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ABSTRACT 
Today’s cyber-attacks towards enterprise networks often un
dermine and even fail the mission assurance of victim net
works. Mission cyber resilience (or active cyber defense) 
is critical to prevent or minimize negative consequences to
wards missions. Without effective mission impact assess
ment, mission cyber resilience cannot be really achieved. 
However, there is an overlooked gap between mission im
pact assessment and cyber resilience due to the non-mission
centric nature of current research. This gap is even widened 
in the context of cloud computing. The gap essentially ac
counts for the weakest link between missions and attack-
resilient systems, and also explains why the existing impact 
analysis is not really actionable. This paper initiates ef
forts to bridge this gap, by developing a novel graphical 
model that interconnects the mission dependency graphs 
and cloud-level attack graphs. Our case study shows that 
the new cloud-applicable model is able to bridge the gap be
tween mission impact assessment and cyber resilience. As a 
result, it can significantly boost the cyber resilience of mis
sion critical systems. 

1. INTRODUCTION 
Due to the increasing severity of cyber-attacks, mission as

surance entails critical demands of active cyber defense and 
cyber resilience more than ever. Mission cyber resilience 
or active cyber defense means capabilities to make priori
tized, proactive and resource-constraint-aware recommenda
tions on taking cyber defense actions, including network and 
host hardening actions, quarantine actions, adaptive MTD 
(Moving Target Defense) actions, roll-back actions, repair 
and regeneration actions. Due to the fundamental necessity 
and importance of situational awareness to decision making, 
cyber situational awareness plays a critical role in achieving 
mission cyber resilience. Especially, mission cyber resilience 
cannot be really achieved without impact assessment. That 
is, knowing which mission and how a mission is impacted by 
an attack is the key for making correct resilience decisions. 
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However, there is actually a largely overlooked gap be
tween mission impact assessment and cyber resilience, though 
both mission impact assessment and attack-resilient systems 
have been extensively researched in the literature: 1) De
spite extensive research on attack-resilient survivable sys
tems and networks [1], most if not all existing cyber re
silience techniques are unfortunately not mission-centric. Lack 
of mission models and mission dependency analysis is a com
mon limitation of existing attack resilience techniques. With
out mission dependency analysis, existing cyber resilience 
techniques cannot quantify the effectiveness of the recom
mended cyber response actions in terms of mission goals, 
and hence cannot convincingly justify the superiority of the 
recommended response actions. 2) From another aspect, de
spite extensive research on mission impact assessment, mis
sion impact assessment results cannot be automatically used 
to make mission-centric recommendations on taking cyber 
response actions. This gap is even widened in the context of 
cloud computing. In public cloud, each enterprise network 
has its own missions. These missions are usually expected 
to be independent and isolated from each other. However, 
multi-step attacks may penetrate the boundaries of indi
vidual enterprise networks from the same cloud, and thus 
impact missions of multiple enterprise networks. That is, 
attacks that happen in one enterprise network may be able 
to affect missions of another enterprise network in the same 
cloud. Therefore, mission impact should be re-assessed in 
cloud environment. 

Hence, lack of automation tools in associating missions 
with attack-resilient systems is a weakest link in achieving 
cyber resilience. Without such association, existing mission 
impact analysis results are not really actionable: it’s difficult 
to find out why and how a mission has been impacted. Since 
bridging this gap may significantly boost the cyber resilience 
of mission critical systems, how to bridge this gap is a very 
important problem. 

Therefore, the primary objective of this paper is to take 
the first steps towards systematically bridging the critical 
gap between mission impact assessment and cyber resilience 
in the context of cloud computing. We aim to model the 
mission impact process and enable the automatic reason
ing of this process. To achieve this goal, we identified and 
addressed the following challenges: 

First, it is very challenging to envision a never-seen-before 
graphical model that can integrate mission dependency graphs 
and cloud-level attack graphs in such a way that can effec
tively bridge the gap between existing mission impact analy
sis results and attack-graph-based active cyber defense. No 

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00. 

mailto:Permissions@acm.org
mailto:pliu@ist.psu.edu
mailto:anoop.singhal@nist.gov
mailto:xzs5052@ist.psu.edu


Host 1

Task 1 

Mission 1

Service 1 

Host 2

Task 2

Mission 2

Service 2

Host n

Task n

Mission n

Service n

...

Mission Dependency Graph

...

...

...

...

...

...

...

...

...

...

...

...

...

1: The Mission and Attack 

graphical model has yet been proposed to bridge this gap, 
though two schools of thoughts have been respectively de
veloped on mission impact analysis and attack-graph-based 
active cyber defense. 

Second, a cloud environment gives rise to new challenges 
in bridging the gap. Cloud services such as Infrastructure as 
a Service (IaaS), make attack graphs more complicated and 
harder to get analyzed. Conventional attack graphs cannot 
capture the stealthy information flows introduced by certain 
cloud features. Attackers could leverage the hidden security 
vulnerabilities caused by inappropriate cloud management 
to launch zero-day attacks. 

The significance of this paper’s contributions is two-fold: 
1) We have developed a novel graphical model, the mission 
impact graph model, to systematically bridges the critical 
gap between impact assessment and cyber resilience. Bridg
ing this gap significantly boosts the cyber resilience of mis
sion critical systems; 2) To the best of our knowledge, this 
is the first work that investigates the mission impact assess
ment problem by considering the special features in cloud 
computing environment; 3) We have extended the attack 
graph generation tool MulVAL [9] to enable logical reason
ing of mission impact assessment and automatic generation 
of mission impact graphs. 

2. RELATED WORK 
A literature review is firstly performed to disclose the 

mismatch between mission impact assessment and cyber re
silience: 1) the formal models used by the existing mission 
impact assessment techniques cannot be directly used by 
the existing attack-resilient system and network designs; 2) 
lack of mission models and mission dependency analysis is 
a common limitation of existing cyber resilience techniques. 

Mission impact assessment. In the past decade or so, ex
tensive research has been conducted on modeling the mission 
dependencies to help facilitate computer-assisted analysis of 
current missions. The existing mission-oriented impact as
sessment techniques can be classified into four categories: 
1) mission impact assessment through use of ontology based 
data collection. The basic idea is to create the ontology 
of mission dependencies. For example, the Cyber Assets to 
Mission and Users (CAMUs) approach [2] assumes that a cy
ber asset provides a cyber capability that in turn supports a 
mission. Their approaches mine existing logs and configura
tions, such as those from LDAP, NetFlow, FTP, and UNIX 
to create these mission-asset mappings; 2) mission impact 
assessment through use of dependency graphs [4, 5]. The 
basic idea is the use of mission dependency graphs for cyber 
impact assessment and a hierarchical (time-based) approach 
to mission modeling and assessment; 3) mission impact as
sessment through use of mission thread modeling [6]. The 
basic idea is to leverage mission metrics supported by re
source model and value model; 4) mission impact assess
ment through use of Yager’s aggregators [3]. The basic idea 
is to utilize a tree-based approach to calculate the impact of 
missions. The mission tree is a tree-structure that utilizes 
Yager’s aggregators [7] to intelligently aggregate the damage 
of assets to calculate the impact on each individual mission. 

Cyber resilience and active cyber defense. Since 2000, a 
tremendous amount of research has been conducted on how 
to make systems and networks resilient to cyber-attacks. 
For example, the two volumes of DARPA Information Sur
vivability Conference and Exposition proceedings described 
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the design, implementation and evaluation of the first set 
of survivable and attack-resilient systems and networks [1]. 
The cyber response actions adopted in these systems include 
replication actions, honeypot actions, software diversifica
tion actions, dynamic quarantine actions, adaptive defense 
actions, roll-back actions, proactive and reactive recovery 
actions. Since then, a variety of cyber response actions have 
emerged, including migration actions, regeneration actions, 
MTD actions, decoy actions, CFI (control flow integrity) 
actions, ASLR (Address Space Layout Randomization) ac
tions, IP randomization actions, N-variant defense actions, 
and software-defined network virtualization actions. 

3. OUR APPROACH 
In this paper, we aim to bridge the gap between mission 

impact assessment and cyber resilience. 
On the side of mission impact assessment, different types 

of mission dependency graphs have been developed to asso
ciate missions with component tasks and assets. As shown in 
Figure 1, the status of assets (hosts, virtual machines, etc.) 
will generate direct impact towards missions through de
pendency relations. In current literature, such dependency 
relations among assets, tasks, and missions are usually very 
loose and not well defined. As a result, the correspond
ing mission impact assessment is also inaccurate. In ad
dition, without considering the possibility of multi-step at
tacks caused by combinations of vulnerabilities, the mission 
impact assessment is usually not sufficiently comprehensive. 
For example, in Figure 1, assuming mission 1 and mission n 
depends on host 1 and host n respectively, if host 1 is com
promised, then mission 1 will be impacted and mission n 
will not. However, if host 1 can be used as a stepping-stone 
to compromise host n, then mission n has the possibility of 
being impacted as well. Therefore, with only mission de
pendency graph, it is not sufficient to perform accurate and 
comprehensive mission impact assessment. 

On the side of cyber resilience, attack graphs have become 
mature techniques for analyzing the causality relationships 
between vulnerabilities and exploitations. As in Figure 1, 
by analyzing the vulnerabilities existing in the network, at
tack graphs are able to generate potential attack paths that 
show a sequence of attack steps (from host 1 to host n). 



This capability enables security admins to proactively ana
lyze the influence of some security operations towards the 
potential attack paths. For example, security admins could 
check how potential attack paths would be changed if they 
patch a vulnerability. However, the traditional attack graph 
has two limitations. First, it is not mission-centric. The at
tack graph is able to generate potential attack paths through 
logical reasoning, but it lacks the capability to reason po
tential impacts towards missions. Second, traditional at
tack graphs do not consider potential attacks enabled by 
the cloud environment. 

Therefore, considering the respective capabilities and dis
advantages of mission dependency graphs and attack graphs, 
this paper proposes to develop a logical graphical model, 
called mission impact graph, to integrate mission depen
dency graphs and cloud-level attack graphs. Our approach 
contains three steps. First, there exist essential semantic 
gaps between mission dependency graphs and attack graphs. 
We identify the semantic gaps and unify the representation 
of nodes and edges. This makes interconnecting mission 
dependency graphs and attack graphs feasible. Second, to 
bridge the gap inside a cloud environment, we extend tra
ditional attack graphs into cloud-level attack graphs. The 
cloud-level attack graphs are incorporated into new mission 
impact graph. Third, we implement a set of interaction rules 
in MulVAL [8, 9] to enable automatic generation of logical 
mission impact graph. 

4.	 THE SEMANTIC GAP BETWEEN THE 
ATTACK GRAPH AND THE MISSION DE
PENDENCY GRAPH 

Generally speaking, a mission dependency graph is a math
ematical abstraction of assets, services, mission steps (also 
known as tasks) and missions, and all of their dependencies 
[6]. A mission dependency graph has five types of nodes, 
including assets, services, tasks, missions and logical depen
dency nodes. The logical dependency nodes are basically 
AND-nodes and OR-nodes that represent logical dependen
cies among other nodes. The AND-node represents that a 
parent nodes depends on all of its children nodes. The OR-
node denotes that a parent node depends on at least one of 
its children nodes. For example, a successful task may de
pend on all of the supporting services being functional, while 
a complete mission could require only one of its tasks being 
fulfilled. Edges in a mission dependency graph represent the 
interdependencies existing among nodes. 

As for the attack graph, it usually shows the potential 
attack steps leading to an attack goal. Several different 
types of attack graphs have been developed, such as state 
enumeration attack graphs [10–12] and dependency attack 
graphs [13–15]. This paper uses the dependency attack 
graph for analysis. Figure 2 is part of a simplified attack 
graph. A traditional attack graph generated by MulVAL is 
composed of two types of nodes, fact nodes (including primi
tive fact nodes and derived fact nodes) and derivation nodes 
(also known as rule nodes). Primitive fact nodes (denoted 
with rectangles in Figure 2) present objective conditions of 
the network, such as the network, host, and vulnerability 
information. Derived fact nodes (denoted with diamonds) 
are the facts inferred by applying the derivation rule. Each 
derivation node (denoted with ellipse) represents the appli
cation of a derivation rule. The derivation rules are imple

mented as interaction rules in MulVAL. Simply put, one or 
more fact nodes could be the preconditions of a derivation 
node, while the derived fact node is the post-condition of the 
derivation node. For example, in Figure 2, if node 4 “the at
tacker has access to the server”, node 5 “the server provides 
a service with an application” and node 6 “the application 
has a vulnerability” are all satisfied, then the rule in node 
7 will take effect and make node 8 become true. That is, 
attacker is able to execute arbitrary code on the server. 

Mission dependency graphs and traditional attacks graphs 
have the following semantic gaps: 

1) The meaning of nodes differs. In a mission dependency 
graph, a node denotes an entity, such as an asset, a service, 
a task, or a mission. The node does not specify the status of 
the entity. In a traditional attack graph, a node represents 
a statement, be it a rule or a fact. For example, a primi
tive fact node could be “the web server provides OpenSSL 
service” or “the openssl program has a vulnerability called 
CVE-2008-0166”. A rule node could be “the remote exploit 
of a server program could happen”. 

2) The meaning of edges differs. In a mission dependency 
graph, the edges represent general interdependencies among 
nodes, and do not specify concrete dependency types. The 
logical relations are specially denoted with AND and OR 
nodes. In a traditional attack graph, directed edges repre
sent the causality relationship among nodes. One or more 
fact nodes could cause a derivation node to take effect, which 
further enables a derived fact node. 

3) The representation of logical relations among nodes dif
fers. In a mission dependency graph, the logical relations are 
represented specifically with AND and OR nodes. In tradi
tional attack graph, the logical relations are not provided 
explicitly, but are implied in the graph structure: derivation 
nodes (rule nodes) imply AND relations and derived fact 
nodes imply OR relations. That is, fact nodes that serve 
as preconditions of a derivation node have AND relations, 
while derivation nodes leading to a derived fact node have 
OR relations. The underlying principle is that all of the pre
conditions have to be satisfied to enable a derivation rule, 
while a derived fact node can become true as long as one 
rule is satisfied. 

5.	 INCORPORATING CLOUD-LEVEL AT
TACK GRAPHS 

In the public cloud, each enterprise network can generate 
its own individual attack graph by scanning hosts and vir
tual machines in the network. These individual graphs may 
not be complete because new attack paths enabled by the 
cloud environment could be missed. Therefore, a cloud-level 
attack graph is needed to capture potential missing attacks 
by taking some features of public cloud into consideration, 
such as virtual machine image sharing and virtual machine 
co-residency. Hence, [16] proposed the construction of cloud-
level attack graphs. A cloud-level attack graph contains 
three levels: virtual machine level, virtual machine image 
level, and host level. The virtual machine level mainly cap
tures the causality relationship between vulnerabilities and 
potential exploits inside the virtual machines. The virtual 
machine image level focuses on attacks related to virtual 
machine images. For example, a virtual machine image may 
be instantiated by different enterprise networks. As a result, 
its security holes are also inherited by all the instance vir



4:netAccess(server, http)

7:Rule (remote exploit of a server program)

5:networkServiceInfo(server, app) 6:vulExists(server, 'vulID', app)

8:execCode(server)

Figure 2: Part of a Simplified Attack Graph. 

tual machines. The virtual machine image level is able to 
reflect such inheritance relationship. The host level mainly 
captures potential attacks to hosts, including exploits lever
aging the virtual machine co-residency relationship. 

Therefore, the mission impact graph needs to be extended 
to incorporate cloud-level attack graphs. The semantics of 
mission impact graphs remain the same because cloud-level 
attack graphs have the same semantics as traditional attack 
graphs. However, the mission impact graph is now composed 
of two parts: cloud-level attack graph part, and the cloud-
applicable mission dependency part. New nodes should be 
added as derivation nodes and fact nodes to incorporate spe
cial features of cloud. To achieve this goal, we crafted a set 
of Datalog clauses in MulVAL as the primitive facts, de
rived facts and interaction rules. For the cloud-level attack 
graph part, new facts and rules are crafted to model virtual 
machine image vulnerability existence, vulnerability inheri
tance, backdoor problem, and virtual machine co-residency 
problem, and so on. For mission dependency part, new rules 
are added to model the residency dependencies among vir
tual machines and hosts, service dependencies among virtual 
machines and services, etc. For example, the residency de
pendency relationship between a host and the dependent 
virtual machines can be modeled with the following interac
tion rule: 

interaction rule( 
(hostImpact(VM):

residencyDepend(Vm, Host), 
HostImpact(Host)), 

rule_desc(‘An compromised host will impact the dependent 
virtual machines’)). 

6. MISSION IMPACT GRAPH 
The new graphical model, which is referred to as mission 

impact graph, is formally defined as follows: 1) It is a di
rected graph that is composed of two parts: attack graph 
part, and mission impact part. 2) It contains two kinds of 
nodes: derivation nodes and fact nodes. Each fact node rep
resents a logical statement. Each derivation node represents 
an interaction rule that is applied for derivation. There are 
two types of fact nodes, primitive fact nodes and derived 
fact nodes. A primitive fact node represents a piece of given 
information, such as host configuration, vulnerability infor
mation, network connectivity, service information, progress 
status of a mission (e.g. which mission steps are already 

completed and which are not), and so on. Derived fact 
nodes are computing results of applying interaction rules 
iteratively on input facts. 3) The edges in the mission im
pact graph represent the causality relations among nodes. A 
derived fact node depends on one or more derivation nodes 
(which have OR relations); a derivation node depends on 
one or more fact nodes (which have AND relations). 

In mission impact graphs, we need to combine attack 
graphs and mission dependency graphs by unifying their rep
resentation of nodes and edges. It is composed of four steps: 

Step 1, the entity nodes in mission dependency graphs are 
changed into fact nodes in the mission impact graph. The 
fact nodes describe the status of entities. For example, a 
service node in the mission dependency graph becomes a 
fact node showing “the service is disabled” in the mission 
impact graph, and an asset node may become “attackers 
can execute arbitrary code on the host”, etc. One entity in 
the mission dependency graph may become a number of fact 
nodes depending on its possible states. 

Step 2, the derivation nodes in the mission impact graph 
are added to model the causality relationships among fact 
nodes. The interdependencies among entities such as as
sets, services, tasks, and missions in the mission dependency 
graph can be interpreted into specific impact causality rules, 
which become derivation nodes in mission impact graph. For 
example, the dependency between a task t and a service s 
could be interpreted into a rule R: “t will be compromised 
if s is disabled and t is not completed yet”. When node 
“s is disabled” and node “t is not completed yet” are both 
satisfied, the derivation node stating rule R will take effect. 
Step 3, logical relation nodes in mission dependency graphs 

are removed, including AND and OR nodes. The logical re
lations among nodes are implied with graph structure as in 
the mission impact graph: derivation nodes imply AND, and 
derived fact nodes imply OR. 

Step 4, the fact nodes and derivation nodes are connected 
with edges to represent direct causality relations, rather than 
general dependencies. 

Finally, to enable automatic generation of mission impact 
graphs, we extended the MulVAL knowledge base by cre
ating Datalog clauses. Three sets of Datalog clauses are 
added as primitive facts, derived facts, and interaction rules 
for the function of mission impact analysis. For primitive 
facts, we crafted clauses that describe mission-task depen
dencies, the service types, task service dependencies, and 



mission progress status, and so on. The information can 
be provided by system administrators. For derived facts, 
we added clauses for the status of missions, tasks, services 
and assets. To enable the logical reasoning, we created in
teraction rules to model the causality relationships between 
pre-conditions and post-conditions. For example, attacks 
towards servers will impact services that are provided by 
these servers. The interaction rule describing this causality 
relationship could be as follows: 

interaction rule( 
(serviceImpact(Service, H, Perm):

hostProvideService(H, Service), 
execCode(H, Perm)), 

rule_desc(‘An compromised server will impact the dependent 
service’)). 

7. CASE STUDY 
As shown in Figure 3, our scenario contains three enter

prise networks in cloud: A is a start-up company, B is a 
medical group, and C is a vaccine supplier. In addition to 
providing existing vaccines, C is also developing a new type 
of vaccine together with its collaborators. The formula of 
the new vaccine is still very confidential. For security pur
poses, C only accepts client requests from trusted IPs. The 
relationships between A, B and C are: 1) they are on the 
same cloud; 2) A’s webserver and B’s database server are two 
virtual machines that co-reside on the same physical host; 
In general the cloud provider will host the virtual machines 
on arbitrary hosts. However, for this attack scenario, we 
are making this assumption that the two virtual machines 
are on the same host. This co-residency relationship can be 
leveraged by attackers. 3) B is a trusted client to C. For sim
plicity, in Figure 3 we only show servers and workstations 
scenario involved. 

The mission for medical group B, Bm1, is to provide medi
cal services to all of its patients. Sample tasks include: Bt1, 
patients make appointments; Bt2, access medical records; 
Bt3, order shots or medicine; Bt4, administer shots; Bt5, 
update medical records, and so on. The mission for vaccine 
supplier C, Cm1, is to supply vaccines to authorized medical 
groups, and develop the new type of vaccine with collabo
rators. The sample tasks include: Ct1, ask for login ID and 
password; Ct2, check the ID and password. If the user is 
medical group, go to Ct3. If the user is collaboration part
ner, go to Ct4 ; Ct3, order vaccine; Ct4, check and update 
new vaccine information. Ct3 and Ct4 are then composed 
of a number of subtasks. 

In our attack scenario, attacker Mallory (could be a com
petitor of victim companies) is very interested in the new 
vaccine, and wants to steal its formula from supplier C. To 
break into the supplier network, Mallory performs the fol
lowing attack steps: 1) Mallory compromises A’s webserver 
by exploiting vulnerability CVE-2007-5423 in tikiwiki 1.9.8; 
2) Mallory leverages the co-residency relationship to take 
over B’s database server, based on a side channel attack in 
cloud. Side channel attacks are usually quite difficult, but 
feasible. Extensive research has been done on side channel 
attacks [17–19]. 3) B’s NFS server has a directory (/ex
ports) that is shared by all the servers and workstations 
inside the company. Normally B’s web server should not 
have write permission to this shared directory. However, 
due to a configuration error of the NFS export table, the 
web server is given write permission. Therefore, Mallory 

uploads a Trojan horse to the shared directory, which is 
crafted as a management software named tool.deb. 4) The 
innocent Workstation user from B downloads tool.deb from 
NFS server and installs it. This creates an unsolicited con
nection back to Mallory. 5) The Workstation has access to 
C’s webserver as a trusted client. Mallory then managed 
to take over it via a brute-force key guessing attack (CVE
2008-0166); 6) Mallory leverages C’s webserver as a stepping 
stone to compromise C’s MongoDB database server based 
on CVE-2013-1892, which allows Mallory successfully steal 
credential information from an employee login database ta
ble; 7) Mallory logins into C’s webserver as a collaborator 
of C, and accesses the project proprietary documentation 
to collect formula-related vaccine research and development 
records. 

By performing logical reasoning in MulVAL, we generated 
a mission impact graph for our scenario. Figure 4 shows a 
part of the graph. MulVAL takes several types of inputs, 
including vulnerability-scanning report, host configuration, 
network connectivity, mission-task-service-asset dependen
cies, and so on. The output is a mission impact graph show
ing which missions are likely to be affected by considering 
current status of the networks. The cloud-level mission im
pact graph is very critical and helpful for understanding po
tential threats to missions. First, individual mission impact 
graph may miss important attacks leveraging some features 
of cloud, and thus generate incorrect evaluation about pos
sible threats to missions. For example, without considering 
the co-residency relationship between A’s webserver and B’s 
database server, B seems to be very safe as the database 
has no exploitable vulnerability. As a result, mission Bm1 
is viewed as safe. However, our mission impact graph shows 
that Bm1 has the possibility of being impacted because the 
virtual machine co-residency can be leveraged for attack. 
Second, traditional attack graphs are not mission-centric. 
Even if attack paths are generated for a network, the poten
tial impact towards mission cannot be assessed without ana
lyzing the dependency relationships among missions, tasks, 
services and assets. Our mission impact graph is able to 
show such impact towards missions by considering both at
tacks and missions. 

One function of our mission impact graph is to perform 
automated “taint” propagation through logical reasoning. 
Given a “taint”, be it a vulnerability, a compromised ma
chine, or a disabled service, the impact of the “taint” can 
be analyzed through logical reasoning. The mission impact 
graph is able to reflect affected entities such as assets, ser
vices, tasks, and missions. For example, in our case study, 
if C’s webserver is compromised, the mission impact graph 
will show that task Ct1 and mission Cm1 are impacted. 

Our mission impact graph is also very important for ef
fective cyber resilience analysis. Propagating the attack-
graph-based active cyber defense from the attack graph side 
to the mission impact side is helpful for performing advanced 
proactive “what-if” mission impact assessment. Through 
logical reasoning, impact analysis can be performed all the 
way from inside a machine to a mission. Given the input 
information, attack graphs can predict the potential attack 
paths and identify possibly to-be-affected assets. Mission 
impact graph extends attack graphs in a way that the pre
diction of potential attack paths directly enables the predic
tion of potential mission impact. Therefore, we can perform 
proactive “what-if”mission impact analysis by changing the 
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1:attackerLocated(internet)

3:Rule(direct network access)

2:hacl(internet, A_webServer, http, 80)

4:netAccess(A_webServer, http, 80)

7:Rule (remote exploit of a server program):0

5:networkServiceInfo(A_webServer, tikiwiki, http, 80, _) 6:vulExists(A_webServer, 'CVE-2007-5423', tikiwiki, remoteExploit, privEscalation)

8:execCode(A_webServer,_):0

11:Rule (Virtual Machine Coresidency):0

9:resideOn(A_webServer, h1):0 10:resideOn(B_DBServer, h1):0

12:stealthyBridgeExists(A_webServer, B_DBServer, h1):0

13:execCode(B_DBServer,_):0

16:Rule(NFS Shell) 39:Rule(service dependency):0

14:hacl(B_DBServer, B_nfsServer, nfsProtocol, nfsPort) 15:nfsExportInfo(B_nfsServer, '/export', write, B_DBServer)

17:accessFile(B_nfsServer, write, '/export')

19:Rule(NFS Semantics)

18:nfsMounted(B_workStation, '/mnt/share', nfsServer, '/export', read)

20:accessFile(B_workStation, write, '/mnt/share')

22:Rule(Corresponding Trojan horse installation)

21:vulExists(B_workStation, 'CVE-2009-2692', kernel, localExploit, privEscalation)

23:execCode(B_workstation, root):0

25:Rule (multi-hop access):0

24:hacl(B_workSTATION, C_webServer, http, 80)

26:netAccess(C_webServer, http, 80)

29:Rule(remote exploit of a server program):0

27:networkServiceInfo(C_webServer, openssl, tcp, 22, _) 28:vulExists(C_webServer, 'CVE-2008-0166', openssl, remoteExploit, privEscalation)

30:execCode(C_webServer,_):0

32:Rule(multi-hop access):0 48:Rule(service dependency):0

31:hacl(C_webServer, C_DBServer, tcp, 27017)

33:netAccess(C_DBServer, tcp, 27017)

36:Rule(remote exploit of a server program):0

34:networkServiceInfo(C_DBServer, mongoDB, tcp, 27017, _) 35:vulExists(C_DBServer, 'CVE-2013-1892', mongoDB, remoteExploit, privEscalation)

37:execCode(C_DBServer, root):0

57:Rule(service dependency):0

38:provideService(B_DBServer, database, tcp, _)

40:serviceImpacted(B_DBServer, Database, tcp, _)

42:Rule(task dependency):0

41:taskDependOnService(Bt2, database, tcp, _)

43:taskImpacted(Bt2)

45:Rule(mission is composed of tasks):0

44:composingTask(Bm1, Bt2)

46:missionImpacted(Bm1)

47:provideService(C_webServer, web, http, 80)

49:serviceImpacted(C_webServer, web, http, 80)

51:Rule(task dependency):0

50:taskDependOnService(Ct1, web, http, 80)

52:taskImpacted(Ct1)

54:Rule(mission is composed of tasks):0

53:composingTask(Cm1, Ct1)

55:missionImpacted(Cm1)

56:provideService(C_DBServer, database, tcp, 27017)

58:serviceImpacted(C_DBServer, database, tcp, 27017)

60:Rule(task dependency):0

59:taskDependOnService(Ct2, database, tcp, 27017)

61:taskImpacted(Ct2)

63:Rule(control depended task can influence workflow):0

62:controlDependency(Cm1, Ct2)

64:missionFlowChanged(Cm1, Ct2)

65:Rule(workflow impacts mission):0

Figure 4: Mission Impact Graph. 



input conditions. For example, what if we remove a server? 
What if we patch a vulnerability on a host? Which tasks 
or missions will be affected? In our case study, if we break 
the co-residency relationship between A’s webserver and B’s 
database server by moving one of the virtual machines, at
tacks towards B and C will prevented. As a result, missions 
in B and C won’t be affected. Similarly, if the vulnerabil
ity on C’s webserver is patched, attacks towards C can be 
stopped and mission Cm2 will be safe. In addition, we can 
also analyze the potential mission impact by assuming vul
nerability existence on other servers. For example, what if 
an unknown security hole exists on a host? Which tasks 
or missions will be affected in this case? In addition, as 
the situation knowledge regarding a network is continuously 
collected, such knowledge can be interpreted into input files 
to the automated tool for iterative “what-if”mission impact 
analysis based on the current situation. Therefore, perform
ing such “what-if” analysis enables interactive mission im
pact analysis, and thus helps security admins make correct 
decisions for cyber resilience. 

8. CONCLUSION 
This paper makes the first efforts to close a gap between 

mission impact assessment and cyber resilience. In the cloud 
environment it is even more difficulty to analyze the impact 
of vulnerabilities and security events on mission. To fill the 
gap and associate missions with current attack-resilient sys
tems, this paper develops a novel graphical model that inter
connects mission dependency graphs and cloud-level attack 
graphs. Our case study shows that in some cases this model 
successfully bridges the gap and may significantly boost the 
cyber resilience of mission critical systems. 

Disclaimer 
This paper is not subject to copyright in the United States. 
Commercial products are identified in order to adequately 
specify certain procedures. In no case does such identifica
tion imply recommendation or endorsement by the National 
Institute of Standards and Technology, nor does it imply 
that the identified products are necessarily the best avail
able for the purpose. 
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