magnetic moments, µeff, of
1.36µB and 1.22µB, respectively. These effective magnetic

moments correspond with g-factor values of 1.57 and 1.40,
respectively, according to μeff = g(S(S + 1))1/2, where S is the
spin of the cluster; here, S = 1/2. Differences in these values
are suspected to primarily arise from small uncertainties in
the measured sample mass. The reduction in the g-factor value
relative to the ideal g-factor value, ge ≈ 2, arises from a partial
unquenched orbital spin orbit coupling contribution to the
total angular moment of the d1 and d2 electrons in the MoO6

octahedra.30 No temperature-dependent crossover is expected
to occur for these octahedral complexes with few-electron
occupation of the d-orbitals, nor is such an effect observed in
the magnetometry data.

The net effective magnetic moments above TN calculated
from the Curie constants for NdMo16O44 and GdMo16O4 are
given in Table 1. Assuming the Ln3+ moments are uncoupled
to the Mo moments, we calculate the magnetic moments on
the Mo8O36 and Ln sublattices, where the total Curie constant,
C, is the sum of the contributions from the two sublattices,
C = CMo8O36

+ CLn, and, for the purpose of this study, CMo8O36
is

assumed to be the value measured for LaMo16O44. The calcu-
lated effective magnetic moments are 3.5µB on the Nd3+ ions
in NdMo16O44—in good agreement with the expected 3.5µB the
I9/2 state of the Nd3+ ion. The value of 10.9µB for the Gd3+ ions
in GdMo16O44, while somewhat high relative to the 7.94µB
expected for the S7/2 state of the Gd3+ ion, is close to what is
expected, and the difference can be ascribed to uncertainties
in the sample mass that account for the difference.

The magnetic susceptibility in GdMo16O44 is dominated by
paramagnetism associated with Gd3+, the effective magnetic
moments on which are substantially higher than the Mo8O36

moments. The hyperbolic shape of the inverse susceptibility
versus temperature plot for NdMo16O44, however, lends itself to
a fit to a the two-sublattice mean field model,31 the inverse
susceptibility equation for which can be written as
1
χ
¼ T � θ

C
� σ

T � θ′
. Here, C = CMo8O36

+ CNd and θ′ and σ are

fitting parameters containing information on Mo8O36–Mo8O36

exchange, Nd–Nd exchange, and Mo8O36–Nd exchange in the
form of coupling constants. The model fits well to the data,
and the calculated magnetic coupling constants from the two-
sublattice magnetization mean field model for NdMo16O44 are
given in Table 2. The low value for Mo8O36–Nd exchange sup-
ports the hypothesis that Ln3+ moments are uncoupled to the
Mo moments, and the modest +11.1 mol emu−1 value for Nd–
Nd suggests some ferromagnetic exchange occurs between the
lanthanides. The −46 mol emu−1 coupling constant for
Mo8O36–Mo8O36 indicates that the strongest magnetic

Table 1 Curie–Weiss constants for LnMo16O44 from magnetic susceptibility measurments

LnMo16O44 composition Curie Constant, C (emu cm−3 K) Weiss constant, θ (K) Effective magnetic moment, µeff

LaMo16O44 (4.129 ± 0.006) × 10−4 −5.43 ± 0.02 1.36µB
YMo16O44 (3.334 ± 0.006) × 10−4 −3.61 ± 0.02 1.22µB
NdMo16O44 (3.12 ± 0.005) × 10−3 −11.65 ± 0.08 3.75µB
GdMo16O44 (2.682 ± 0.001) × 10−2 −1.7 ± 0.01 10.9µB

Fig. 4 a, Magnetic susceptibility of NdMo16O44 and GdMo16O44,
measured at 0.1 T, with temperature shown on a log scale; the suscepti-
bility curves for LaMo16O44 and YMo16O44 are shown for reference.
b, The inverse susceptibility versus temperature of NdMo16O44, showing
the paramagnetic behavior, with a linear fit according to the Curie–
Weiss law (navy) and the two-sublattice mean field model (red) indi-
cated. c, The inverse susceptibility versus temperature of GdMo16O44,
showing the paramagnetic behavior, with the Curie–Weiss law fit. The
Weiss constant, θ, is shown for both NdMo16O44 and GdMo16O44.
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exchange in NdMo16O44 is the antiferromagnetic coupling
between the clusters in good agreement with theory and other
findings in this study.

Electrical transport

To further explore the physics of these arrayed electrically iso-
lated but magnetically interacting superatom clusters, we per-
formed temperature-dependent two-terminal resistance
measurements on individual single crystals of LaMo16O44 and
NdMo16O44 (Fig. 5a); unfortunately, LnMo16O44 crystals of the
other compositions were too small for reliable transport
measurements. The low resistances observed at room tempera-
ture demonstrate substantial electronic charge transport
between metallic clusters, likely via hopping, with room temp-
erature resistivities on the order of ≈1 Ω cm. As the tempera-
ture is lowered, the resistance increases exponentially for both
LaMo16O44 and NdMo16O44, consistent with a decrease in the
charge transport between Mo8O36 clusters and overall semicon-
ducting/insulating behavior. At low temperatures near TN,
resistance on the order of 10 GΩ demonstrates that these
samples are highly insulating at temperatures where Mo8O36

units are antiferromagnetically coupled, suggesting that,
unlike the exchange between Mo4S4 units in GaMo4S8, the
magnetic exchange in LnMo16O44 between Mo8O36 clusters is
not mediated by itinerant electrons,32 but rather is believed to
arise via a superexchange mechanism through the insulating
MoO4 tetrahedra separating the Mo8O36 units. The established
method for determining magnetic ordering is by performing a
neutron scattering experiment; however, the small sample

sizes synthesized for this study (on the order of 0.25 mm3) is
too small to undertake neutron scattering experiments,
making this measurement beyond the scope of the study docu-
mented here. Earlier neutron scattering studies on EuMo16O44

show no change in the crystallographic structure between
300 K and 1.5 K.26

Transport through both LaMo16O44 and NdMo16O44 at high
temperatures is predicted to arise from a hopping transport
mechanism, where carriers hop between the electrically insu-
lated Mo8O36 clusters.27 The bands derived from the tetra-
hedral Mo sites are energetically below the Fermi level and are
not expected to contribute to transport. Nearest-neighbor
hopping transport has a resistance versus temperature depen-
dence given by Rhopping(T ) ∝ eT0/T, where T0 is a fitting para-
meter that corresponds to the freeze-out of carriers involved in
the hopping process as temperature decreases (and 1/T corre-
spondingly increases).33 This corresponds to Arrhenius behav-
ior of the thermally activated carrier hopping, ln(G) ∝ T0/T,
where G is the conductance given as 1/R. The natural log of the
conductance versus inverse temperature fits well to the
Arrhenius equation, giving T0 values of 133 K for LaMo16O44

and 118 K for NdMo16O44. These data support the predicted
hopping mechanism: as the temperature decreases, the ther-
mally activated hopping between electrically isolated Mo8O36

clusters arrayed in the material is reduced, and the conduc-
tance decreases.

With a magnetic field applied perpendicular to the current
through the LaMo16O44 sample, the resistance versus tempera-
ture plot reveals a notable magnetic field effect in the form of
a local maximum in the resistance versus temperature with a
peak around 6 K. The peak increases in magnitude with
increasing magnetic field (Fig. 5b). Subtracting the resistances
given by the measurement taken in zero applied field (RBG)
from the resistance measured with an applied magnetic field,
gives the magnetic field-dependent feature that has an approxi-
mately Gaussian shape, with midpoint Tpeak and height ΔRpeak
= R(Tpeak) − RBG(Tpeak). We note that Tpeak (approximately 5.7 K
and 6.0 K for 0.5 T and 1 T applied fields, respectively) of the
magnetic field effect observed in resistance versus temperature
measurements coincides with the 6.5 K transition tempera-
ture. The magnitude of the magnetic field-dependent resist-
ance feature, ΔRpeak versus magnetic field H is plotted in
Fig. 5b inset, and exhibits an approximately linear magnetic
field dependence. This behavior of an increase in resistance
with an applied magnetic field is difficult to explain, as one
would expect the suppression of spin fluctuations and disorder
with a greater applied magnetic field to lead to a reduction in
resistance. A potential mechanism is that a magnetic field pro-
duces a misalignment of the energy levels in the ordered state
whereby the Zeeman splitting affects the spin up and spin
down energy levels differently. With the energy levels mis-
aligned, the hopping integral is expected to decrease, increas-
ing the resistivity. Further research is necessary to better
understand the physical mechanism behind this increase in
the resistance at Tpeak with increasing magnetic field in this
complicated condensed matter system.

Fig. 5 a, Resistance versus temperature of LaMo16O44 and NdMo16O44

at 0 T from 300 K to 5 K; (inset) Arrhenius plots showing the tempera-
ture dependence of electrical transport through LaMo16O44 and
NdMo16O44 given by the Arrhenius equation, ln(G) ∝ T0/T, with red lines
showing the fit to the equation and equation parameters shown. b,
Resistance versus temperature of LaMo16O44 at applied magnetic fields
of, 0, 0.1 T, 0.5 T and 1 T, at low temperature; (inset) the height of the
resistance feature at Tpeak, ΔRpeak = R(Tpeak) − RBG(Tpeak), as a function of
applied magnetic field.

Table 2 Magnetic coupling constants in NdMo16O44

Mo8O36–Nd
(mol emu−1)

Nd–Nd
(mol emu−1)

Mo8O36–Mo8O36
(mol emu−1)

−3.8 +11.1 −46
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These data suggest that electronic transport through
LnMo16O44 systems occur primarily via nearest-neighbor
hopping via Mo8O36 clusters. A magnetic field-dependent
effect in LaMo16O44 is observed at temperatures corresponding
to the onset of antiferromagnetic order in this material that
arises from intercluster exchange. As this effect is observed in
LaMo16O44, which contains no magnetic ions, the effect is not
suspected to arise from local atomic magnetic moments, but
is rather associated with the odd-valent molybdenum ions in
the Mo8O36 clusters.

Summary

In summary, we observe magnetic interactions between period-
ically arrayed Mo8O36 clusters in the rare earth molybdenum
bronzes LaMo16O44 and NdMo16O44 and in isostructural
YMo16O44. Measurements of the temperature dependence of
the magnetic moment identify the onset of a magnetic order
at around 6.5 K in LaMo16O44 and 3.1 K in YMo16O44. The
non-zero, negative Weiss constants derived from the magnetic
susceptibility data for all materials confirms overall antiferro-
magnetic interactions. Differences in temperature onsets of
magnetic behavior between these isostructural materials
suggests that the intercluster magnetic exchange between
Mo8O36 clusters is sensitive to small structural changes,
namely the effect on lattice dimensions—specifically the c-axis
—due to different radii of the Ln ions. Temperature-dependent
electrical transport measurements support the hypothesis that
electronic transport through LnMo16O44 systems occur primar-
ily via nearest-neighbor hopping through Mo8O36 clusters.
Furthermore, we observe a magnetic field effect in LaMo16O44

at temperatures corresponding with the onset of antiferro-
magnetic order that arises from intercluster exchange between
the arrayed Mo8O36 clusters.

These results are consistent with the theoretical prediction
that these eight molybdenum atoms in the Mo8O36 clusters
behave as superatoms with a single hole residing in the
cluster, corresponding to a net spin moment of 1μB and result-
ing in magnetic exchange between the units. This study is an
important step toward understanding interactions between
nanoscale periodically arrayed multiple-atom-clusters. Such
materials systems have the potential to allow researchers to
produce superatoms with tailored properties, which, by con-
trolling the exchange interactions between the superatoms in
an array, will have impactful applications and serve as the
basis for novel kinds of electronics and sensors. The rich struc-
tural chemistry of rare earth molybdenum oxide bronzes
affords a wealth of opportunities to study the emergent pro-
perties of superatom clusters and better understand such
remarkable quantum states in materials.

Experimental

Samples examined in this study were grown by both
electrocrystallization and direct reaction methods.
Electrocrystallization yields larger crystals that contain fewer

defects such as merohedral twinning in comparison with crys-
tals grown by direct reaction of the constituent oxides in
sealed fused silica ampoules. Electrocrystallization growth of
LaMo16O44 and NdMo16O44 followed this procedure: a typical
charge of approximately 15 grams of MoO3 and rare earth
oxide was vacuum dried before melting. The melt was con-
tained in a high purity recrystallized alumina crucible which
was seated in a fire brick support. The assembly was contained
in an inert atmosphere within a quartz vessel housed in a
furnace. Crystal growth was carried out under galvanostatic
control with a Pt foil electrode serving as the anode and a
1 mm Pt wire as the cathode. Traces of the melt were removed
by gently heating the crystalline product in 12 M HCl following
deposition.

The following procedure was used to grow YMo16O44 and
GdMo16O44 by direct reaction: a 1–2 g charge consisting of stoi-
chiometric mixtures of high purity Ln2O3, Mo, and MoO3 was
ground and mixed using an agate mortar and pestle and then
was placed in fused silica ampoules and sealed under vacuum.
The ampoules were heated in a horizontal tube furnace at a
rate of 100 °C h−1 to 700 °C, kept at that temperature for at
least 5 days, and then furnace-cooled.

A vibrating sample magnetometer was used to measure the
temperature dependence of the total magnetic moment for a
collection of single crystals of LnMo16O44 with volumes on the
order of approximately 0.25 mm3. Samples were weighed
before being placed in a non-magnetic glycerin capsule and
inserted into the magnetometer sample space. The total mag-
netic moment was measured from 2 K to 300 K in magnetic
fields ranging from 0 T to 1 T under both field-cooled and
zero-field-cooled conditions.

Magnetotransport measurements were prepared by gluing a
single crystal of adequate size (approximately 1 mm in length
and 0.25 mm2 in cross-sectional area) to an insulating SiO2

substrate using nonconductive epoxy. Current leads were
attached by attaching indium-soldered gold wires to two separ-
ate points on the crystal and attaching the other ends to the
sample package electrical leads. The assembly was fastened to
the end of an insert rod, and loaded into a continuous closed-
cycle cryostat with a superconducting magnet (maximum field
of 12 T). Direct current–voltage (I–V) curve measurements were
taken between 5 K and 10 K at 0.5 K steps and 10 K to 300 K at
5 K steps. We ensured accurate high-resistance measurements
by using source-measurement units with very high (>1014 Ω)
input impedance and with current accuracies of 0.15% of the
reading + 1 pA at 1.0 power line cycles, giving a typical peak-to-
peak noise of about 2 pA. Appropriate signal integration times
were selected along with a long hold at the initial voltage to
account for possible charging effects to ensure steady state cur-
rents as device contacts. These I–V curves were taken at
different magnetic fields, and the resistance was extracted
from a linear fit to give an average resistance R = 1 per slope.
Observed I–V curves were linear at all temperatures with R2 >
0.96 on all fits. Several samples of each stoichiometry were
measured as a function of applied magnetic field to confirm
reproducibility.
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Density functional calculations were performed using the
general potential linearized augmented planewave (LAPW)
method as implemented in the WIEN2k code. We used the
PBE generalized gradient approximation, and did calculations
for both spin polarized (ferromagnetic ordered) and non-spin
polarized cases. The calculations were done using the experi-
mental structure of CeMo16O44 with Ce replaced by La for con-
venience, specifically avoiding complications due to f-electron
moments. We used LAPW sphere radii of 2.2 bohr, 1.8 bohr
and 1.45 bohr for La, Mo and O. Other aspects of the calcu-
lations were similar to those used previously.27

Abbreviations

Ln Lanthanide
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