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Abstract: Manufacturing operations suffer from degradation as equipment and processes are continually 

used to generate products. The development and integration of monitoring, diagnostic, and prognostic 

(collectively known as PHM) technologies can enhance maintenance and control strategies within 

manufacturing operations to improve asset availability, product quality, and overall productivity. As 

these technologies continue to evolve, it is critical for PHM technologies to be assessed to ensure the 

manufacturing community is aware of the true capabilities and potential of PHM technologies. The 

National Institute of Standards and Technology (NIST) has developed a use case that is representative of 

common manufacturing operations to support the assessment of PHM technologies. This use case will 

produce test scenarios, reference data sets and protocols, and verification and validation tools. The use 

case is described including its three constituent research areas: Manufacturing Process and Equipment 

Monitoring, Machine Tool Linear Axes Diagnostics and Prognostics, and Health and Control 

Management of Robot Systems. 
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

1. INTRODUCTION 

Advanced technology continues to emerge and evolve 

leading to increasing capabilities within manufacturing 

operations. Smart Manufacturing or Industrie 4.0 are focused 

on integrating and connecting hardware, software, and data to 

increase operational efficiency, asset availability, and quality 

while decreasing unscheduled downtime and scrap 

(Kagermann et al., 2013) (McKinsey, 2012) (PCAST, 2012). 

This translates into manufacturing operations becoming more 

efficient to keep up with changing consumer demand and 

increasing competition.  

 

Asset availability is critical for manufacturers to output 

products to meet consumer demand. Unexpected downtime 

and lost production are ‘pain points’ for manufacturers, 

especially in that they usually translate to financial losses. To 

minimize these pain points, the manufacturing stakeholder 

community (including manufacturers, technology developers, 

integrators, and academic researchers) are advancing 

monitoring, diagnostic, and prognostic (commonly known as 

prognostics and health management - PHM) technologies to 

improve maintenance and control strategies. 

 

The United States (U.S.) Federal Government has a research 

focus in advancing the means of assessing, verifying, and 

validating PHM technologies operating within manufacturing 

environments (National Institute of Standards and 

Technology, 2016). This effort resides at the National 

Institute of Standards and Technology (NIST) and includes a 

focus on machine tool and robotic manufacturing operations. 

NIST researchers are actively developing use cases, 

performance metrics, test protocols and reference data sets to 

enable the verification and validation (V&V) of PHM 

technologies. 

2. BACKGROUND 

The need for PHM is motivated by the fact that as soon as 

you turn on a piece of equipment or initiate a process 

(requiring the interaction of one or more physical entities), 

the system begins to degrade, ultimately causing ‘wear & 

tear.’ If unchecked, this degradation will lead to faults or 

failures impacting the overall quality and/or productivity of 

the process. The field of PHM has emerged from the study, 

design, and implementation of monitoring, diagnostic, and/or 

prognostic technologies to minimize the occurrence of 

failures. PHM aims to increase our knowledge of a process so 

that one can make better maintenance and control decisions.  

2.1 Manufacturing Health and Control Management  

Four maintenance strategies have been documented and 

applied in varying extents across the manufacturing 

environment. The strategies are known as reactive, 

preventative, predictive, and proactive maintenance (Jin et 

al., 2016). Reactive maintenance is the simplest form of 

maintenance; no maintenance is performed on the machine 

until a failure occurs. Although this maintenance strategy is 

the easiest to implement (i.e., do nothing until something 

breaks), it is often the most expensive strategy when 

considering maintenance costs, lost asset availability, lost 

production, and potential collateral damage. Preventative 
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maintenance is when maintenance is performed on specific 

unit intervals (e.g., x cycles, y hours) and is widely 

performed in the manufacturing industry (Ahmad and 

Kamaruddin, 2012) (Coats et al., 2011). Predictive 

maintenance, sometimes known as condition-based 

maintenance, uses health and/or performance data captured 

from the equipment or process to indicate when maintenance 

should be performed (Byington et al., 2002) (Tian et al., 

2012). There are instances of manufacturers using predictive 

maintenance strategies within their operations, yet this is 

typically incorporated in areas where data collection, and 

subsequent analysis, is feasible and there is a known value 

proposition to such a strategy. Proactive maintenance, 

sometimes known as intelligent maintenance, is an emerging 

strategy that relies upon data collection from the 

manufacturing process to improve and sustain the process, in 

addition to minimizing the occurrence of failures (Barajas 

and Srinivasa, 2008) (Lee et al., 2011) (Lee et al., 2006). 

Proactive maintenance is unique from other maintenance 

strategies in that it is marked by varying levels of equipment 

or process intelligence in terms of maintenance and control 

activities. Equipment or processes have some capability(ies) 

in performing certain maintenance activities until an 

appropriate human intervention can be achieved or until 

specific production objectives are met. Proactive maintenance 

is the most advanced of the maintenance strategies and is 

minimally employed given its state of development. Aside 

from implementing reactive maintenance, the implementation 

of preventative, predictive, and/or proactive maintenance will 

lead to improved health and control management of a piece 

of equipment or an overall process. 

 

Apart from reactive maintenance, these maintenance 

strategies are each supported by monitoring, diagnostics, and 

prognostics (to a certain extent). Monitoring is the act of 

identifying, observing, or understanding the current health 

state of equipment or a process. Diagnostics is the 

determination of what is going to fail and, depending upon 

the system, where the failure will occur. Prognostics is the 

determination of the future state of the equipment or process. 

Prognostics is also responsible for predicting the remaining 

useful life (RUL) of equipment or a process (Ly et al., 2009). 

 

The advancement of monitoring, diagnostic, and prognostic 

technologies has increased the development and 

implementation of preventative, predictive, and proactive 

maintenance strategies. A wide range of techniques, 

algorithms, and practices have been developed with varying 

success (Vogl et al., 2016b). Not only has PHM enhanced 

maintenance strategies, but it has also promoted more 

intelligent control of processes. Some monitoring, diagnostic, 

and prognostic techniques feed adaptive control strategies 

allowing processes to automatically adjust their performance 

(or output) given their current state of health (Ehrmann and 

Herder, 2013, Liu, 2001) (Shin and Lee, 1999). These control 

strategies are limited and have room for expansion.  

2.2 Manufacturing Case Studies 

According to the manufacturing and PHM communities, 

there is still much work to be done to improve monitoring, 

diagnostic, and prognostic practices to enhance maintenance 

and control strategies. NIST personnel conducted 

manufacturing case studies to understand the current 

successes and challenges to developing and implementing 

PHM within manufacturing operations. This information was 

gathered by having representatives of the manufacturing 

community come to NIST or by NIST personnel directly 

reaching out to manufacturers via phone calls or site visits.  

 

A workshop was held at NIST that brought together small, 

medium, and large-sized manufacturers along with 

technology developers, technology integrators, academia, 

government, and standards development organizations to 

examine the challenges and barriers to advancing the state of 

PHM within manufacturing operations. This workshop 

resulted in the generation of a substantial roadmapping 

document that highlighted over a dozen research topics that 

should be undertaken to enhance the state of PHM (National 

Institute of Standards and Technology, 2015). The workshop 

presented some trends across multiple manufacturers as far as 

areas for improvement. Some of the common themes 

included the manufacturing community’s desire to 1) better 

understand and integrate advanced sensing capabilities into 

equipment and processes to increase PHM, 2) identify a suite 

of common PHM performance metrics that would present a 

holistic understanding of equipment or process health, and 3) 

generate/access larger volumes of structured and 

contextualized failure data for prognostics and diagnostics to 

promote further maintenance strategy development (Weiss et 

al., 2015). 

 

NIST personnel, and their collaborators from the University 

of Cincinnati and the University of Michigan – Ann Arbor, 

spoke/met with over 30 manufacturers representing small to 

medium-sized enterprises (SMEs) and large companies (Helu 

and Weiss, 2016) (Jin et al., 2016). Many trends, including 

similarities and differences, were documented between SMEs 

and large companies. One similarity that stands out is that no 

single organization used the same maintenance strategy 

across all of its equipment and processes. For example, some 

companies employed a mix of reactive and preventative 

maintenance strategies, while other companies employed a 

mix of preventative and predictive maintenance with minimal 

reactive maintenance. One of the biggest differences between 

SMEs and large companies is that an overwhelming majority 

of the large companies are more advanced in their 

maintenance strategies as compared to the SMEs. This can be 

attributed to the greater resources available to the large 

companies including more financial capital and available 

personnel. These manufacturing case studies also revealed 

some common scenarios in which implementing or increasing 

PHM would be beneficial to a process’ asset availability, 

output quality, and overall productivity.   

3. USE CASE DEVELOPMENT 

It is imperative to generate appropriate use cases to produce 

test scenarios, reference datasets and protocols, and V&V 

tools that allow technology developers and integrators to 

address the manufacturing community’s needs and promote 

the evaluation of various technology options. Six areas for 



 

 

     

 

theoretically impactful use cases emerged from the case 

studies: 

 Planning and scheduling support 

 Maintenance planning and spare part provisions 

 Request for proposals 

 Resource budgeting (e.g., capital investments) 

 Workforce augmentation 

 Automation 

 

NIST personnel identified an initial use case that would 

feature several of the six areas mentioned above, represent a 

manufacturing operation common in numerous organizations, 

and also present numerous individual elements prevalent 

within many manufacturing environments. This case study 

(depicted in Fig. 1) presents a production work cell 

containing representative systems common in modern 

manufacturing facilities, including computer numeric control 

(CNC) machine tools and a six-degree-of-freedom (6-DOF) 

industrial robot arm. The concept of operations is that 

materials and resources are input into the cell and are 

dynamically routed to one or more machines based upon the 

current and predicted status of the machine tools, their 

components, and the robot manipulating the parts. The use 

case features the robot performing machine tending by first 

presenting a machine tool with a part to be machined and 

then removing the part from the machine tool once the 

machining operations have been completed. These elements 

would be coordinated with each other based on the quantified 

state of all components by a principal control system. This 

control system would route materials dynamically based on 

the measured state and performance of the system as well as 

input from design, engineering, suppliers, and other actors 

across the manufacturing enterprise (Helu and Weiss, 2016). 

 

 
Fig. 1. NIST Use Case Production Cell 

 

Other use cases are being considered, including 1) multiple 6-

DOF industrial robot arms assembling parts after the parts 

have been machined by one or more machine tools and 2) a 

6-DOF industrial robot arm moving machined parts from a 

conveyor to a fixture so that another 6-DOF industrial robot 

arm may ‘mark’ the fixture part. Each of these use cases, 

including the initial use case, are being carefully chosen to 

represent a majority of the machine tool and robot system 

scenarios that were encountered during the case studies and 

documented during the NIST workshop.  

 

The initial use case is designed such that it is relevant to 

industry, allows for the practical implementation of NIST’s 

research efforts, and can be supported by NIST’s test beds. 

Use case implementation has begun with several of NIST’s 

research efforts. Specifically, these efforts (presented in 

sections 4 and 5) highlight key elements that will ultimately 

be integrated together via the use case.   

4. USE CASE IMPLEMENTATION 

The initial use case described in Section 3. is currently 

broken down into three key research elements: 

Manufacturing Process and Equipment Monitoring, Machine 

Tool Linear Axes Diagnostics and Prognostics, and Health 

and Control Management of Robot Systems.  

4.1 Manufacturing Process and Equipment Monitoring 

The Manufacturing Process and Equipment Monitoring 

research effort is aimed at monitoring the overall health of a 

manufacturing shop floor including the health of resident 

machine tools. This effort is driven by the need to identify 

high-value data sources and the most appropriate 

opportunities to collect data to avoid the challenges of big 

data. The focus is on having the right data at the right time to 

improve decision-making with respect to process and 

equipment performance. This research is supported by the 

development of a systems-level test bed of networked 

machine tools and sensors in an active manufacturing facility 

(Helu and Hedberg, 2015). The test bed provides a valuable 

testing and prototyping environment replete with rich data to 

support fundamental research, technology, and standards 

development. This research area will focus on integrating 

heterogeneous shop-floor systems through the development 

and advancement of standards and protocols. Specifically, the 

task will integrate sensors (including accelerometers, 

cameras, and thermocouples), machine tool controllers, and 

production management systems. Initial standards research 

focuses on the extension of MTConnect across manufacturing 

equipment and systems. 

 

This research encompasses a substantial portion of the initial 

use case. The test bed includes a heterogeneous mix of 

machine tools with different capabilities and operating on 

varying controllers, that must effectively function in the same 

environment to meet the shop’s overall production schedule. 

The defined use case includes multiple machine tools that 

will be called upon to perform a range of operations to 

fabricate specific parts. Until the robotics portion of the use 

case is integrated, parts will be placed and removed within 

the machine tools by human operators. 

 

The test bed is currently online and streaming publicly 

available data from several machine tools that are in regular 

use by NIST Fabrication Technology machine shop personnel 

(Hedberg and Helu, 2016). The online data stream is 

provided using data formats defined in the MTConnect 

standard. Additional sensors are integrated with many of the 

machine tools to capture more data that can provide greater 

clarity on individual machine and overall process health. One 

such sensor that is being integrated with the test bed, and 

therefore the use case, is that of a novel sensor fusion device 

that generates error data of machine tool linear axes.  

 



 

 

     

 

4.2 Machine Tool Linear Axes Diagnostics and Prognostics 

Most information that is viewed at the shop-floor level 

originates from a lower level. These lower levels include the 

process, equipment, and component levels. Focusing on 

machine tools, there are numerous components that are prone 

to faults and failures throughout a machine tool’s life that 

should be monitored to minimize unplanned downtime. Axis 

degradation is a reality of machine tools; monitoring axis 

health can also promote greater asset availability. Accurately 

detecting degradation of linear axes is typically a manual and 

time-consuming process.  While direct methods for machine 

tool performance evaluation are well-established 

(International Organization for Standardization, 2012) and 

reliable for position-dependent error quantification, such 

measurements typically interrupt production (Khan and 

Chen, 2009). One potential solution for online monitoring of 

linear axis degradation is the use of an inertial measurement 

unit (IMU) (Vogl et al., 2015).  

As seen in the schematic (Fig. 2), an IMU is mounted to a 

moving machine tool component. To diagnose axis 

degradation, the axis is moved back and forth at various 

speeds to capture data for different frequency bandwidths. 

This data is then ‘fused’ to estimate the changes in the 6-

DOF geometric errors of the axis. Ideally, data would be 

collected periodically to track axis degradation with minimal 

disruptions to production. With robust diagnostics and 

prognostics algorithms, incipient faults may be detected and 

future failures may be avoided. This research supports the use 

case by offering another component-level sensor suite and 

methodology to monitor machine tool health. Prior to 

integrating this novel IMU into the larger shop floor test bed 

and the use case, it is critical that the methodology go 

through initial testing, independently of any machine tools.   
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Fig. 2. IMU-based method for diagnostics of machine tool 

performance degradation. 

 

A test bed was designed for evaluation of the IMU-based 

method. As seen in Fig. 3, the test bed includes a translation 

stage, the IMU, a commercial laser-based system for 

measuring the geometric errors of the axis, and a direct 

current (DC) motor with encoder for motion control. While 

the metrology system measures the motion of the carriage 

with respect to the base of the linear axis, the carriage-

mounted IMU measures the changes in the inertial motion of 

the carriage. The metrology system measures straightness and 

angular error motions over the travel length of 0.32 m with 

standard uncertainties of 0.7 µm and 3.0 µrad. The laser-

based system is used for verification and validation (V&V) of 

the IMU-based results. 

Laser

Linear Axis

IMU

 

Fig. 3. Linear axis testbed 

 

The IMU-based method relies on fusion of data collected at 

three programmed speeds of the carriage. The different 

speeds allow for sensing of repeatable error motions, 

composed of low to high spatial frequencies, within different 

temporal bandwidths. (Vogl et al., 2016a). Each ‘run’ is 

composed of data collected at the three axis speeds, and the 

resulting error motions per run are averaged to produce the 

final IMU-based error motions. 

Typical laser-based and IMU-based results averaged for 50 

runs are compared against one another to evaluate the 

methodology. The standard deviations of the differences are 

11 µm, 2.3 µm, and 13 µrad for the linear positioning, 

straightness, and angular error motions, respectively. Due to 

the smallness of the deviations, the IMU-based method may 

be used for the estimation of changes in geometric motion 

errors of linear axes. Consequently, IMU data can be used to 

help optimize maintenance of machine tools for improved 

production planning and ultimately part quality. 

4.3 Health and Control Management of Robot Systems 

Similar to a machine tool, a robot system will begin to 

degrade from the moment it is put into operation. Although a 

6-DOF industrial robot arm may be relatively robust, the 

robot system is a different story, altogether. The robot system 

includes the arm, end-effector, sensors, controller(s), safety 

systems, supporting automation, and human machine 

interface (HMI). Not only is each one of these elements 

susceptible to certain failures, the integration of these 

components and formation of specific relationships can 

increase the pace of degradation and lead to a cascade of 

failures.  

The robot system is a key element of the initial use case 

defined in Section 3. To successfully accomplish its machine 

tending operations within the use case, the robot system must 

be aware of each machine tool’s status that it intends to 



 

 

     

 

interact, aware of its own status (e.g., its current health and 

position), and aware of its environment (e.g., presence of an 

operator in its work volume). Without monitoring, 

diagnostics, and prognostics, a robot system will effectively 

function for a limited amount of time before it is likely to 

experience a fault or failure. 

A robot systems test bed is under construction to support a 

framework for the assessment of monitoring, diagnostic, 

prognostic, and control technologies. The test bed will serve 

as the home to several industrial robot arm systems and will 

promote the generation of test methods and datasets. 

Advanced sensing and data collection techniques (what 

information to collect, how to collect, sensors to use, etc.) 

will be developed. Reference datasets will be generated to 

offer researchers and manufacturers a means of verifying and 

validating their diagnostic and prognostic techniques without 

the need for their own physical implementations. Reference 

data processing algorithms (data synchronization, data fusion 

of multiple sensor streams, and PHM data formats for 

interoperability) will be developed to analyze the PHM data 

that assesses the robot system’s health metrics. This will 

support the closed-loop framework with the inclusion of 

diagnostic and prognostic techniques to promote better 

decision making for updating maintenance and control 

strategies. 

5. FUTURE WORK 

Each of the three research areas presented in Section 4. are in 

various phases of development and will ultimately be 

integrated together to form the defined use case. Efforts are 

under way to increase the data output from the Smart 

Manufacturing Systems Test Bed from two machine tools to 

approximately ten within the Manufacturing Process and 

Equipment Monitoring research. This will increase the 

publicly available volatile data stream and offer greater data 

sets to further support use case development. Besides getting 

additional machine tools online, more sensors are being 

planned for integration. Near term additions include power 

meters and the IMU sensor box presented in Section 4.2. The 

IMU sensor box design has been further refined from its 

original design to present a smaller profile when mounted to 

the axes of a machine tool. It is expected that the IMU sensor 

box will be mounted to a NIST machine tool in late 2016 so 

that it will capture linear axes error data during a pre-defined 

start-up sequence (at minimum) and during cutting operations 

(ideally). This data will be compared against machine tool 

controller data, including planned and actual data from the 

controller.  

 

The Health and Control Management of Robot Systems effort 

will continue to evolve. To support the initial use case, a 

quick health assessment methodology is being developed to 

identify the health of the robot system, with an emphasis on a 

subset of the robot health performance metrics – tool center 

point accuracy and accuracy of tool center velocity. This 

effort will allow manufacturers to quickly assess the 

positional health of their robot systems when environmental 

conditions change, or after a work cell has been reconfigured. 

In turn, this methodology can also enable manufacturers and 

technology developers to verify and validate their own PHM 

techniques that monitor robot health in terms of static and 

dynamic accuracy. Further evolution of this effort will 

continue in the form of adding more sensors to monitor robot 

health, position, and environmental conditions/parameters. 

Likewise, the complexity of the robot system will be 

increased with the inclusion of an end-effector and 

supporting automation (e.g., conveyor belts to present parts 

to the robot arm).  

6. CONCLUSION 

An initial use case is documented that originates from 

feedback received from SME and large manufacturers. This 

use case provides an opportune breeding ground to develop 

test methods, reference data sets and protocols, and V&V 

tools to promote the assessment of monitoring, diagnostic, 

and prognostic techniques. These PHM techniques have been 

identified by the manufacturing community as necessary 

research areas to advance and promote more intelligent 

maintenance and control strategies. NIST is contributing to 

the overall PHM research field in the development of this use 

case to include three key research areas: Manufacturing 

Process and Equipment Monitoring, Machine Tool Linear 

Axes Diagnostics and Prognostics, and Health and Control 

Management of Robot Systems. Individually, and together, 

each of these research areas represents common operations 

whose degradation and overall health need to be understood 

to promote sustained, efficient manufacturing.  

NIST DISCLAIMER 

The views and opinions expressed herein do not necessarily 

state or reflect those of NIST. Certain commercial entities, 

equipment, or materials may be identified in this document in 

order to illustrate a point or concept. Such identification is 

not intended to imply recommendation or endorsement by 

NIST, nor is it intended to imply that the entities, materials, 

or equipment are necessarily the best available for the 

purpose. 
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