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Abstract  

Moving-window (MW) approaches to two-dimensional correlation spectroscopy make it 

possible to characterize spectral changes occurring in a narrow range of perturbation 

variable (e.g., time, temperature, and concentration). Despite the wide range of application, 

the physical meanings of MW correlation intensities have been only qualitatively 

associated with the direction and curvature of spectral intensity change with respect to a 

perturbation variable. Here are full and simplified analytical expressions of autocorrelation 

moving-window (AC-MW) and synchronous and asynchronous perturbation-correlation 

moving-window (s-PC-MW and as-PC-MW) intensities. When the window is set 

sufficiently narrower than the bandwidth of spectral change, the square root of AC-MW 

intensity and s-PC-MW intensity becomes proportional to the first order derivative, and 

as-PC-MW intensity becomes proportional to the negative of the second order derivative. 

This paper demonstrates that both AC-MW and PC-MW profiles can be significantly 

altered by non-uniform perturbation spacing. It is also found that intensity noise can cause 

AC-MW to display a false offset drift. This analytical and numerical characterization of 

the two MW correlation intensities elucidates their physical meanings and ascertains the 

analysis conditions for reliable interpretation. 
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1. Introduction 

Since generalized two-dimensional correlation spectroscopy (2DCOS) was 

introduced by Noda,1 the method has been widely used to analyze spectral data acquired 

as a function of perturbation variables such as temperature, pressure, time, and 

concentration.2 The synchronous and asynchronous correlation spectra generated by 

2DCOS are used to determine the directions and sequences of the spectral changes and to 

resolve underlying spectral bands. However, when multiple changes occur within the 

perturbation range of a 2DCOS analysis, the correlation spectra involve mixed 

contributions of the different changes and it becomes difficult to interpret their physical 

meanings from the complex correlation results. 

The moving-window (MW) approach, first introduced to 2DCOS in 2000 by 

Thomas and Richardson,3 can alleviate this complication by partitioning and moving the 

perturbation variable range (window) of 2DCOS analysis. For example, the autocorrelation 

spectrum is used to represent the spectral intensity change as a function of the average 

perturbation variable. An autocorrelation peak spectrum is obtained from the diagonal line 

in a synchronous 2D correlation map, which indicates the overall extent of spectral 

intensity variation within a perturbation variable range. A 1D autocorrelation spectrum can 

be consecutively calculated from each window as a function of the average perturbation 

variable. The resulting autocorrelation moving-window (AC-MW) spectra are displayed as 

a 2D contour map or a waterfall plot, which is useful for visualizing the spectral change 

over the entire perturbation range and to determine the perturbation values where phase 

transitions and chemical reactions are occurring in polymers,4,5 liquid crystals,3 hydrogels,6 

and proteins.7,8  
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Later in 2003, Morita et al.9 proposed a new MW method, called as perturbation-

correlation moving-window (PC-MW), which calculates the correlation between the 

perturbation variable and the spectral intensity of each spectral variable. Similar to the 

generalized 2DCOS, PC-MW generates synchronous and asynchronous correlation 

spectra, which represent the (in-phase) direction and the (out-of-phase) curvature of 

spectral intensity change, respectively. Unlike AC-MW, synchronous PC-MW maps 

provide not only the degree of correlation of intensity change between multiple spectral 

components, but also the direction; therefore, they have become a widely used MW method 

in various applications.10–17 Jung et al.18 demonstrated that a 2D gradient map can locate 

physical and chemical transitions by calculating intensity difference over each perturbation 

step. However, noise amplification associated with differentiation typically requires 

additional pre- or post-processes for denoising. Morita et al.19 demonstrated that AC-MW 

intensity shows a higher signal-to-noise ratio than the square of a gradient map even after 

the gradient map is smoothed by the Savitzky-Golay smoothing with the same window size 

with the AC-MW. 

Interpretations of AC-MW and PC-MW intensities are related to the first and 

second order derivatives of spectral intensity along the perturbation variable. Morita et 

al.,19 used a simple three-point model to propose that AC-MW intensity is proportional to 

the square of the first order derivative of spectral intensity, which was supported by the 

similarity between the shape of the calculated AC-MW intensity and the shape of the 

square of the first order derivative of simulation data. Morita et al.9 used the same three-

point model and simulation data to prove that the synchronous PC-MW (s-PC-MW) 

intensity is proportional to the first order derivative. They also asserted that the 
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asynchronous PC-MW (as-PC-MW) intensity is proportional to the negative of the second 

order derivative by comparing the general trends of as-PC-MW profiles calculated from 

simulation data with the derivative of the corresponding s-PC-MW profiles. Other reports 

on the physical interpretations of AC-MW and PC-MW results15,20–22 are also based on 

comparison of simulated MW correlation results and the model function. However, the 

connection between MW correlation intensity and the first or second order derivative has 

never been mathematically derived using analytical expressions. The absence of analytical 

description makes it challenging to quantitatively validate the proportionality between MW 

correlation intensity and the first or second order derivative and to characterize their 

associated limiting conditions.  

Here is an analytical description of the AC-MW and PC-MW correlation intensities 

with a continuous model intensity function. The description helps to understand the 

mathematical connections between the correlation intensities and the first/second 

derivatives of spectral intensity. Then, a numerical description for discrete forms of 

spectral data is presented to discuss the effect of the moving-window size, non-uniform 

perturbation increment, and intensity noise of the MW correlation results. 

   

2. Analytical Descriptions of Moving-Window Correlation Spectroscopy 

2.1 2D Correlation Spectroscopy and its Moving-Window Approach 

The generalized 2DCOS analyzes a series of spectra, y(ν, p) acquired as a function 

of spectral variable ν (typically in wavelength or frequency) and external perturbation 

variable p (typically in time, pressure, temperature, or concentration). 2DCOS yields a 

complex correlation spectrum between a pair of spectral variables, where the real term is 
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called the synchronous correlation spectrum, Φ, and the imaginary term is called the 

asynchronous correlation spectrum, Ψ: 

Φ(𝜈𝜈1, 𝜈𝜈2) + 𝑖𝑖Ψ(𝜈𝜈1, 𝜈𝜈2) = 1
𝜋𝜋(𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚−𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚)∫ 𝑌𝑌�1(𝜔𝜔)𝑌𝑌�2∗(𝜔𝜔)𝑑𝑑𝜔𝜔∞

0    (1) 

where 

𝑌𝑌�1(𝜔𝜔) = ∫ 𝑦𝑦�(𝜈𝜈1,𝑝𝑝)𝑒𝑒−𝑖𝑖𝑖𝑖𝑝𝑝𝑑𝑑𝑝𝑝∞
−∞    (2) 

and  

𝑌𝑌�2∗(𝜔𝜔) = ∫ 𝑦𝑦�(𝜈𝜈2,𝑝𝑝)𝑒𝑒+𝑖𝑖𝑖𝑖𝑝𝑝𝑑𝑑𝑝𝑝∞
−∞    (3) 

are the Fourier transforms of the mean-centered spectrum, 𝑦𝑦�(𝜈𝜈,𝑝𝑝), also known as the 

dynamic spectrum defined as, 

𝑦𝑦�(𝜈𝜈,𝑝𝑝) = �𝑦𝑦(𝜈𝜈,𝑝𝑝) − 𝑦𝑦�(𝜈𝜈), 𝑝𝑝𝑚𝑚𝑖𝑖𝑚𝑚 < 𝑝𝑝 < 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚
0            , 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒  (4) 

𝑦𝑦�(𝜈𝜈) is the reference spectrum, typically defined as the average spectrum over 𝑝𝑝𝑚𝑚𝑖𝑖𝑚𝑚 < 𝑝𝑝 <

𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚. Intensity of a synchronous 2D correlation spectrum represents the simultaneous or 

coincidental changes of two spectral intensities while that of an asynchronous 2D 

correlation spectrum represents sequential or successive changes of them. 

In 2000, Noda demonstrated that a new algorithm can simplify calculation of the 

synchronous and asynchronous correlation spectra without using Fourier transformation.23 

He showed that the synchronous and asynchronous 2D correlation spectra can be expressed 

as 

Φ(𝜈𝜈1, 𝜈𝜈2) = 1
(𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚−𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚)∫ 𝑦𝑦�(𝜈𝜈1,𝑝𝑝)𝑦𝑦�(𝜈𝜈2,𝑝𝑝)𝑑𝑑𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚

𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚
  (5) 

Ψ(𝜈𝜈1, 𝜈𝜈2) = 1
(𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚−𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚)∫ 𝑦𝑦�(𝜈𝜈1,𝑝𝑝)�̃�𝑧(𝜈𝜈2,𝑝𝑝)𝑑𝑑𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚

𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚
   (6) 

where �̃�𝑧(𝜈𝜈2,𝑝𝑝) is the orthogonal spectrum of  𝑦𝑦�(𝜈𝜈2,𝑝𝑝) converted by Hilbert transformation 

as 
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 �̃�𝑧(𝜈𝜈2,𝑝𝑝) = 𝓗𝓗[𝑦𝑦�(𝜈𝜈2,𝑝𝑝)] = 1
𝜋𝜋
𝑃𝑃𝑃𝑃 ∫ 𝑦𝑦�(𝜈𝜈2,𝑝𝑝′)

𝑝𝑝′−𝑝𝑝
𝑑𝑑𝑝𝑝′∞

−∞    (7) 

The “PV∫” denotes that the Cauchy principal value is taken to exclude the singularity. I 

find that these expressions are quite useful to analyze both analytical (continuous) and 

discrete forms of spectral data and to understand differences in the characteristics of 

different 2DCOS methods. 

 

 

Figure 1. (a) Illustration of a moving-window analysis for a series of spectra, y(ν, p), where ν is 

the spectral variable and p is the perturbation variables. At a specific spectral variable, the intensity, 

y(p), is analyzed as a function of p. (b) The intensity is plotted at ν = 700, which is simulated with 

Eq. 8 with the center pc = 0 and the FWHM σ = 2. The moving-window (denoted as the magenta 

region) is described by the average perturbation value, pave, and the width of pm. (c) The first order 

derivative, y(1)(p), of the intensity in (b) is plotted. 

 

The basic concept of moving-window (MW) correlation spectroscopy has been 

explained elsewhere.4,9,19 Briefly, as illustrated in Figure 1a, a large set of spectral data is 

partitioned by a small subset or window, a 2D correlation spectrum of the window is 
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obtained, and the analysis is repeated for shifted or moved windows. Here, I discuss 

different 2DCOS methods applied to the moving window analysis and compare their 

results from model functions. Figure 1b shows a model spectral intensity function, y(p), 

and an example of a moving window within the range of 𝑝𝑝ave −
𝑝𝑝m
2

< 𝑝𝑝 < 𝑝𝑝ave + 𝑝𝑝m
2

, 

where pave is the average perturbation value and pm is the window size. For 𝑦𝑦�(𝜈𝜈, 𝑝𝑝) =

𝐼𝐼(𝜈𝜈)𝑦𝑦�(𝑝𝑝), this paper will focus on only y(p) by treating 𝐼𝐼(𝜈𝜈) as a constant. The model 

function used for y(p) is a modified error function, which represents the integral form of a 

Gaussian function with the center at pc and the full-width-half-maximum (FWHM) of σ.  

𝑦𝑦(𝑝𝑝) = 1
2

erfc �−2√Ln 2 (𝑝𝑝−𝑝𝑝𝑐𝑐
𝜎𝜎

)� = 2√Ln2
√𝜋𝜋 𝜎𝜎 ∫ 𝑒𝑒−4 (Ln2)(𝑚𝑚−𝑝𝑝𝑐𝑐𝜎𝜎 )2𝑑𝑑𝑑𝑑𝑝𝑝

−∞    (8) 

The simple form of the first derivative of the model function is helpful to quantitatively 

characterize the results of different MW methods for various experimental and analytical 

conditions, for example, dependence of resolution on the window size. 

 

2.2 Autocorrelation Moving-Window (AC-MW) of a Continuous Function 

An autocorrelation spectrum can be obtained from the diagonal line of a 

synchronous 2D correlation map, indicating the intensity variation of each spectral variable 

over the perturbation range. In autocorrelation moving-window (AC-MW), an 

autocorrelation spectrum is calculated from each window and the autocorrelation spectra 

are plotted a 2D contour map of an intensity variation spectrum as a function of the 

perturbation. For calculation of AC-MW intensity from Eq. 5, a spectral variable is set as 

ν = ν1 = ν2, and the integration region is 𝑝𝑝ave −
𝑝𝑝m
2

< 𝑝𝑝 < 𝑝𝑝ave + 𝑝𝑝m
2

. Then the mean-

centered spectrum, 𝑦𝑦�(𝑝𝑝), can be calculated for the spectral variable ν from Eq. 4 
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𝑦𝑦�(𝑝𝑝) = 𝑦𝑦(𝑝𝑝) − 𝑦𝑦�(𝑝𝑝ave) = 𝑦𝑦(𝑝𝑝) − 1
𝑝𝑝𝑚𝑚
∫ 𝑦𝑦(𝑝𝑝)𝑑𝑑𝑝𝑝
𝑝𝑝ave+

𝑝𝑝𝑚𝑚
2

𝑝𝑝ave−
𝑝𝑝𝑚𝑚
2

 (9) 

where ν is not displayed in 𝑦𝑦(𝑝𝑝) = 𝑦𝑦(𝜈𝜈,𝑝𝑝) for simplifying the expression. Then, AC-MW 

intensity Φ(pave) can be expressed as  

Φ(𝑝𝑝ave) = Φ(𝑝𝑝ave, 𝜈𝜈) = 1
𝑝𝑝𝑚𝑚
∫ 𝑦𝑦�(𝑝𝑝)2𝑑𝑑𝑝𝑝
𝑝𝑝ave+

𝑝𝑝𝑚𝑚
2

𝑝𝑝ave−
𝑝𝑝𝑚𝑚
2

 (10) 

which is calculated with the model function illustrated in Figure 1b. The functional form 

of y(p) is shown in Eq. 8 with pc = 0. The 𝑦𝑦�(𝑝𝑝) can be analytically expressed from Eq. 9, 

which can be found as Eq. S1 in the Supplementary Material. The analytical solution of 

Φ(pave) is also calculated from Eq. 10, as shown as Eq. S2 in the Supplementary Material. 

However, it is not straightforward to recognize similarity or proportionality between the 

analytical expression of Φ(pave) and the first order derivative of y(p). 

In order to find quantitative connection between Φ(pave) and the first order 

derivative, the intensity function, y(p) is slightly modified. A narrow section (window) of 

a slowly varying intensity function can be expressed with a Taylor series of y(p) for the 

range of 𝑝𝑝ave −
𝑝𝑝m
2

< 𝑝𝑝 < 𝑝𝑝ave + 𝑝𝑝m
2

 as, 

𝑦𝑦(𝑝𝑝;𝑝𝑝ave) = ∑ 𝑦𝑦(𝑚𝑚)(𝑝𝑝ave)
𝑚𝑚!

(𝑝𝑝 − 𝑝𝑝ave)𝑚𝑚∞
𝑚𝑚=0  (11) 

where 𝑦𝑦(𝑚𝑚)(𝑝𝑝ave) is the value of the nth order derivative of y(p) at p = pave. The polynomials 

in the Taylor series can be easily calculated for 𝑦𝑦�(𝑝𝑝)  and Φ(pave) in Eqs. 9 and 10, 

respectively. First, a case is considered that y(p) is approximated to a linear function in Eq. 

11, and then, 

𝑦𝑦(𝑝𝑝;𝑝𝑝ave) = 𝑦𝑦(𝑝𝑝ave) + 𝑦𝑦(1)(𝑝𝑝ave) (𝑝𝑝 − 𝑝𝑝ave) (12) 

𝑦𝑦�(𝑝𝑝;𝑝𝑝ave) = 𝑦𝑦(𝑝𝑝;𝑝𝑝ave) − 𝑦𝑦�(𝑝𝑝ave) = 𝑦𝑦(1)(𝑝𝑝ave) (𝑝𝑝 − 𝑝𝑝ave) (13) 
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By inserting Eq. 13 into Eq. 10, the AC-MW intensity is expressed as a simple form  

Φ(1)(𝑝𝑝ave) = �𝑝𝑝𝑚𝑚
2

12
�  �𝑦𝑦(1)(𝑝𝑝ave)�

2
 (14) 

where the superscript (1) in Φ(1)(pave) indicates that the AC-MW intensity is calculated 

from a linearly approximated y(p) for each moving window. Equation 14 clearly 

demonstrates that AC-MW intensity becomes proportional to the square of the first 

derivative when y(p) can be approximated to a linear function within each moving window. 

In other words, when y(p) is curved and the window size is too wide, the shape of Φ(pave) 

will deviate from the square of the first derivative. Equation 14 also shows the quantitative 

connection between Φ(1)(pave) and the square of the first derivative. Therefore, the absolute 

quantity of 𝑦𝑦(1)(𝑝𝑝ave) can be calculated from Φ(pave) when the window size is set to be 

sufficiently narrow compared with the curvature of y(p). 
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Figure 2. (a) – (d) AC-MW intensity profiles calculated by Eq. 10 for various pm. The solid red 

lines indicate Φ(pave) calculated from the original y(p) of Figure 1b. For comparison, the dashed 

black lines are Φ(1)(pave) calculated by Eq. (14) from a linear approximation of y(p) within each 

moving window. (e) A plot of the peak height of Φ and Φ(1) as a function of the window size (pm). 

(f) A FWHM of the two profiles as a function of pm. The FWHM of Φ(1) is constant at √2. 

 

Figure 2 shows the Φ(pave) and Φ(1)(pave) profiles for four different window sizes and plots 

of their peak height and FWHM as a function of the window size. First, the Φ(1)(pave) 

profiles (the black dotted lines) show the same shape, for different pm, as the squared 

𝑦𝑦(1)(𝑝𝑝ave). However, the peak height of Φ(1)(pave) increases quadratically with pm, which 
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is indicated in Eq. 14. By contrast, both the peak height and the FWHM of Φ(pave), denoted 

as the red solid lines, are noticeably affected by the window size. As shown in Figure 2e, 

the peak height of Φ(pave) becomes smaller than that of Φ(1)(pave) as the window size 

becomes larger. The FWHM of Φ(pave) becomes larger than that of Φ(1)(pave) (= √𝜎𝜎). This 

window-size dependence of Φ(pave) may be understood as the blurring effect 

accompanying a moving average used for data smoothing. If the moving-average window 

size is smaller than the data variation, the smoothed result will be close to the original data. 

However, if the window size becomes comparable or larger than the data variation, sharp 

features become smoothed out with lowered intensity and wider width. Based on the data 

of Figure 2, I would suggest the critical window size pm = σ/2, which is a half of the FWHM 

of the first order derivative. At the critical window size, the relative differences in peak 

height and FWHM are 7% and 4%, respectively. The suggested criterion of pm = σ/2 is 

good for the model function whose first order derivative is a Gaussian function. A different 

intensity function may have a different criterion for the appropriate moving window size. 

  

2.3 “Synchronous” Perturbation-Correlation Moving-Window (s-PC-MW) of a 

Continuous Function 

Perturbation-correlation (PC) intensity is calculated by replacing one of the spectral 

intensity with the perturbation variable in the generalized 2DCOS of Eq. 1 – 4. Similar to 

the generalized 2DCOS, a generated PC output consists of synchronous and asynchronous 

correlation intensities, indicating the in-phase and out-of-phase changes of the spectral 

intensity and the perturbation, respectively. While AC-MW intensity provides information 

only on the amount of intensity variation, the synchronous perturbation-correlation 
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moving-window (s-PC-MW) intensity determines not only the amount of variation but also 

the direction of variation. The PC-MW method has been widely used because s-PC-MW 

intensity is assumed to be proportional to the first order derivative of spectral intensity. 

However, similar to AC-MW, there has been no analytical derivation of those relations and 

no quantitative characterization of the assumption, to my knowledge. Here is provided an 

analytical expression for PC-MW intensity by using a continuous function.  

The s-PC-MW intensity, ΠΦ(pave), is calculated by replacing 𝑦𝑦�(𝜈𝜈2,𝑝𝑝)  with the 

mean-centered perturbation, 𝑝𝑝 − 𝑝𝑝ave, and set the integration range as 𝑝𝑝ave −
𝑝𝑝m
2

< 𝑝𝑝 <

𝑝𝑝ave + 𝑝𝑝m
2

 in Eq. 5.  

ΠΦ(𝑝𝑝ave) = 1
𝑝𝑝𝑚𝑚
∫ 𝑦𝑦�(𝑝𝑝) (𝑝𝑝 − 𝑝𝑝ave)𝑑𝑑𝑝𝑝
𝑝𝑝ave+

𝑝𝑝m
2

𝑝𝑝ave−
𝑝𝑝m
2

 (15) 

The model function of Eq. 8 is used for y(p) so that the same expression of the dynamic 

spectrum from Eq. S1 in the Supplementary Material can be used. From Eq. 15, the 

analytical expression of ΠΦ(pave) is obtained and shown as Eq. S3 in the Supplementary 

Material. Although the expression of ΠΦ(pave) is simpler than that of Φ(pave), it is still not 

straightforward to find similarity between ΠΦ(pave) and 𝑦𝑦(1)(𝑝𝑝ave), which is a Gaussian 

function. Their quantitative connection can be found by approximating y(p) with a linear 

function from the Taylor series, as used for calculation of Φ(1)(pave) in the previous section. 

𝑦𝑦�(𝑝𝑝) is replaced with the linear function, 𝑦𝑦(1)(𝑝𝑝ave) (𝑝𝑝 − 𝑝𝑝ave), in Eq. 15, and then the s-

PC-MW intensity is expressed in a simple analytical form,  

ΠΦ
(1)(𝑝𝑝ave) = �𝑝𝑝𝑚𝑚

2

12
�  𝑦𝑦(1)(𝑝𝑝ave) (16) 

As for Φ(1)(pave), the superscript (1) in ΠΦ
(1)(𝑝𝑝ave) indicates the s-PC-MW intensity is 

calculated from a linearly approximated function for each moving window. Equation 16 
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suggests that s-PC-MW intensity becomes proportional to the first derivative when y(p) 

can be approximated to a linear function within each moving window. It also suggests that 

the absolute quantity of 𝑦𝑦(1)(𝑝𝑝ave) can be determined from a calculated ΠΦ(𝑝𝑝ave)/ �𝑝𝑝𝑚𝑚
2

12
� 

value if the window size is set to be sufficiently narrow compared with the curvature of 

y(p).  

 

 

Figure 3. (a) – (d) Synchronous PC-MW (s-PC-MW) intensity profiles calculated by Eq. 15 for 

various pm. The solid blue lines indicate ΠΦ(𝑝𝑝ave) calculated by using the original y(p) of Figure 

1b. For comparison, the dashed black lines are ΠΦ
(1)(𝑝𝑝ave), calculated by Eq. 16 from a linear 
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approximation of y(p) within each moving window. (e) A plot of peak height of ΠΦ and ΠΦ
(1) as a 

function of pm. (f) A FWHM of the two profiles as a function of pm. The FWHM of ΠΦ
(1) is constant 

at 2. 

 

Figures 3a–3d show the ΠΦ(pave) and ΠΦ
(1)(𝑝𝑝ave) intensity profiles for different pm. Overall, 

the window size effect on s-PC-MW is similar to those on AC-MW. When the window 

size is small, ΠΦ(pave) is close to ΠΦ
(1)(𝑝𝑝ave), which is proportional to 𝑦𝑦(1)(𝑝𝑝ave). However, 

as the window size becomes larger, the peak height of ΠΦ(pave) becomes smaller than that 

of ΠΦ
(1)(𝑝𝑝ave), and the FWHM becomes larger than that of ΠΦ

(1)(𝑝𝑝ave). For s-PC-MW, I 

suggest the same critical window size as AC-MW, pm = σ/2, leaving relative differences in 

peak height and FWHM between ΠΦ and ΠΦ
(1) as 3% and 3%, respectively. 

 

2.4 “Asynchronous” Perturbation-Correlation Moving-Window (as-PC-MW) of a 

Continuous Function 

Asynchronous PC-MW (as-PC-MW) is the out-of-phase term of PC-MW, as 

complementary to synchronous PC-MW (s-PC-MW). The calculation of as-PC-MW is 

similar to that of s-PC-MW: 𝑦𝑦�(𝜈𝜈2,𝑝𝑝) is replaced with the mean-centered perturbation, 𝑝𝑝 −

𝑝𝑝ave , and the integration range is set as 𝑝𝑝ave −
𝑝𝑝m
2

< 𝑝𝑝 < 𝑝𝑝ave + 𝑝𝑝m
2

 in the generalized 

2DCOS formulae of Eqs. 6 and 7. An additional required step is to calculate 𝐇𝐇(𝑝𝑝 − 𝑝𝑝ave), 

which is the Hilbert transform of (p – pave). The analytical form of as-PC-MW intensity is 

expressed as 

ΠΨ(𝑝𝑝ave) = 1
𝑝𝑝𝑚𝑚
∫ 𝑦𝑦�(𝑝𝑝)ℋ(𝑝𝑝 − 𝑝𝑝ave)𝑑𝑑𝑝𝑝
𝑝𝑝ave+

𝑝𝑝m
2

𝑝𝑝ave−
𝑝𝑝m
2

 (17) 

By substituting p with (x + pave), Eq. 17 is simplified as 



Accepted to Applied Spectroscopy  In press (2016) 

15 
 

ΠΨ(𝑝𝑝ave) = 1
𝑝𝑝𝑚𝑚
∫ 𝑦𝑦�(𝑑𝑑 + 𝑝𝑝ave)ℋ(𝑑𝑑)𝑑𝑑𝑑𝑑
𝑝𝑝m
2

−𝑝𝑝m2
 (18) 

and 

 ℋ(𝑑𝑑) = 1
𝜋𝜋
𝑃𝑃𝑃𝑃 ∫ 𝑝𝑝

𝑝𝑝−𝑚𝑚
𝑑𝑑𝑝𝑝

𝑝𝑝m
2

−𝑝𝑝m2
= 1

𝜋𝜋
�𝑝𝑝𝑚𝑚 + 𝑑𝑑 Ln �𝑝𝑝𝑚𝑚−2𝑚𝑚

𝑝𝑝𝑚𝑚+2𝑚𝑚
�� (19) 

Calculation with the model function of Eq. 8 for y(p) yields the analytical expression of 

ΠΨ(pave), as shown in Eq. S4 in the Supplementary Material. The expression is complex as 

it includes the Cauchy principal value to exclude the singularity from ℋ(𝑑𝑑). As used for 

Φ(pave) and ΠΦ(pave) in the previous sections, 𝑦𝑦�(𝑝𝑝) is replaced with the linear function, 

𝑦𝑦(1)(𝑝𝑝ave) (𝑝𝑝 − 𝑝𝑝ave), in Eq. 18 and find that ΠΨ
(1)(𝑝𝑝ave) = 0. This can be explained by 

the fact that 𝑦𝑦�(𝑑𝑑 + 𝑝𝑝ave) = 𝑑𝑑 is an odd function while ℋ(𝑑𝑑) is an even function in Eq. 18 

and that integration of the product of the odd function and the even function over −𝑝𝑝m
2

<

𝑑𝑑 < 𝑝𝑝m
2

 becomes zero. Therefore, a second order truncated Taylor series is used for 𝑦𝑦�(𝑝𝑝) 

as  

𝑦𝑦(𝑑𝑑 + 𝑝𝑝ave) = 𝑦𝑦(𝑝𝑝ave) + 𝑦𝑦(1)(𝑝𝑝ave) 𝑑𝑑 + 𝑦𝑦(2)(𝑝𝑝ave)
2

 𝑑𝑑2 (20) 

where 𝑦𝑦(2)(𝑝𝑝ave) is the second order derivative of y(p) at p = pave. The mean-centered 

spectrum becomes from Eq. 9 

𝑦𝑦�(𝑑𝑑 + 𝑝𝑝ave) = −𝑝𝑝𝑚𝑚2 𝑦𝑦(2)(𝑝𝑝ave)
24

+ 𝑦𝑦(1)(𝑝𝑝ave) 𝑑𝑑 + 𝑦𝑦(2)(𝑝𝑝ave)
2

 𝑑𝑑2 (21) 

By inserting Eqs. 19 and 21 into Eq. 18, 

ΠΨ
(2)(𝑝𝑝ave) = −𝑝𝑝𝑚𝑚3

48𝜋𝜋
𝑦𝑦(2)(𝑝𝑝ave) (22) 

The superscript (2) in ΠΨ
(2)(𝑝𝑝ave) indicates the as-PC-MW intensity is calculated from a 

quadratically approximated function for each moving window. Equation 22 shows that the 
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as-PC-MW intensity is proportional to the negative of 𝑦𝑦(2)(𝑝𝑝ave), which is consistent with 

the previous simulation-based study9, when y(p) can be approximated to a quadratic 

function within each moving window. In addition, it confirms that the sign of ΠΨ(𝑝𝑝ave) 

means the direction of the curvature of y(p): ΠΨ(𝑝𝑝ave) > 0  is for convex-upward (or 

concave-downward), and ΠΨ(𝑝𝑝ave) < 0, for convex-downward (or concave upward). 

 

Figure 4. (a) – (d) Asynchronous PC-MW (as-PC-MW) intensity profiles calculated by Eq. 18 for 

various pm. The solid magenta lines indicate ΠΨ(pave) calculated from the original y(p) of Figure 

1b. For comparison, the dashed black lines are ΠΨ
(2)(𝑝𝑝ave) calculated by Eq. 22 from the second-

order truncated Taylor series of y(p). (e) The slopes of  ΠΨ and ΠΨ
(2) at pave = 0 are plotted as a 

function of pm.  
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Figures 4a–4d show the ΠΨ(pave) and ΠΨ
(2)(𝑝𝑝ave) intensity profiles for different pm. Similar 

to the AC-MW and s-PC-MW results, when the window size is small, ΠΨ(pave) is close to 

ΠΨ
(2)(𝑝𝑝ave) . However, as window size increases, ΠΨ(pave) begins to deviate from 

ΠΨ
(2)(𝑝𝑝ave). Unlike AC-MW and s-PC-MW, as-PC-MW is an odd function about the 

symmetry center (pave = 0). Therefore, instead of peak height or FWHM, the slope of the 

tangential line of ΠΨ(pave) and ΠΨ
(2)(𝑝𝑝ave) at the symmetry center is used for comparison, 

as shown in Figure 4e. The slopes of ΠΨ(pave) are very close to that of ΠΨ
(2)(𝑝𝑝ave) for small 

window size but becomes lower as window size increases. Again, as a criterion for 

quantitative equivalency between ΠΨ and ΠΨ
(2), I suggest the window size pm be smaller 

than σ/2 for the intensity function of Eq. 8, where the relative difference in the slope of the 

tangential line is 8%. 

 

3. Numerical Descriptions of Moving-Window Correlation Spectroscopy 

The previous section discusses the characteristics of various MW methods and their 

physical implications by using integrals of a continuous model function for the spectral 

intensity as a function of perturbation. The general characteristics observed from 

calculation of a continuous function include the window size effect on peak intensity and 

bandwidth of the calculated MW profiles and the equivalency of AC-MW, s-PC-MW, and 

as-PC-MW profiles to �𝑦𝑦(1)�
2

, 𝑦𝑦(1) , and 𝑦𝑦(2) , respectively. In actual experimental 

measurements, however, spectral intensity data are not acquired as a continuous function 

of perturbation. Instead, they are acquired in the discrete form of perturbation. Although 
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the general characteristics of MW analysis results from a discrete-perturbation spectral data 

will represent those from its equivalent continuous-perturbation spectral function, some 

practical parameters are uniquely applicable to measurements and analyses of a discrete 

form of experimental data. This section examines the effect of those discrete-specific 

parameters on each MW result by using a set of simulation data. 

 

3.1 Moving-Window 2D Correlation of Discrete Data 

Numerical methods of MW correlation spectroscopy for discrete forms of spectral 

data are basically the same as the formulations used for continuous analytical functions in 

the previous section. Simply, the integrals used for continuous functions are to be replaced 

with numerical integrations or summations for a finite set of discrete data, and the basic 

formulation for MW correlation intensity has been introduced in many publications.9,19,20 

Briefly, spectral intensity y(pj) is measured at a discrete perturbation variable pj. A moving 

window can be defined for a subset of (2m+1) spectra of y(pJ), where j – m ≤ J ≤ j + m. The 

perturbation pJ‘s are assumed to be uniformly spaced, until differently stated later. Then, 

the mean-centered spectrum can be expressed in a similar form to Eq. 9,  

𝑦𝑦��𝑝𝑝𝐽𝐽� = 𝑦𝑦�𝑝𝑝𝐽𝐽� − 𝑦𝑦��𝑝𝑝𝑗𝑗� = 𝑦𝑦�𝑝𝑝𝐽𝐽� −
1

2𝑚𝑚+1
∑ 𝑦𝑦�𝑝𝑝𝐽𝐽�
𝑗𝑗+𝑚𝑚
𝐽𝐽=𝑗𝑗−𝑚𝑚  (23) 

and the mean-centered perturbation is expressed 

𝑝𝑝�𝐽𝐽 = 𝑝𝑝𝐽𝐽 − �̅�𝑝𝐽𝐽 = 𝑝𝑝𝐽𝐽 − 𝑝𝑝𝑗𝑗 (24) 

where pj is the average perturbation of the moving window. 

Similarly, numerical integration for uniformly spaced pJ can convert an integral 

form of MW intensity into a simple summation form. For example, AC-MW intensity Φ(pj) 

can be expressed from Eq. 10 
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Φ�𝑝𝑝𝑗𝑗� = 1
2𝑚𝑚+1

∑ 𝑦𝑦��𝑝𝑝𝐽𝐽�
2𝑗𝑗+𝑚𝑚

𝐽𝐽=𝑗𝑗−𝑚𝑚  (25) 

Similarly, s-PC-MW intensity ΠΦ(pj) can be converted from Eq. (15) into  

ΠΦ�𝑝𝑝𝑗𝑗� = 1
2𝑚𝑚+1

∑ 𝑦𝑦��𝑝𝑝𝐽𝐽�𝑝𝑝�𝐽𝐽
𝑗𝑗+𝑚𝑚
𝐽𝐽=𝑗𝑗−𝑚𝑚  (26) 

However, as-PC-MW intensity requires additional complicated steps to be calculated in a 

summation form due to the Hilbert-transformation, ℋ(𝑝𝑝 − 𝑝𝑝ave), in Eq. (17). However, 

Noda simplified the transformation by introducing a simple matrix, called the discrete 

Hilbert-Noda transformation matrix,  

𝑀𝑀𝐽𝐽𝐽𝐽 = �
0                        𝐽𝐽 = 𝐾𝐾

1
𝜋𝜋(𝐽𝐽−𝐽𝐽)

              𝐽𝐽 ≠ 𝐾𝐾  (27) 

Then, ΠΦ(pj) can be expressed in a simple form  

ΠΨ�𝑝𝑝𝑗𝑗� = 1
2𝑚𝑚+1

∑ 𝑦𝑦��𝑝𝑝𝐽𝐽�∑ 𝑀𝑀𝐽𝐽𝐽𝐽  𝑝𝑝�𝐽𝐽
𝑗𝑗+𝑚𝑚
𝐽𝐽=𝑗𝑗−𝑚𝑚

𝑗𝑗+𝑚𝑚
𝐽𝐽=𝑗𝑗−𝑚𝑚  (28) 

First the square root of AC-MW intensity (√Φ ), and s-PC-MW intensity (ΠΦ) are 

compared as their analytical functions are proportional to the first order derivative of an 

intensity function when the window size is sufficiently small. For uniformly spaced data, 

the window size is constant and defined as the product of the perturbation increment and 

the number of data per window. For numerical comparison between √Φ and ΠΦ, the same 

model function as in Figure 1b is used to generate a discrete intensity data y(pj). Calculated 

√Φ  and ΠΦ, from Eqs. 25 and 26, respectively, are normalized by their maximum 

intensities for shape comparison. 
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Figure 5. Comparisons of normalized profiles of the square root of AC-MW (√Φ) and s-PC-MW 

(ΠΦ). The intensity data are generated from the intensity function of Eq. 8 with pc = 0 and σ = 2, 

with an increment of 0.1. (a) Results of √Φ and ΠΦ calculated with 2m + 1 = 5. The FWHMs 

measured from the generated profiles are 2.02 and 2.00 for √Φ and ΠΦ, respectively. (b) Results 

of √Φ and ΠΦ calculated with 2m + 1 = 31. The measured FWHMs are 2.83 and 2.65 for √Φ and 

ΠΦ, respectively. 

 

Figure 5 shows the normalized curves of √Φ and ΠΦ calculated for two different 

window sizes. First, in Figure 5a, when the moving window size is smaller than the FWHM 

of the model function, both normalized profiles are almost indistinguishable, and their 

apparent FWHMs are close to the value of σ (= 2). By contrast, in Figure 5b, when the 

moving window size is larger than the bandwidth of the model function, the FWHM of 

both profiles become wider than σ. The √Φ curve becomes even wider than the ΠΦ curve. 

This result reconfirms that two MW methods can be considered equivalent as a metric of 

the first order derivative as long as the window size is narrower than the FWHM of 𝑦𝑦(1). 

 

3.3 Effects of non-uniform spacing of perturbations on AC-MW, s-PC-MW, and as-PC-

MW 
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So far numerical expressions of AC-MW, s-PC-MW, and as-PC-MW of Eqs. 23 – 

28 are based on the condition that perturbation variables are uniformly spaced. All MW 

correlation intensity calculations shown in previous publications, to my knowledge, are 

based on the same assumption of uniform perturbation spacing. In real experiments, 

however, it is often extremely challenging to acquire spectral data at perfectly uniformly 

spaced perturbations. For example, temperatures monitored while a series of spectra are 

measured can be easily different from the set temperatures for various reasons including 

imperfect temperature controller or inherent system fluctuation. In some experimental 

conditions, perturbation increment has to be varied monotonically during measurements. 

A proper consideration of non-uniform perturbation increments can be found in the 

conversion from integration of Eqs. 10, 15, and 18 to numerical summation of Eqs. 25, 26, 

and 28. Each increment (pJ+1 – pJ) or (pJ – pJ–1) must be multiplied to the term in the 

summation and the denominator (2m + 1) must be replaced by (pj+m – pj–m). In addition, the 

average perturbation is no longer pj and needs to be calculated separately for the mean-

centering process before the summation. To circumvent the complication due to non-

uniform spacing in numerical integration, one can generate uniformly spaced data by 

interpolating the original non-uniformly spaced data. However, this data manipulation can 

cause unwanted bias in analysis and error propagation due to imperfect interpolation 

models and incorrect weighting. Here, both MW intensities are calculated from a set of 

simulation data with either uniform and non-uniform perturbation spacing.  
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Figure 6. Simulated discrete intensity data with three different types of perturbation spacing. The 

intensity function y(p) is defined by Eq. 29, where the FWHM σ is set to be 2. (a) Perturbation 

increments are uniformly spaced as 0.1. (b) Perturbation increments are pseudo-randomly spaced 

with the average spacing of 0.1 added by a random number generated in the range between –0.05 

and +0.05. (c) Perturbation increments are increasingly spaced. The increment increases linearly 

from 0.072 (at p = –6) to 0.122 (at p = 6). At p = 0, the increment is 0.1, which is the same as (a). 

 

First, three types of perturbation arrays are generated: one with uniform spacing, 

another with pseudo-randomly fluctuating increments, and the other with monotonically 

increasing increments. Then, corresponding spectral intensities are calculated with a model 

function,  

𝑦𝑦(𝑝𝑝) = 1
2

erfc �−2√Ln 2 (𝑝𝑝−2
𝜎𝜎

)� + 1
2

erfc �−2√Ln 2 (𝑝𝑝+2
𝜎𝜎

)�   (29) 

which is the sum of two identical functions with differently shifted pc from Eq. 8. This two-

peaked model function makes it easier to understand non-uniform spacing effects than a 

single-peak function. Figure 6 shows the three simulation data with different types of 

perturbation spacing. It must be noted that for all three perturbation arrays the 
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corresponding spectral intensity y(pj) is calculated with the identical model function 

without any intensity noise. 

 

 

Figure 7. Effects of non-uniform perturbation spacing on the square root of AC-MW, s-PC-MW, 

and as-PC-MW. The simulation data sets of Figure 6 are used for calculation. For all calculations, 

the same number of spectra per window, 2m + 1 = 7 is used. The actual window size varies 

depending on the spacing types. For the uniform spacing on the top row, the window size is constant 

at 0.7. For the pseudo-random spacing, the window size varies randomly between 0.66 and 0.73. 

For the increasing spacing on the bottom row, the window size increases monotonically from 0.55 

(at pave = –5.5) to 0.82 (at pave = 5.5). The peak height of the MW profile calculated from the 

uniformly spaced perturbation data is used to normalize the MW profiles from the other 

perturbation spacing types. The differences of √Φ and ΠΦ are calculated by subtracting them with 

the normalized first order derivative of the model intensity function, which is plotted together as 

the dashed lines. The difference of ΠΦ is calculated by subtracting them with the normalized second 

order derivative of the model intensity function, which is also plotted together as the dashed lines. 
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Figure 7 shows results of √Φ, ΠΦ, and ΠΨ calculated from the identical simulation 

data with the three types of perturbation spacing (uniform, pseudo-random, and 

increasing). For all calculations in Figure 7, the number of spectra per window (2m + 1) is 

set to be seven so that its corresponding window size is smaller than σ/2 (= 1.0) for all 

three types of perturbation spacing. For the data with uniformly spaced perturbation, √Φ 

and ΠΦ are very similar to the first order derivative function, as already shown in Figure 

5a. By contrast, √Φ and ΠΦ calculated from the pseudo-randomly spaced perturbations are 

quite different from those from the uniformly spaced perturbations. Both √Φ and ΠΦ show 

noticeable fluctuations around the peak regions. The amount of fluctuation of the ΠΦ 

profile is as large as 10% of the peak intensities while that of √Φ is even larger and as large 

as 20% of the peak intensities. The effect of non-uniform spacing is much greater on ΠΨ 

than on √Φ and ΠΦ (note that the y-scale of ΠΨ difference is different from that of √Φ and 

ΠΦ). 

Figures 7g–7i show the profiles of √Φ, ΠΦ, and ΠΨ of the data with increasingly 

spaced perturbations. Similar to the case of pseudo-randomly spaced perturbation data, 

√Φ, ΠΦ, and ΠΨ all show a very strong dependence on the increment spacing. It must be 

noted that because window size of the increasingly spaced perturbation in Figures 7g–7i is 

smaller than that of the uniformly spaced perturbation in Figures 7a–7c for p < 0 and larger 

for p > 0. This strong window size dependence of √Φ and ΠΦ is not straightforwardly 

recognizable in their numerical integration formula of Eqs. 25, 26, and 28. Instead, this 

window size dependence of √Φ, ΠΦ, and ΠΨ can be found in the corresponding analytical 
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expressions calculated from a linearly or quadratically truncated Taylor series for y(p). 

Equations 14, 16, and 22 shows that √Φ(1) ∝ 𝑝𝑝𝑚𝑚, ΠΦ
(1) ∝ 𝑝𝑝𝑚𝑚2, and ΠΨ

(1) ∝ 𝑝𝑝𝑚𝑚3, which are 

consistent with the window size effects shown in the difference profiles of Figures 7g–7i. 

The inherent window size dependence of AC-MW and PC-MW correlation intensities 

causes the unwanted fluctuation and distortion in the observed values of √Φ, ΠΦ, and ΠΨ. 

If one wants to use √Φ, ΠΦ, and ΠΨ as metrics for the first or second order derivative of 

the spectral intensity measured with non-uniform perturbation increments, one needs to 

calculate a Riemann sum or other appropriate numerical integration of each moving 

window and scale it with its corresponding window size.  

 

3.4 Effects of noise in spectral intensity on AC-MW and PC-MW 

 Experimentally measured spectral intensity data do contain various types of noises. 

Previously, Morita et al. characterized intensity noise effect on AC-MW with introducing 

random noise to simulation data.19  Here the effect of intensity noise on the three MW 

methods is examined when two types of noise contributions to spectral intensity are 

considered: one is intensity-independent noise, such as dark noise and CCD readout noise; 

and the other is intensity-dependent noise, such as shot noise. The two types of noise 

contributions are considered as 

𝑦𝑦noise(𝑝𝑝) = 𝑦𝑦(𝑝𝑝) + 𝐑𝐑𝐑𝐑(𝑢𝑢) + 𝐑𝐑𝐑𝐑(𝑣𝑣�𝑦𝑦(𝑝𝑝)) (30) 

where RN(u) denotes the random number generation function between –u and +u for u ≥ 

0. The second term and the third term on the right hand side of Eq. 30 indicate intensity-

independent and intensity-dependent noise contributions, respectively. For a simple 
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analysis, perturbation increments are set to be uniformly spaced, and the window size is 

also set to be smaller than the half of the bandwidth of the intensity function. 

 

 

Figure 8. (a) Spectral intensity y(pj) added with two types of noises defined in Eq. 30 with u = 0.01 

for intensity-independent noise and v = 0.02 for intensity-dependent noise. The difference plot is 

calculated between the noise-added intensity and the noise-free intensity. (b) The square root of 

AC-MW (√Φ), (c) s-PC-MW (ΠΦ), and (d) as-PC-MW (ΠΨ) profiles are calculated with the noise-

added intensity (solid lines) and the noise-free intensity (dotted lines). The perturbation increments 

are constant at 0.1, and 2m + 1 = 7. for Both MW correlation plots from the noise-added and noise-

free intensity are normalized by the maximum MW correlation intensity value from the noise-free 

intensity. The difference plot is calculated between the MW correlation intensity from the noise-

added and noise-free intensity.  

 

Figure 8 shows the noise-added spectral intensity and the calculated MW 

correlation intensity from the spectral intensity. When the intensity is low (p < –4), it is 
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contributed by only intensity-independent noise. As the intensity increases, the noise 

becomes larger due to both intensity-independent noise and intensity-dependent noise. 

Similarly, the calculated MW correlation intensities show larger intensity fluctuation 

where intensity noise is larger. Interestingly, the AC-MW (√Φ) result shows different 

characteristics from the PC-MW (ΠΦ and ΠΨ) results in response to intensity noise. In 

Figures 8c and 8d, the fluctuating ΠΦ and ΠΨ curves calculated from the noise-added 

intensity, on average, follows the corresponding ΠΦ curve from the noise-free intensity. 

By contrast, the √Φ intensity falls into only the positive side and shows offset drifts from 

the corresponding √Φ curve from the noise-free intensity where √Φ intensity is close to 

zero (p < –4 and p > 4). The positive offset drift is larger where spectral intensity fluctuation 

is larger at p > 4. The offset drift of √Φ is explained by the square term of mean-centered 

spectral intensity, 𝑦𝑦��𝑝𝑝𝐽𝐽�
2
, in the summation of Eq. 25. This offset drift in a √Φ plot is 

potentially misleading as false peaks in data interpretation. 

The three MW analysis results are characterized for discrete simulation data with 

different types of perturbation spacing and with different types of intensity noise. All three 

MW correlation intensities are affected by perturbation spacing and the corresponding 

window size variation. In addition, AC-MW intensity is found to show offset drift due to 

intensity noise. 

 

4. Conclusion 

 Analytical and numerical expressions of autocorrelation MW (AC-MW), 

synchronous perturbation-correlation MW (s-PC-MW), and asynchronous perturbation-

correlation MW (as-PC-MW) have been described. The square root of AC-MW and s-PC-
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MW can be approximated to be proportional to the first order derivative when moving-

window size is sufficiently narrow compared with the bandwidth of spectral change. Also, 

as-PC-MW can represent the second order derivative when window size is sufficiently 

narrow. For discrete spectral data, non-uniform perturbation increment can cause undesired 

fluctuation or distortion in all three MW intensity profiles. Intensity noise can cause an 

offset drift in AC-MW intensity, which can mislead interpretation. This analytical and 

numerical characterization of those widely used MW correlation intensities clarifies their 

physical meanings and explains their appropriate analytical conditions. 
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