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ABSTRACT

Today’s cyber-attacks towards enterprise networks often un-
dermine and even fail the mission assurance of victim net-
works. Mission cyber resilience (or active cyber defense)
is critical to prevent or minimize negative consequences to-
wards missions. Without effective mission impact assess-
ment, mission cyber resilience cannot be really achieved.
However, there is an overlooked gap between mission im-
pact assessment and cyber resilience due to the non-mission-
centric nature of current research. This gap is even widened
in the context of cloud computing. The gap essentially ac-
counts for the weakest link between missions and attack-
resilient systems, and also explains why the existing impact
analysis is not really actionable. This paper initiates ef-
forts to bridge this gap, by developing a novel graphical
model that interconnects the mission dependency graphs
and cloud-level attack graphs. Our case study shows that
the new cloud-applicable model is able to bridge the gap be-
tween mission impact assessment and cyber resilience. As a
result, it can significantly boost the cyber resilience of mis-
sion critical systems.

1. INTRODUCTION

Due to the increasing severity of cyber-attacks, mission as-
surance entails critical demands of active cyber defense and
cyber resilience more than ever. Mission cyber resilience
or active cyber defense means capabilities to make priori-
tized, proactive and resource-constraint-aware recommenda-
tions on taking cyber defense actions, including network and
host hardening actions, quarantine actions, adaptive MTD
(Moving Target Defense) actions, roll-back actions, repair
and regeneration actions. Due to the fundamental necessity
and importance of situational awareness to decision making,
cyber situational awareness plays a critical role in achieving
mission cyber resilience. Especially, mission cyber resilience
cannot be really achieved without impact assessment. That
is, knowing which mission and how a mission is impacted by
an attack is the key for making correct resilience decisions.
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However, there is actually a largely overlooked gap be-
tween mission impact assessment and cyber resilience, though
both mission impact assessment and attack-resilient systems
have been extensively researched in the literature: 1) De-
spite extensive research on attack-resilient survivable sys-
tems and networks [1], most if not all existing cyber re-
silience techniques are unfortunately not mission-centric. Lack
of mission models and mission dependency analysis is a com-
mon limitation of existing attack resilience techniques. With-
out mission dependency analysis, existing cyber resilience
techniques cannot quantify the effectiveness of the recom-
mended cyber response actions in terms of mission goals,
and hence cannot convincingly justify the superiority of the
recommended response actions. 2) From another aspect, de-
spite extensive research on mission impact assessment, mis-
sion impact assessment results cannot be automatically used
to make mission-centric recommendations on taking cyber
response actions. This gap is even widened in the context of
cloud computing. In public cloud, each enterprise network
has its own missions. These missions are usually expected
to be independent and isolated from each other. However,
multi-step attacks may penetrate the boundaries of indi-
vidual enterprise networks from the same cloud, and thus
impact missions of multiple enterprise networks. That is,
attacks that happen in one enterprise network may be able
to affect missions of another enterprise network in the same
cloud. Therefore, mission impact should be re-assessed in
cloud environment.

Hence, lack of automation tools in associating missions
with attack-resilient systems is a weakest link in achieving
cyber resilience. Without such association, existing mission
impact analysis results are not really actionable: it’s difficult
to find out why and how a mission has been impacted. Since
bridging this gap may significantly boost the cyber resilience
of mission critical systems, how to bridge this gap is a very
important problem.

Therefore, the primary objective of this paper is to take
the first steps towards systematically bridging the critical
gap between mission impact assessment and cyber resilience
in the context of cloud computing. We aim to model the
mission impact process and enable the automatic reason-
ing of this process. To achieve this goal, we identified and
addressed the following challenges:

First, it is very challenging to envision a never-seen-before
graphical model that can integrate mission dependency graphs
and cloud-level attack graphs in such a way that can effec-
tively bridge the gap between existing mission impact analy-
sis results and attack-graph-based active cyber defense. No
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graphical model has yet been proposed to bridge this gap,
though two schools of thoughts have been respectively de-
veloped on mission impact analysis and attack-graph-based
active cyber defense.

Second, a cloud environment gives rise to new challenges
in bridging the gap. Cloud services such as Infrastructure as
a Service (IaaS), make attack graphs more complicated and
harder to get analyzed. Conventional attack graphs cannot
capture the stealthy information flows introduced by certain
cloud features. Attackers could leverage the hidden security
vulnerabilities caused by inappropriate cloud management
to launch zero-day attacks.

The significance of this paper’s contributions is two-fold:
1) We have developed a novel graphical model, the mission
impact graph model, to systematically bridges the critical
gap between impact assessment and cyber resilience. Bridg-
ing this gap significantly boosts the cyber resilience of mis-
sion critical systems; 2) To the best of our knowledge, this
is the first work that investigates the mission impact assess-
ment problem by considering the special features in cloud
computing environment; 3) We have extended the attack
graph generation tool MulVAL [9] to enable logical reason-
ing of mission impact assessment and automatic generation
of mission impact graphs.

2. RELATED WORK

A literature review is firstly performed to disclose the
mismatch between mission impact assessment and cyber re-
silience: 1) the formal models used by the existing mission
impact assessment techniques cannot be directly used by
the existing attack-resilient system and network designs; 2)
lack of mission models and mission dependency analysis is
a common limitation of existing cyber resilience techniques.

Mission impact assessment. In the past decade or so, ex-
tensive research has been conducted on modeling the mission
dependencies to help facilitate computer-assisted analysis of
current missions. The existing mission-oriented impact as-
sessment techniques can be classified into four categories:
1) mission impact assessment through use of ontology based
data collection. The basic idea is to create the ontology
of mission dependencies. For example, the Cyber Assets to
Mission and Users (CAMUs) approach [2] assumes that a cy-
ber asset provides a cyber capability that in turn supports a
mission. Their approaches mine existing logs and configura-
tions, such as those from LDAP, NetFlow, FTP, and UNIX
to create these mission-asset mappings; 2) mission impact
assessment through use of dependency graphs [4,5]. The
basic idea is the use of mission dependency graphs for cyber
impact assessment and a hierarchical (time-based) approach
to mission modeling and assessment; 3) mission impact as-
sessment through use of mission thread modeling [6]. The
basic idea is to leverage mission metrics supported by re-
source model and value model; 4) mission impact assess-
ment through use of Yager’s aggregators [3]. The basic idea
is to utilize a tree-based approach to calculate the impact of
missions. The mission tree is a tree-structure that utilizes
Yager’s aggregators [7] to intelligently aggregate the damage
of assets to calculate the impact on each individual mission.

Cyber resilience and active cyber defense. Since 2000, a
tremendous amount of research has been conducted on how
to make systems and networks resilient to cyber-attacks.
For example, the two volumes of DARPA Information Sur-
vivability Conference and Exposition proceedings described
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Figure 1: The Mission Dependency Graph and Attack
Graph.

the design, implementation and evaluation of the first set
of survivable and attack-resilient systems and networks [1].
The cyber response actions adopted in these systems include
replication actions, honeypot actions, software diversifica-
tion actions, dynamic quarantine actions, adaptive defense
actions, roll-back actions, proactive and reactive recovery
actions. Since then, a variety of cyber response actions have
emerged, including migration actions, regeneration actions,
MTD actions, decoy actions, CFI (control flow integrity)
actions, ASLR (Address Space Layout Randomization) ac-
tions, IP randomization actions, N-variant defense actions,
and software-defined network virtualization actions.

3. OUR APPROACH

In this paper, we aim to bridge the gap between mission
impact assessment and cyber resilience.

On the side of mission impact assessment, different types
of mission dependency graphs have been developed to asso-
ciate missions with component tasks and assets. As shown in
Figure 1, the status of assets (hosts, virtual machines, etc.)
will generate direct impact towards missions through de-
pendency relations. In current literature, such dependency
relations among assets, tasks, and missions are usually very
loose and not well defined. As a result, the correspond-
ing mission impact assessment is also inaccurate. In ad-
dition, without considering the possibility of multi-step at-
tacks caused by combinations of vulnerabilities, the mission
impact assessment is usually not sufficiently comprehensive.
For example, in Figure 1, assuming mission 1 and mission n
depends on host 1 and host n respectively, if host 1 is com-
promised, then mission 1 will be impacted and mission n
will not. However, if host 1 can be used as a stepping-stone
to compromise host n, then mission n has the possibility of
being impacted as well. Therefore, with only mission de-
pendency graph, it is not sufficient to perform accurate and
comprehensive mission impact assessment.

On the side of cyber resilience, attack graphs have become
mature techniques for analyzing the causality relationships
between vulnerabilities and exploitations. As in Figure 1,
by analyzing the vulnerabilities existing in the network, at-
tack graphs are able to generate potential attack paths that
show a sequence of attack steps (from host I to host n).



This capability enables security admins to proactively ana-
lyze the influence of some security operations towards the
potential attack paths. For example, security admins could
check how potential attack paths would be changed if they
patch a vulnerability. However, the traditional attack graph
has two limitations. First, it is not mission-centric. The at-
tack graph is able to generate potential attack paths through
logical reasoning, but it lacks the capability to reason po-
tential impacts towards missions. Second, traditional at-
tack graphs do not consider potential attacks enabled by
the cloud environment.

Therefore, considering the respective capabilities and dis-
advantages of mission dependency graphs and attack graphs,
this paper proposes to develop a logical graphical model,
called mission impact graph, to integrate mission depen-
dency graphs and cloud-level attack graphs. Our approach
contains three steps. First, there exist essential semantic
gaps between mission dependency graphs and attack graphs.
We identify the semantic gaps and unify the representation
of nodes and edges. This makes interconnecting mission
dependency graphs and attack graphs feasible. Second, to
bridge the gap inside a cloud environment, we extend tra-
ditional attack graphs into cloud-level attack graphs. The
cloud-level attack graphs are incorporated into new mission
impact graph. Third, we implement a set of interaction rules
in MulVAL [8,9] to enable automatic generation of logical
mission impact graph.

4. THE SEMANTIC GAP BETWEEN THE

ATTACK GRAPH AND THE MISSION DE-

PENDENCY GRAPH

Generally speaking, a mission dependency graph is a math-
ematical abstraction of assets, services, mission steps (also
known as tasks) and missions, and all of their dependencies
[6]. A mission dependency graph has five types of nodes,
including assets, services, tasks, missions and logical depen-
dency nodes. The logical dependency nodes are basically
AND-nodes and OR-nodes that represent logical dependen-
cies among other nodes. The AND-node represents that a
parent nodes depends on all of its children nodes. The OR-
node denotes that a parent node depends on at least one of
its children nodes. For example, a successful task may de-
pend on all of the supporting services being functional, while
a complete mission could require only one of its tasks being
fulfilled. Edges in a mission dependency graph represent the
interdependencies existing among nodes.

As for the attack graph, it usually shows the potential
attack steps leading to an attack goal. Several different
types of attack graphs have been developed, such as state
enumeration attack graphs [10-12] and dependency attack
graphs [13-15]. This paper uses the dependency attack
graph for analysis. Figure 2 is part of a simplified attack
graph. A traditional attack graph generated by MulVAL is
composed of two types of nodes, fact nodes (including primi-
tive fact nodes and derived fact nodes) and derivation nodes
(also known as rule nodes). Primitive fact nodes (denoted
with rectangles in Figure 2) present objective conditions of
the network, such as the network, host, and vulnerability
information. Derived fact nodes (denoted with diamonds)
are the facts inferred by applying the derivation rule. Each
derivation node (denoted with ellipse) represents the appli-
cation of a derivation rule. The derivation rules are imple-

mented as interaction rules in MulVAL. Simply put, one or
more fact nodes could be the preconditions of a derivation
node, while the derived fact node is the post-condition of the
derivation node. For example, in Figure 2, if node 4 “the at-
tacker has access to the server”, node 5 “the server provides
a service with an application” and node 6 “the application
has a vulnerability” are all satisfied, then the rule in node
7 will take effect and make node 8 become true. That is,
attacker is able to execute arbitrary code on the server.

Mission dependency graphs and traditional attacks graphs
have the following semantic gaps:

1) The meaning of nodes differs. In a mission dependency
graph, a node denotes an entity, such as an asset, a service,
a task, or a mission. The node does not specify the status of
the entity. In a traditional attack graph, a node represents
a statement, be it a rule or a fact. For example, a primi-
tive fact node could be “the web server provides OpenSSL
service” or “the openssl program has a vulnerability called
CVE-2008-0166". A rule node could be “the remote exploit
of a server program could happen”.

2) The meaning of edges differs. In a mission dependency
graph, the edges represent general interdependencies among
nodes, and do not specify concrete dependency types. The
logical relations are specially denoted with AND and OR
nodes. In a traditional attack graph, directed edges repre-
sent the causality relationship among nodes. One or more
fact nodes could cause a derivation node to take effect, which
further enables a derived fact node.

3) The representation of logical relations among nodes dif-
fers. In a mission dependency graph, the logical relations are
represented specifically with AND and OR nodes. In tradi-
tional attack graph, the logical relations are not provided
explicitly, but are implied in the graph structure: derivation
nodes (rule nodes) imply AND relations and derived fact
nodes imply OR relations. That is, fact nodes that serve
as preconditions of a derivation node have AND relations,
while derivation nodes leading to a derived fact node have
OR relations. The underlying principle is that all of the pre-
conditions have to be satisfied to enable a derivation rule,
while a derived fact node can become true as long as one
rule is satisfied.

S. INCORPORATING CLOUD-LEVEL AT-
TACK GRAPHS

In the public cloud, each enterprise network can generate
its own individual attack graph by scanning hosts and vir-
tual machines in the network. These individual graphs may
not be complete because new attack paths enabled by the
cloud environment could be missed. Therefore, a cloud-level
attack graph is needed to capture potential missing attacks
by taking some features of public cloud into consideration,
such as virtual machine image sharing and virtual machine
co-residency. Hence, [16] proposed the construction of cloud-
level attack graphs. A cloud-level attack graph contains
three levels: virtual machine level, virtual machine image
level, and host level. The virtual machine level mainly cap-
tures the causality relationship between vulnerabilities and
potential exploits inside the virtual machines. The virtual
machine image level focuses on attacks related to virtual
machine images. For example, a virtual machine image may
be instantiated by different enterprise networks. As a result,
its security holes are also inherited by all the instance vir-
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Figure 2: Part of a Simplified Attack Graph.

tual machines. The virtual machine image level is able to
reflect such inheritance relationship. The host level mainly
captures potential attacks to hosts, including exploits lever-
aging the virtual machine co-residency relationship.

Therefore, the mission impact graph needs to be extended
to incorporate cloud-level attack graphs. The semantics of
mission impact graphs remain the same because cloud-level
attack graphs have the same semantics as traditional attack
graphs. However, the mission impact graph is now composed
of two parts: cloud-level attack graph part, and the cloud-
applicable mission dependency part. New nodes should be
added as derivation nodes and fact nodes to incorporate spe-
cial features of cloud. To achieve this goal, we crafted a set
of Datalog clauses in MulVAL as the primitive facts, de-
rived facts and interaction rules. For the cloud-level attack
graph part, new facts and rules are crafted to model virtual
machine image vulnerability existence, vulnerability inheri-
tance, backdoor problem, and virtual machine co-residency
problem, and so on. For mission dependency part, new rules
are added to model the residency dependencies among vir-
tual machines and hosts, service dependencies among virtual
machines and services, etc. For example, the residency de-
pendency relationship between a host and the dependent
virtual machines can be modeled with the following interac-
tion rule:
interaction rule(

(hostImpact (VM) :-

residencyDepend(Vm, Host),
HostImpact (Host)),

rule_desc(‘An compromised host will impact the dependent
virtual machines’)).

6. MISSION IMPACT GRAPH

The new graphical model, which is referred to as mission
impact graph, is formally defined as follows: 1) It is a di-
rected graph that is composed of two parts: attack graph
part, and mission impact part. 2) It contains two kinds of
nodes: derivation nodes and fact nodes. Each fact node rep-
resents a logical statement. Each derivation node represents
an interaction rule that is applied for derivation. There are
two types of fact nodes, primitive fact nodes and derived
fact nodes. A primitive fact node represents a piece of given
information, such as host configuration, vulnerability infor-
mation, network connectivity, service information, progress
status of a mission (e.g. which mission steps are already

completed and which are not), and so on. Derived fact
nodes are computing results of applying interaction rules
iteratively on input facts. 3) The edges in the mission im-
pact graph represent the causality relations among nodes. A
derived fact node depends on one or more derivation nodes
(which have OR relations); a derivation node depends on
one or more fact nodes (which have AND relations).

In mission impact graphs, we need to combine attack
graphs and mission dependency graphs by unifying their rep-
resentation of nodes and edges. It is composed of four steps:

Step 1, the entity nodes in mission dependency graphs are
changed into fact nodes in the mission impact graph. The
fact nodes describe the status of entities. For example, a
service node in the mission dependency graph becomes a
fact node showing “the service is disabled” in the mission
impact graph, and an asset node may become “attackers
can execute arbitrary code on the host”, etc. One entity in
the mission dependency graph may become a number of fact
nodes depending on its possible states.

Step 2, the derivation nodes in the mission impact graph
are added to model the causality relationships among fact
nodes. The interdependencies among entities such as as-
sets, services, tasks, and missions in the mission dependency
graph can be interpreted into specific impact causality rules,
which become derivation nodes in mission impact graph. For
example, the dependency between a task t and a service s
could be interpreted into a rule R: “t will be compromised
if s is disabled and t is not completed yet”. When node
“s is disabled” and node “t is not completed yet” are both
satisfied, the derivation node stating rule R will take effect.

Step 3, logical relation nodes in mission dependency graphs
are removed, including AND and OR nodes. The logical re-
lations among nodes are implied with graph structure as in
the mission impact graph: derivation nodes imply AND, and
derived fact nodes imply OR.

Step 4, the fact nodes and derivation nodes are connected
with edges to represent direct causality relations, rather than
general dependencies.

Finally, to enable automatic generation of mission impact
graphs, we extended the MulVAL knowledge base by cre-
ating Datalog clauses. Three sets of Datalog clauses are
added as primitive facts, derived facts, and interaction rules
for the function of mission impact analysis. For primitive
facts, we crafted clauses that describe mission-task depen-
dencies, the service types, task service dependencies, and



mission progress status, and so on. The information can
be provided by system administrators. For derived facts,
we added clauses for the status of missions, tasks, services
and assets. To enable the logical reasoning, we created in-
teraction rules to model the causality relationships between
pre-conditions and post-conditions. For example, attacks
towards servers will impact services that are provided by
these servers. The interaction rule describing this causality
relationship could be as follows:

interaction rule(
(serviceImpact(Service, H, Perm):-
hostProvideService(H, Service),
execCode (H, Perm)),
rule_desc(‘An compromised server will impact the dependent
service?’)).

7. CASE STUDY

As shown in Figure 3, our scenario contains three enter-
prise networks in cloud: A is a start-up company, B is a
medical group, and C is a vaccine supplier. In addition to
providing existing vaccines, C is also developing a new type
of vaccine together with its collaborators. The formula of
the new vaccine is still very confidential. For security pur-
poses, C only accepts client requests from trusted IPs. The
relationships between A, B and C are: 1) they are on the
same cloud; 2) A’s webserver and B’s database server are two
virtual machines that co-reside on the same physical host;
In general the cloud provider will host the virtual machines
on arbitrary hosts. However, for this attack scenario, we
are making this assumption that the two virtual machines
are on the same host. This co-residency relationship can be
leveraged by attackers. 3) B is a trusted client to C. For sim-
plicity, in Figure 3 we only show servers and workstations
scenario involved.

The mission for medical group B, Bm1, is to provide medi-
cal services to all of its patients. Sample tasks include: Bt1,
patients make appointments; Bt2, access medical records;
Bt3, order shots or medicine; Bt4, administer shots; Bt5,
update medical records, and so on. The mission for vaccine
supplier C, Cm1, is to supply vaccines to authorized medical
groups, and develop the new type of vaccine with collabo-
rators. The sample tasks include: Ct1, ask for login ID and
password; Ct2, check the ID and password. If the user is
medical group, go to Ct3. If the user is collaboration part-
ner, go to Ct4; Ct3, order vaccine; Ctj, check and update
new vaccine information. Ct8 and Ct4 are then composed
of a number of subtasks.

In our attack scenario, attacker Mallory (could be a com-
petitor of victim companies) is very interested in the new
vaccine, and wants to steal its formula from supplier C. To
break into the supplier network, Mallory performs the fol-
lowing attack steps: 1) Mallory compromises A’s webserver
by exploiting vulnerability CVE-2007-5423 in tikiwiki 1.9.8;
2) Mallory leverages the co-residency relationship to take
over B’s database server, based on a side channel attack in
cloud. Side channel attacks are usually quite difficult, but
feasible. Extensive research has been done on side channel
attacks [17-19]. 3) B’s NFS server has a directory (/ez-
ports) that is shared by all the servers and workstations
inside the company. Normally B’s web server should not
have write permission to this shared directory. However,
due to a configuration error of the NFS export table, the
web server is given write permission. Therefore, Mallory

uploads a Trojan horse to the shared directory, which is
crafted as a management software named tool.deb. 4) The
innocent Workstation user from B downloads tool.deb from
NF'S server and installs it. This creates an unsolicited con-
nection back to Mallory. 5) The Workstation has access to
C’s webserver as a trusted client. Mallory then managed
to take over it via a brute-force key guessing attack (CVE-
2008-0166); 6) Mallory leverages C’s webserver as a stepping
stone to compromise C’s MongoDB database server based
on CVE-2013-1892, which allows Mallory successfully steal
credential information from an employee login database ta-
ble; 7) Mallory logins into C’s webserver as a collaborator
of C, and accesses the project proprietary documentation
to collect formula-related vaccine research and development
records.

By performing logical reasoning in MulVAL, we generated
a mission impact graph for our scenario. Figure 4 shows a
part of the graph. MulVAL takes several types of inputs,
including vulnerability-scanning report, host configuration,
network connectivity, mission-task-service-asset dependen-
cies, and so on. The output is a mission impact graph show-
ing which missions are likely to be affected by considering
current status of the networks. The cloud-level mission im-
pact graph is very critical and helpful for understanding po-
tential threats to missions. First, individual mission impact
graph may miss important attacks leveraging some features
of cloud, and thus generate incorrect evaluation about pos-
sible threats to missions. For example, without considering
the co-residency relationship between A’s webserver and B’s
database server, B seems to be very safe as the database
has no exploitable vulnerability. As a result, mission BmI
is viewed as safe. However, our mission impact graph shows
that Bm1 has the possibility of being impacted because the
virtual machine co-residency can be leveraged for attack.
Second, traditional attack graphs are not mission-centric.
Even if attack paths are generated for a network, the poten-
tial impact towards mission cannot be assessed without ana-
lyzing the dependency relationships among missions, tasks,
services and assets. Our mission impact graph is able to
show such impact towards missions by considering both at-
tacks and missions.

One function of our mission impact graph is to perform
automated “taint” propagation through logical reasoning.
Given a “taint”, be it a vulnerability, a compromised ma-
chine, or a disabled service, the impact of the “taint” can
be analyzed through logical reasoning. The mission impact
graph is able to reflect affected entities such as assets, ser-
vices, tasks, and missions. For example, in our case study,
if C’s webserver is compromised, the mission impact graph
will show that task Ct! and mission CmI are impacted.

Our mission impact graph is also very important for ef-
fective cyber resilience analysis. Propagating the attack-
graph-based active cyber defense from the attack graph side
to the mission impact side is helpful for performing advanced
proactive “what-if” mission impact assessment. Through
logical reasoning, impact analysis can be performed all the
way from inside a machine to a mission. Given the input
information, attack graphs can predict the potential attack
paths and identify possibly to-be-affected assets. Mission
impact graph extends attack graphs in a way that the pre-
diction of potential attack paths directly enables the predic-
tion of potential mission impact. Therefore, we can perform
proactive “what-if” mission impact analysis by changing the
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input conditions. For example, what if we remove a server?
What if we patch a vulnerability on a host? Which tasks
or missions will be affected? In our case study, if we break
the co-residency relationship between A’s webserver and B’s
database server by moving one of the virtual machines, at-
tacks towards B and C will prevented. As a result, missions
in B and C won’t be affected. Similarly, if the vulnerabil-
ity on C’s webserver is patched, attacks towards C can be
stopped and mission Cm2 will be safe. In addition, we can
also analyze the potential mission impact by assuming vul-
nerability existence on other servers. For example, what if
an unknown security hole exists on a host? Which tasks
or missions will be affected in this case? In addition, as
the situation knowledge regarding a network is continuously
collected, such knowledge can be interpreted into input files
to the automated tool for iterative “what-if” mission impact
analysis based on the current situation. Therefore, perform-
ing such “what-if” analysis enables interactive mission im-
pact analysis, and thus helps security admins make correct
decisions for cyber resilience.

8. CONCLUSION

This paper makes the first efforts to close a gap between
mission impact assessment and cyber resilience. In the cloud
environment it is even more difficulty to analyze the impact
of vulnerabilities and security events on mission. To fill the
gap and associate missions with current attack-resilient sys-
tems, this paper develops a novel graphical model that inter-
connects mission dependency graphs and cloud-level attack
graphs. Our case study shows that in some cases this model
successfully bridges the gap and may significantly boost the
cyber resilience of mission critical systems.

Disclaimer

This paper is not subject to copyright in the United States.
Commercial products are identified in order to adequately
specify certain procedures. In no case does such identifica-
tion imply recommendation or endorsement by the National
Institute of Standards and Technology, nor does it imply
that the identified products are necessarily the best avail-
able for the purpose.
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