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ABSTRACT
As Additive Manufacturing (AM) matures as a technology, mod-
eling methods have become increasingly sought after as a means
for improving process planning, monitoring and control. For
many, modeling offers the potential to complement, and in some
cases perhaps ultimately supplant, tedious part qualification pro-
cesses. Models are tailored for specific applications, focusing on
specific predictions of interest. Such predictions are obtained
with different degrees of fidelity. Limited knowledge of model fi-
delity hinders the user’s ability to make informed decisions on
the selection, use, and reuse of models. A detailed study of the
assumptions and approximations adopted in the development of
models could be used to identify their predictive capabilities.
This could then be used to estimate the level of fidelity to be ex-
pected from the models. This paper conceptualizes the modeling
process and proposes a method to characterize AM models and
ease the identification and communication of their capabilities,
as determined by assumptions and approximations. An ontol-
ogy is leveraged to provide structure to the identified character-
istics. The resulting ontological framework enables the sharing
of knowledge about indicators of model fidelity, through seman-
tic query and knowledge browsing capabilities.

Keywords: additive manufacturing, model fidelity, model char-
acterization, ontology.
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1 INTRODUCTION
Additive Manufacturing (AM) processes build objects layer-

by-layer directly from three-dimensional models [1]. For years,
AM was primarily used to make polymer prototypes. Now, how-
ever, AM processes are being employed in the production of end-
use parts made of polymers, ceramics, and metals. AM-produced
parts are rapidly capturing the attention of the aerospace and
biomedical industries who see this technology as suitable for the
production of small volumes of highly-complex components [2].
Many issues affect the broader adoption of AM in other industry
sectors. Those issues can be traced to challenges with estab-
lishing repeatable non-burdening qualification of AM-produced
components. Statistics-based quality control techniques, which
are often used in the manufacturing industries, are not readily
extendable to AM. Extensive testing is required to determine ad-
missible deviations from optimal operating conditions, which are
still not well defined in batch-size AM. As an alternative, re-
searchers are trying to move beyond experiments and better in-
corporate computational models for faster and cheaper part qual-
ification and process optimization in AM [3, 4].

A major challenge in modeling is accounting for and com-
municating the fidelity of the model. Here, we use the term
fidelity as a measure of the extent to which the model faith-
fully captures and represents its real-world counterpart. Com-
putational models have been developed at different levels of so-
phistication, resulting in predictions at different levels of fidelity.
In the case of AM, for example, there are detailed models that
include multiple highly-coupled physical processes, at the ex-
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pense of requiring many hours of computation time [5–7]. At
the other same time, there is an increasing interest in industry for
low-cost models that also must make predictions in fractions of
a second [8,9]. Understanding the predictive capabilities of such
models requires identifying their characteristics, including their
sources of uncertainty.

Good places to start the identification process are the as-
sumptions and approximations that led to the development of
the model. The physics of AM processes involve numerous and
complex physical phenomena occurring at different length- and
time scales. For simplicity, AM processes are often idealized by
including only a subset of the phenomena. Even then, a num-
ber of simplifying assumptions are usually required to obtain a
tractable mathematical model, often in the form of a set of dif-
ferential equations. These differential equations are further ap-
proximated using numerical methods to produce a computational
model that can be simulated on a computer. As such, the term
assumption is used in the paper to refer to the set of modeling
choices adopted by the modeler for the simplification of a physi-
cal system, in the course of the development of the mathematical
model. Approximation, on the other hand is used to define the
set of numerical methods employed to transform the mathemati-
cal model into a solvable form.

The development and selection of computational models of-
ten involves a balancing act between model fidelity and compu-
tational cost. Informed modeling choices should be supported
by information on the fidelity of computational models, as de-
termined by their characteristics. Model characteristics are de-
fined as the unique traits of the model, which provide insight
into its internal structure and properties. The method proposed
in the paper captures such characteristics in an attempt to sup-
port the evaluation and communication of model fidelity. This
paper builds on a previous study by Witherell et al. [10], who
proposed an ontology-based characterization of AM models, fol-
lowing their physical domains and the input-output relationships

FIGURE 1: The modeling process connecting the worlds of pro-
duction and simulation processes.

included in their development. We go beyond that classification
by incorporating information on modeling assumptions and ap-
proximations, to be used as qualitative indicators of model fi-
delity in laser powder bed fusion (L-PBF) models. Specifically,
the ontology provides a formal explicit representation of:

(a) modeling characteristics and their influence in model pre-
dictions,

(b) sets of axioms and mathematical rules that define and relate
such modeling characteristics.

Qualitative knowledge on model fidelity can be extracted and
shared to support informed assessment of L-PBF models.

The remainder of the paper is organized as follows. Section
2 presents the background for structuring and representing infor-
mation in computational models, and gives insight into the ap-
proach proposed for model characterization and representation.
Section 3 discusses details of the proposed conceptualization and
characterization of L-PBF models. Section 4 presents the main
elements of the resulting ontological framework, and discusses
the support it provides in the identification and exchange of qual-
itative indicators of model fidelity. Finally, Section 5 presents
some conclusive remarks, including the description of future
work with focus on 1) the extension and validation of the pro-
posed framework and 2) quantitative assessment of the influence
of the identified modeling characteristics in model fidelity.

2 BACKGROUND
Some approaches have been proposed previously for the

study of the information incorporated in computational mod-
els [11–13]. For instance, Bryden and Noble [11] discussed the
requirements for the description of models and proposed a frame-
work to describe the process of scientific modeling, which is sim-
ilar to the one illustrated in Figure 1. Alternatively, Bedau [13]
discussed the notion of “unrealistic” models and provided prac-
tical means to quantify potential discrepancies between models
and the real world. Along similar lines, Di Paolo et al. [12] dis-
cussed 1) the need for a proper understanding of the internal op-
erations of computational models and proposed 2) a methodol-
ogy to reconcile potential discrepancies between computational
models and experiments. Such a methodology would allow the
modeler to determine where differences between models and the
real world lie, and to assess the usefulness of such models.

The work of Di Paolo et al. suggests that a clear understand-
ing of the internal operations of computational models could po-
tentially help quantify levels of fidelity. As a result, methods that
support clear and explicit representations of the internal opera-
tions of models are increasingly sought after as a means to de-
termine the influence of those operations on model inadequacy.
Such an explicit representation could be used to return qualita-
tive indicators of the degree of model fidelity. Those indicators
could be stored for future use in a knowledge-based system.
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Knowledge-based systems have been proposed in various
domains to support design and analysis in engineering [14, 15].
Other types of knowledge-based frameworks have been pro-
posed to represent physical systems at various levels of ab-
straction [16, 17]. Similar knowledge-based frameworks have
been proposed across other engineering domains [18–21]. On-
tologies provide popular foundation for creating many of these
knowledge-based systems. Ontologies have been used to pro-
vide definitions of formal methods in modeling, while also ad-
dressing aspects of model fidelity [22–24]. In this paper we aim
to use ontologies to represent the variety of information needed
while addressing fidelity-related issues in computational models
of L-PBF processes.

Fidelity problems in L-PBF models can originate from mul-
tiple sources, including certain internal characteristics of the
model itself. In this article, we identify and map those sources
to specific modeling elements, based on the assumptions and ap-
proximations adopted in the modeling process. Certain questions
that help with these problems have been identified, and they are:

(a) what are the most appropriate mathematical models to rep-
resent a physical phenomenon?;

(b) what set of assumptions would be required to accurately de-
fine a given L-PBF model?;

(c) which physical law, initial and/or boundary conditions, ma-
terial properties, etc. are usually employed in the definition
of a given mathematical model?;

(d) which modeling characteristics are most likely to affect the
fidelity of a given model in L-PBF?;

(e) how do these fidelity-related characteristics interoperate
with other influential modeling elements?.

Answering these questions can help us identify the requirements
and scope of L-PBF model abstractions. In creating such abstrac-
tions, we plan to use a descriptive ontology to form the basis of
a knowledge-based framework. The ontology can be used to 1)
browse and represent the sets of model characteristics available
for the definition of a given L-PBF model and 2) provide insight
into potential qualitative indicators of model fidelity. The frame-
work can help classify the requirements for both model charac-
teristics and model usages.

3 CHARACTERIZING PREDICTIVE CAPABILITIES OF
POWDER BED FUSION MODELS

Assessment of the fidelity of an AM model unavoidably
depends on the particular case being simulated (i.e., material
properties, machine information, and process parameters), the
adopted simulation parameters and the predictions of interest.
Quantitative evaluation of model fidelity is possible with uncer-
tainty quantification, which measures the individual contribution
of various sources of uncertainty and their influence in the overall
prediction uncertainty [25]. Without being specific to a particular

case, the characteristics of such models can also be used to drive
qualitative estimates of fidelity. In other words, knowing what
capabilities a model has and lacks allows users to estimate how
accurate model predictions may be if the right simulation inputs
are provided.

Model characteristics in AM, as defined by assumptions and
approximations, are determined during the modeling process (il-
lustrated in Figure 1). Therefore, abstracting some common as-
sumptions and approximations taken when modeling AM pro-
cesses can help identify some of those characteristics. Examples
of model characteristics can be found in the physical domain,
physical laws, boundary and initial conditions, and the chosen
numerical method, among others.

Model characterization can be performed for various types
of models. For different types of models, the characterization
methods may be similar, but the underlying physics and model
form would differ. The phenomena presented in this paper are
limited to irradiation absorption, heat transfer, and consolida-
tion in L-PBF processes. In this section, the physics of each
phenomenon and available model types are identified along with
common modeling assumptions and approximation. Information
on model characteristics is organized in the form of tables to aid
visualization and facilitate their definition in the ontology intro-
duced in section 4.

3.1 Irradiation absorption models
Irradiation absorption is related to how voids in a randomly-

packed bed allow the laser beam to penetrate and reflect from the
surface of powder particles. Computational models of irradiation
absorption have been developed to predict the amount and distri-
bution of the heat that is absorbed by the bed. Table 1 shows
some common choices, found in the literature, for such models,
including their characteristics as identified from assumptions and
approximations. As seen in the table, each model depends on a
governing physical law, which in turn depends on a combination
of the following assumptions made by the modeler:

(a) Whether heat is assumed to penetrate the powder bed and
adopt a volumetric distribution in the model or to be con-
strained on the surface.

(b) If the powder bed is idealized as a continuum or modeled as
a distribution of interacting powder particles.

Common combinations of assumptions and the physical law of
choice for such cases are presented in Table 1, along with numer-
ical solution methods. For instance, in the simplest case, where
absorption is assumed to be restricted to the surface, no math-
ematical model is required. This scenario can be found in the
first line of the table. Other choices for absorption models (i.e.,
Beer-Lambert model, ray tracing models, or radiation transfer
models) are available when absorbed energy is assumed to have
a volumetric distribution. The type of distribution assumed for
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Dimensionality
of absorbed

energy

Distribution
of material

Surface
distribution of

heat source

Law of
Physics

Mathematical
model

Numerical
method Model inputs Output

parameters Ref.

Surface Continuum
Gaussian,

cylindrical, or
point source

Absorptivity and surface
irradiation

Surface
distribution of
absorbed heat

[26–31]

Volumetric Continuum
Gaussian,

cylindrical, or
point source

Beer-Lambert
law

Beer-Lambert
model

Absorptivity, extinction
coefficient, surface

irradiation

Volumetric
distribution of
absorbed heat

[32, 33]

Volumetric Particles Gaussian Specular
reflection

Ray tracing
model

Discrete element
method

Surface irradiation,
particle size and

distribution, dimensions
of powder bed, latent
heat, absorptivity, and

emissivity and reflectivity
of particles

Volumetric
distribution of
absorbed heat

[34–36]

Volumetric Particles Gaussian Radiation
transfer

Radiation transfer
model Two-flux method

Surface irradiation,
particle size, specular
reflectivity, thermal

conductivity, and melting
temperature

Volumetric
distribution of
absorbed heat

[37–40]

TABLE 1: Modeling characteristics for irradiation absorption models.

the laser, which strongly influences the quality of the predictions,
is shown as another characteristic of irradiation absorption mod-
els. Such information can guide experienced users to identify
the amount of fidelity to be expected from each case. Addition-
ally, the adoption of a larger set of input parameters increases the
flexibility of the model, allowing it to adapt to more cases and
increasing the fidelity that might be expected from it.

The fidelity to be expected from irradiation absorption mod-
els is strongly dependent on how close the simulation model is to
the physical events it is meant to describe. For example, the Beer-
Lambert law, which assumes an exponential decay for irradiation
intensity as a function of depth, imposes a constraint on the sim-
ulation model that reduces fidelity. In the ray-tracing models,
on the other hand, laser rays are assumed to bounce from pow-
der surfaces based on the size and distribution of the powders.
This bouncing seems to capture reality very well. As a result, a
ray-tracing model, which does include laser-particle interactions,
provides higher fidelity predictions than a Beer-Lambert model.
Similar fidelity issues appear with simulation inputs that are ac-
counted for or neglected (more inputs increase flexibility of the
model and potentially improve its fidelity), the choice of numer-
ical model, and other model characteristics.

3.2 Heat transfer models
Heat absorbed from the laser is dissipated through the pow-

der bed, heating and consolidating the powder. Heat-transfer
models attempt to predict 1) the distribution of the solid, liquid
and mushy zones in the powder bed as well as 2) the tempera-
ture distribution in each zone. Given the complexity of the heat
transfer phenomenon, which includes a large set of model char-
acteristics, the modeler has to go through a series of modeling
choices and simplification steps to fully determine whether ther-

mal models are ready for simulation. The characteristics identi-
fied on models in the literature, as imposed by their underlying
assumptions and approximations, are presented in Table 2.

At the macroscale level, all models are based on two
laws: Fourier’s law and conservation-of-energy law. The result-
ing mathematical model takes the form of a transport, partial-
differential equation (PDE) for a chosen combination of trans-
port property (thermal diffusivity or thermal conductivity) and a
state variable (temperature or enthalpy). There is little difference
in the fidelities of any of these combinations; but, it is still impor-
tant for the user to know which combination has been adopted to
determine the type of heat equation to be solved. For simplicity,
the PDE is shown here for temperature as the state variable and
thermal conductivity as the transport property1

ρcp

 ∂T
∂ t︸︷︷︸

time

+ ~v ·∇T︸ ︷︷ ︸
advection

= ∇ · (k∇T )︸ ︷︷ ︸
diffusion

+ f (x,y,z)︸ ︷︷ ︸
source

, (1)

where powder density is denoted by ρ , specific heat is cp, ther-
mal conductivity is k, volumetric heat generation is f , and~v is the
velocity in the fluid phase. In this equation, the advection term is
often ignored if fluid flow is neglected2. It should also be noted
that absorbed heat, as computed with the irradiation absorption
model, can be accounted for either as a source or as a boundary
condition (if assumed as a surface source).

1The structure of the heat transfer equation for other choices of state variable
and transport property is similar. For a detailed discussion, refer to the classical
book of Carslaw and Jaeger [45].

2The scope of this paper includes only models with no fluid flow.
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Law of
Physics

Transport
property

State
variable

Reference
frame

Dimension-
ality of

absorbed
heat

Inclusion of
absorbed heat Phase change Mathematical

model

Conservation
of energy and
Fourier’s law

Thermal
conductivity Temperature Moving or

fixed
Surface or
volumetric Source term

Implicit (included in
specific heat) or

explicit

Transport
equation for
temperature

Conservation
of energy and
Fourier’s law

Thermal
conductivity Temperature Moving or

fixed
Surface or
volumetric Source term

Implicit (included in
specific heat) or

explicit

Transport
equation for
temperature

Conservation
of energy and
Fourier’s law

Thermal
conductivity Enthalpy Moving or

fixed
Surface or
volumetric Source term

Implicit (included in
specific heat) or

explicit

Transport
equation for

enthalpy

Conservation
of energy and
Fourier’s law

Thermal
conductivity Enthalpy Moving or

fixed
Surface or
volumetric Source term

Implicit (included in
specific heat) or

explicit

Transport
equation for

enthalpy

Conservation
of energy and
Fourier’s law

Thermal
diffusivity Temperature Moving or

fixed
Surface or
volumetric

Boundary
condition

Implicit (included in
specific heat) or

explicit

Rosenthal-type
equation

Model inputs Boundary
conditions Initial conditions Distribution

of material Numerical method Prediction Ref.

Powder density, specific heat,
fluid velocity, absorbed heat

Semi-infinite,
adiabatic,

isothermal, or
mixed

Initial distribution
of temperature Continuum

Finite element
method, finite

difference method

Time-history
of temperature [41]

Powder density, specific heat,
fluid velocity, absorbed heat

Semi-infinite,
adiabatic,

isothermal, or
mixed

Initial distribution
of temperature Particles

Discrete element
method, Lattice

Boltzmann method

Time-history
of temperature

Powder density, specific heat,
fluid velocity, absorbed heat

Semi-infinite,
adiabatic,

isothermal, or
mixed

Initial distribution
of enthalpy Continuum

Finite element
method, finite

difference method

Time-history
of enthalpy

[27,28,
30, 42]

Powder density, specific heat,
fluid velocity, absorbed heat

Semi-infinite,
adiabatic,

isothermal, or
mixed

Initial distribution
of enthalpy Particles

Discrete element
method, Lattice

Boltzmann method

Time-history
of enthalpy [43, 44]

Powder density, specific heat,
fluid velocity, absorbed heat Semi-infinite Initial distribution

of temperature Continuum Analytical Time-history
of temperature [31]

TABLE 2: Modeling characteristics for heat transfer models.

The terms included in the heat transfer equation can be used
as indicators of the predictions that may be obtained from solv-
ing the model. For instance, transient thermal predictions (i.e.,
thermal history) may only be obtained if the time derivative is
included in the equation. Additionally, the effect of melt pool
dynamics in the thermal history can only be accounted for if the
advection term is present in the heat transfer equation and it takes
velocity predictions from a fluid mechanics model. The lack of
any of these terms compromises the fidelity of the thermal pre-
dictions obtained from the model.

The mathematical problem is completed with adequate
choices of models for phase change, and a set of boundary con-
ditions. In the case of transient simulations, initial conditions
are usually required as the starting point. Phase transformations
may be ignored, modeled explicitly with a Stefan condition, or
included in the form of a temperature-dependent specific heat.
Most models use as boundary conditions a mix of convection,
radiation and surface distribution of heat atop the powder bed;

adiabatic boundary conditions on the side while the bottom is
often semi-infinite, adiabatic, or in contact with a substrate.

If one assumes constant thermo-physical properties, neglects
phase changes, and uses a reference frame attached to the heat
source, a special type of thermal model can be created. This
model is special because an analytical solution can be obtained
for the temperature distribution as a function of thermal diffusiv-
ity [31]. Although simplistic, Rosenthal-type models provide 1)
starting points in the development of more sophisticated models
and 2) quick predictions of temperature and melt-pool geometry.

In general, simpler models, such as Rosenthal models, typ-
ically return predictions with less fidelity than more elaborate
models such as lattice Boltzmann models and discrete-element
models. Additionally, the adoption of a continuum to represent
a bed of particles is expected to compromise the fidelity of the
predictions making them similar to those reported in irradiation
absorption models. Finally, the choice of boundary conditions
is one of the most important characteristics that guide the user in
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Material Law of
Physics

Consolidation
mechanism State variable Mathematical

model
Initial

condition Model inputs Prediction Ref.

Amorphous or
crystalline

Atomic
diffusion in

crystal
vacancies

Solid state
sintering Volume Frenkel Initial volume

Surface tension, diffusion
coefficient, temperature,
Boltzmann’s constant,
crystal lattice constant

Volume [46]

Amorphous Newtonian
flow

Solid state
sintering

Density or
porosity

Mackenzie and
Shutthelworth

Initial powder
density

Surface tension, number
of pores per unit volume,

material viscosity

Density or porosity
distribution [47]

Crystalline
Non-

Newtonian
flow

Solid state
sintering

Density or
porosity

Mackenzie and
Shutthelworth

Initial powder
density

Surface tension, number
of pores per unit volume,
material viscosity, tuning

parameter

Density or porosity
distribution [47]

Crystalline Temperature-
activated
reaction

Solid state
sintering Density Arrhenius-type

equation
Initial powder

density

Characteristic frequency,
sintering activation
energy, ideal gas

constant, temperature,
tuning coefficients

Density distribution [48]

Crystalline or
semi-

crystalline

Temperature-
dependent

density

Melting Density or
porosity

Temperature, melting
temperature

Temperature-
dependent powder

density
[27]

TABLE 3: Modeling characteristics for consolidation models.

the level of fidelity to be expected from heat transfer models. The
incorporation of more accurate boundary conditions is expected
to greatly improve the fidelity of a model.

3.3 Consolidation models
Thermally-activated consolidation is responsible for trans-

forming selected regions of powdered material into fully-dense
parts. Consolidation is of crucial importance in AM because
most mechanical properties (e.g., tensile strength) have been
found to decrease drastically whenever the porosity increases.
In PBF processes, consolidation may occur by 1) solid state sin-
tering, controlled by viscous diffusion; 2) partial melting, where
part of the powder is melted while the rest remains solid; and
3) full melting, characterized by the rapid melting of all the
heated powder into fully-dense material [49]. The physics of
these mechanisms are substantially different and depend on the
choice of material to be processed meaning that not all materials
can be sintered or melted.

Table 3 provides information on the characteristics and
modeling choices available for the definition of a consolidation
model, which differ depending on whether the material is crys-
talline (ceramics, metal alloys, hard metals) or amorphous (amor-
phous and semi-crystalline thermoplastics).

In the case of sintering, a model is required to describe the
variation in density as a function of temperature and time. A
mathematical model, in this case, must be based on only one
of these four physics principles: atomic diffusion in crystalline
vacancies for Frenkels model [46], Newtonian or non-Newtonian
flow for Mackenzie and Sutthelworths model [47], temperature-
activated reaction for an Arrhenius-type equation [48]. Melting,
on the other hand, is much faster and it is often assumed that

density varies instantaneously when reaching melting conditions,
thus not requiring any specific mathematical model.

For sintering, consolidation models are often governed by
ordinary differential equations. For melting, consolidation mod-
els are governed by temperature-dependent properties. Both have
simpler mathematical forms than heat transfer models. The def-
inition of well-defined consolidation models requires only initial
conditions (initial density), and coupling to thermal models that
determine the numerical approach used to solve the system (nu-
merical method, grid, solver, etc.).

The choices available in consolidation models are not driven
by their expected fidelity. Rather, they are driven by the physical
laws that govern the consolidation mechanism. Consequently, an
incorrect choice of physical law could compromise the fidelity of
the predictive model significantly. For example, using the physi-
cal laws governing solid state sintering when developing a model
of the process used to fully melt metallic powder.

Tables 1 to 3, show that the prediction outputs of some mod-
els can be used as inputs to other models. As a result, more elab-
orate predictions can be built up from 1) the predictions obtained
from simpler models and 2) a set of relationships that capture
their inter-operation. For example, consolidation models deter-
mine density, which is an input in thermal models, which in turn
determine temperature, which drives consolidation. Such rules
are included in the ontology, to guide users along the modeling
process and provide explicit knowledge about how model char-
acteristics influence predictions that could be returned by models
of other types.
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4 AN ONTOLOGY TO LEVERAGE THE CHARACTERI-
ZATION

We turn to OWL 2 Web Ontology Language [50] to formal-
ize our proposed characteristics into an ontology and its associ-
ated knowledge-based framework that provides more means for
reusability. The ontology was implemented using Protégé [51],
a Java-based ontology development software tool developed by
Stanford University. The ontological concepts described in this
paper extend those discussed in [10]. Here we extend the categor-
ical representation of those concepts by adding specific attributes
to support the characterization of model fidelity. This enhanced
ontology provides an explicit description of all the new concepts
and their relationships. It connects the physics with the corre-
sponding modeling concepts. In addition, the ontology should
capture knowledge about the assumptions used in creating math-
ematical models, in choosing their input parameters, and in find-
ing the solutions. The information in this ontology can be used to
extract and navigate explicit knowledge about the specific char-
acteristics affecting the fidelity of a given L-PBF process model.
This knowledge then could serve as indicators to enhance the
user’s ability to 1) estimate the expected level of fidelity, and 2)
make informed decision about the models reusability.

FIGURE 2: Taxonomy of top level entities in the AM ontology.

4.1 Hierarchy of the ontology
Figure 2 illustrates the hierarchical structure of most impor-

tant high level entities in the AM ontology. This ontology is
structured as two main AM concepts:

(a) the Physical concept that includes everything that has a po-
sition in the space-time domain and;

(b) the Abstract concept that includes everything else.

In essence, the separation between real and simulated is made at
the highest level at the ontology.

Under Physical, we have the concepts of AdditiveManu-
facturingProcess, Phenomenon3 and Material. Phenomenon
is understood as an observable event, including input and output
flows of matter and energy, which cannot be divided in smaller
phenomena. Material briefly covers the different types of mate-
rial families used in AM. AdditiveManufacturingProcess and
Phenomenon are described as two different Physical entities;
but, they are not completely disjoint, since a phenomenon (or a
set of phenomena) can only occur during the course of a process.

Abstract entities are organized into two main concepts:
Model and Characteristic. The notion of Characteristic is
central to this ontology. There are two kinds of characteristics.
The first are modeling characteristics, as defined in Section 3.
The second are physical characteristics, which have a number
of sources including machine vendors, material vendors, process
engineers, and the dynamics of the process itself. Details of the
modeling characteristics are presented in Tables 1 to 3.

The concept of Model is understood as a mathematical ob-
ject that has the ability to represent a system or one of its compo-
nents and to predict behavior of either. The mathematical object
is valid for a set of defined conditions and simplified assump-
tions [52], which are likely to affect the fidelity of the model. A
Model can be physics-based, empirical, or hybrid. In this paper,
we focus only on physics-based models. A PhysicsBasedModel
is referred to as a mathematical (or computational) model that de-
scribes some physical phenomenon based on first-principles and
physical laws. Examples of physics-based model are:

(a) HeatTransferModel based on Fourier’s law and energy
conservation law, as characterized in Table 2;

(b) IrradiationAbsorptionModel based on, either Beer-
Lambert law, radiation transfer law or physical reflection
law, as provided by Table 1 and;

(c) ConsolidationBySinteringModel describing a Newtonian
or non-Newtonian flow, or a temperature-activated reaction
for a given material, under a certain processing conditions,
as described in Table 3.

The concept of Characteristic subsumes four different
types of abstract entities: ModelElement, PhenomenonChar-

3Although often similar to a phenomenon, in this article, the term “process”
is reserved only for manufacturing processes and does not include the occurring
phenomena pertaining to those processes.
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acteristic, ProcessParameter, and ProcessSignature. Mod-
elElement as proposed in the actual study, includes Mod-
elingAssumption, Equation, PhysicalProperty, ModelInput,
ModelVariable, NumericalMethod and Prediction. These en-
tities are used, along with the modeling process, illustrated in
Figure 1, to characterize a physics-based model. They can be
assigned and coupled based on the step(s) in which they appear.
These entities are important because they can impact model fi-
delity negatively. Such negative impacts result from the dis-
crepancies introduced along the transition from a physical phe-
nomenon to the mathematical model that represents it. These
discrepancies can impact predictions obtained from solving the
model.

A first level of discrepancy might involve an incorrect Mod-
elingAssumption. For example, an incorrect physical law might
be chosen to capture a simplification of a physical system, and
the resulting predictions will be farther from what is believed to
happen in reality. Another type of discrepancy can occur if the
appropriate set of Equation entities are not chosen to describe a
mathematical model. In this case, the predictions from the asso-
ciated computational models will have less fidelity. Fidelity can
also be lost or improved depending on whether the right set of
PhysicalProperty and/or ModelInput entities are assigned for
the simulation of a computational model.

In assessing fidelity-related issues, the preceding fidelity in-
dicators are not enough. Consequently, the ontology should pro-
vide explicit, descriptive knowledge of these indicators sufficient
to do a quantitative assessment of the predictive capabilities of
the model in which they appear. This knowledge is provided in
two forms, which are: knowledge about the defined AM model-
ing concepts and knowledge about the relationships among those
concepts. These relationships are discussed in the following sec-
tions.

4.2 Taxonomy of relationships in the ontology
Relationships in the ontology have been created to define in-

terconnections between any physical, abstract entity and its par-
ent and child. Physical concepts, such as Phenomenon, inter-
relate with abstract concepts, e.g., PhenomenonCharacteristic
through the role hasCharacteristic, and physics-based models in-
terrelate the phenomenon(a) they describe through the role rep-
resent. The partOf relationship has been defined to accommo-
date the fact that two different concepts can exist at the same
level of hierarchy with one still being part of the other, instead of
defining a parent-child relationship between them. Example of
this specificity in the current ontology is between AdditiveMan-
ufacturingProcess and Phenomenon where a phenomenon is
not a subclass of an AM process but can only occur within the
course of that process. The concept of Characteristic is defined
along with the role influences (as inverse of influencedBy) that
can exist between a characteristic, e.g. HeatDissipationCharac-

teristic, and one or several physical concepts, e.g., Consolida-
tion and FluidMechanics. Some ModelElement concepts are
semantically related to other abstract concepts they characterize
(or are characterized by) through several relationships such as
definedBy, requires and related sub-properties (requiresAssump-
tion, requiresInput, requiresApproximation), provides, etc.

Illustrations of such interconnections are shown on Figure 3
to Figure 5, where several object properties are used to interrelate
the different concepts playing roles in the characterization of ir-
radiation absorption model, heat transfer for temperature model,
and consolidation model.

4.3 Semantic queries allowed by the ontology
Ontologies support different levels of queries using query

language such as SPARQL [53], and query tools such as
SPARQL Query and DL Query tabs in Protégé [51]. At a first
level are simple queries that can provide answers to a range of
competency questions. Two examples of such queries (using DL
Query tab) are given below:

(a) In the first example related to sintering model, the ontol-
ogy is queried for the current equation used to predict den-
sity variations for crystalline materials in AM. The query re-
turns ArrheniusTypeDensityVariation and CrystallineDensi-
tyVariation equations, which are the appropriate choices for
that question.

(b) In the second example, one may be interested in knowing 1)
which modeling parameter is influenced by variations in spe-
cific heat and 2) which phenomena this parameter influences
the most. The query returns thermal diffusivity as the param-
eter; and heat transfer, consolidation and fluid mechanics as
the phenomena.

More complex queries can be executed, as well. Typically,
such queries attempt to retrieve information on the specific char-
acteristics that determine and influence the quality of the pre-
dictions provided by a physics-based model, and their intercon-
nections throughout the modeling transition, described in Figure
1. Figure 6 shows the possible transitions for the modeling and
computation of a distribution of absorbed heat. These transitions
result from the combination of complex sets of DL-queries on
indicators and influencing characteristics including the nature of
the heat source and the distribution of material, among others.
Using this modeling transition graph, users can then retrieve ad-
ditional knowledge about other specific concepts likely to affect
the fidelity of the absorption model.

5 CONCLUSIVE REMARKS
Computational models in AM often face reusability chal-

lenges, partially driven by the limited understanding of a model’s
fidelity and the lack of knowledge that users have on the com-
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FIGURE 3: Relationships of irradiation absorption model.

FIGURE 4: Relationships of heat transfer model.

petences and performance of the models. To better understand
the unique characteristics that determine predictive capabilities
of the models, a closer look has been given to the abstractions
formed between physical processes and corresponding computa-
tional models.

This study sought a better understanding of the limitations

in the predictive capabilities of physics-based models in AM.
Our approach to achieve that understanding was based on explicit
characterizations of the assumptions and approximations used to
develop the corresponding computational models. We expressed
these characterizations as sets of formal concepts in an ontology.
The ontology provides the information needed to answer a wide
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FIGURE 5: Relationships of consolidation model.

FIGURE 6: Modeling transition for absorbed heat.

range of competency-related and fidelity-related queries. Those
queries are currently based on thermal and consolidation models
only.

We intend to expand the ontology to address the impacts of
assumptions and approximations on the predictive capabilities of
fluid mechanics models, structural models, and microstructural
models. Another ongoing work at NIST focuses on the origin

and propagation of uncertainty sources in additive manufacturing
models [25] and is expected to be incorporated into this work in
future implementations.

SUPPLEMENTAL MATERIAL
The ontology described in this paper can be accessed at

https://github.com/usnistgov/AMontology
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DISCLAIMER
The full descriptions of the procedures used in this paper

may require the identification of certain commercial products.
The inclusion of such information should in no way be construed
as indicating that such products are endorsed by NIST or are rec-
ommended by NIST or that they are necessarily the best materi-
als, instruments, software or suppliers for described purposes.

ACKNOWLEDGMENT
The authors gratefully acknowledge the comments and sug-

gestions provided by Peter Denno, from the National Institute of
Standards and Technology, in the development of the ontology.

REFERENCES
[1] ASTM, 2012. F2792, Standard Terminology for Additive

Manufacturing Technologies.
[2] Petrovic, V., Vicente Haro Gonzalez, J., Jorda Ferrando, O.,

Delgado Gordillo, J., Ramon Blasco Puchades, J., and Por-
toles Grinan, L., 2011. “Additive layered manufacturing:
sectors of industrial application shown through case stud-
ies”. International Journal of Production Research, 49(4),
pp. 1061–1079.

[3] Beaman, J., and Lopez, F., 2014. “Emerging nexus of cy-
ber, modeling, and estimation in advanced manufacturing:
Vacuum arc remelting to 3D printing”. Mechanical Engi-
neering, 136(12), p. S8.

[4] Bourell, D. L., Leu, M. C., and Rosen, D. W., 2009.
“Roadmap for additive manufacturing: identifying the fu-
ture of freeform processing”. The University of Texas at
Austin, Austin, TX.

[5] Patil, N., Pal, D., Rafi, H. K., Zeng, K., Moreland, A.,
Hicks, A., Beeler, D., and Stucker, B., 2015. “A generalized
feed forward dynamic adaptive mesh refinement and dere-
finement finite element framework for metal laser sinter-
ingpart I: Formulation and algorithm development”. Jour-
nal of Manufacturing Science and Engineering, 137(4),
p. 041001.

[6] Pal, D., Patil, N., Kutty, K. H., Zeng, K., Moreland, A.,
Hicks, A., Beeler, D., and Stucker, B., 2016. “A gen-
eralized feed-forward dynamic adaptive mesh refinement
and derefinement finite-element framework for metal laser
sinteringpart II: Nonlinear thermal simulations and valida-
tions”. Journal of Manufacturing Science and Engineering,
138(6), p. 061003.

[7] Khairallah, S. A., Anderson, A. T., Rubenchik, A., and
King, W. E., 2016. “Laser powder-bed fusion additive man-
ufacturing: physics of complex melt flow and formation
mechanisms of pores, spatter, and denudation zones”. Acta
Materialia, 108, pp. 36–45.

[8] Kamath, C., 2016. “Data mining and statistical inference
in selective laser melting”. The International Journal of
Advanced Manufacturing Technology, pp. 1–19.

[9] Yang, Z., Eddy, D., Krishnamurty, S., Grosse, I., Denno, P.,
and Lopez, F., 2016. “Investigating predictive metamod-
eling for additive manufacturing”. In Proceedings of the
ASME 2016 International Design Engineering Technical
Conferences & Computers and Information in Engineering
Conference.

[10] Witherell, P., Feng, S., Simpson, T. W., Saint John, D. B.,
Michaleris, P., Liu, Z.-K., Chen, L.-Q., and Martukanitz,
R., 2014. “Toward metamodels for composable and
reusable additive manufacturing process models”. Jour-
nal of Manufacturing Science and Engineering, 136(6),
p. 061025.

[11] Bryden, J., and Noble, J., 2006. Computational modelling,
explicit mathematical treatments, and scientific explana-
tion. MIT Press.

[12] Di Paolo, E. A., Noble, J., and Bullock, S., 2000. “Simula-
tion models as opaque thought experiments”. In Artificial
Life VII: The Seventh International Conference on the Sim-
ulation and Synthesis of Living Systems, pp. 497–506.

[13] Bedau, M. A., 1999. “Can unrealistic computer models il-
luminate theoretical biology”. In Proceedings of the 1999
Genetic and Evolutionary Computation Conference Work-
shop Program, pp. 20–23.

[14] Shephard, M. S., Baehmann, P. L., Georges, M. K., and Ko-
rngold, E. V., 1990. “Framework for the reliable generation
and control of analysis idealizations”. Computer Methods
in Applied Mechanics and Engineering, 82(1-3), pp. 257–
280.

[15] Turkiyyah, G. M., and Fenves, S. J., 1996. “Knowledge-
based assistance for finite-element modeling”. IEEE Intel-
ligent Systems(3), pp. 23–32.

[16] Sheehy, M., and Grosse, I., 1997. “An object-oriented
blackboard-based approach for automated finite element
modeling and analysis of multichip modules”. Engineer-
ing with computers, 13(4), pp. 197–210.

[17] Holzhauer, D., and Grosse, I., 1999. “Finite element analy-
sis using component decomposition and knowledge-based
control”. Engineering with Computers, 15(4), pp. 315–
325.

[18] Shen, W., and Norrie, D. H., 1999. “Agent-based sys-
tems for intelligent manufacturing: a state-of-the-art sur-
vey”. Knowledge and information systems, 1(2), pp. 129–
156.

[19] Szykman, S., Sriram, R. D., and Regli, W. C., 2001. “The
role of knowledge in next-generation product development
systems”. Journal of Computing and Information Science
in Engineering, 1(1), pp. 3–11.

[20] Navigli, R., and Velardi, P., 2005. “Structural semantic in-
terconnections: a knowledge-based approach to word sense

11



disambiguation”. Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, 27(7), pp. 1075–1086.

[21] Szykman, S., Sriram, R. D., Bochenek, C., Racz, J. W., and
Senfaute, J., 2000. “Design repositories: engineering de-
sign’s new knowledge base”. IEEE Intelligent Systems(3),
pp. 48–55.

[22] Witherell, P., Krishnamurty, S., and Grosse, I. R., 2007.
“Ontologies for supporting engineering design optimiza-
tion”. Journal of Computing and Information Science in
Engineering, 7(2), pp. 141–150.

[23] Grosse, I. R., Milton-benoit, J. M., and Wileden, J. C.,
2005. “Ontologies for supporting engineering analysis
models”. AIE EDAM, 19(01), pp. 1–18.

[24] Assouroko, I., Ducellier, G., Boutinaud, P., and Eynard,
B., 2014. “Knowledge management and reuse in col-
laborative product development – A semantic relationship
management-based approach”. International Journal of
Product Lifecycle Management, 7(1), pp. 54–74.

[25] Lopez, F., Witherell, P., and Lane, B., 2016. “Identifying
uncertainty in laser powder bed fusion models”. In Pro-
ceedings of the ASME 2016 Manufacturing Science and
Engineering Conference.

[26] Zeng, K., Pal, D., and Stucker, B., 2012. “A review of ther-
mal analysis methods in laser sintering and selective laser
melting”. In Proceedings of Solid Freeform Fabrication
Symposium Austin, TX.

[27] Roberts, I., Wang, C., Esterlein, R., Stanford, M., and
Mynors, D., 2009. “A three-dimensional finite element
analysis of the temperature field during laser melting of
metal powders in additive layer manufacturing”. Interna-
tional Journal of Machine Tools and Manufacture, 49(12),
pp. 916–923.

[28] Tolochko, N. K., Arshinov, M. K., Gusarov, A. V., Titov,
V. I., Laoui, T., and Froyen, L., 2003. “Mechanisms of
selective laser sintering and heat transfer in Ti powder”.
Rapid Prototyping Journal, 9(5), pp. 314–326.

[29] Dong, L., Makradi, A., Ahzi, S., and Remond, Y., 2009.
“Three-dimensional transient finite element analysis of the
selective laser sintering process”. Journal of Materials Pro-
cessing Technology, 209(2), pp. 700–706.

[30] Hussein, A., Hao, L., Yan, C., and Everson, R., 2013. “Fi-
nite element simulation of the temperature and stress fields
in single layers built without-support in selective laser melt-
ing”. Materials & Design, 52, pp. 638–647.

[31] Rosenthal, D., 1946. “The theory of moving sources of heat
and its application to metal treatments”. Transactions of the
ASME, 68, pp. 849–866.

[32] Sun, M.-S. M., and Beaman, J. J., 1991. “A three dimen-
sional model for selective laser sintering”. In Proceedings
of Solid Freeform Fabrication Symposium, Vol. 2, pp. 102–
109.

[33] Moser, D., Fish, S., Beaman, J., and Murthy, J., 2014.

“Multi-layer computational modeling of selective laser
sintering processes”. In ASME 2014 International Me-
chanical Engineering Congress and Exposition, Ameri-
can Society of Mechanical Engineers, pp. V02AT02A008–
V02AT02A008.

[34] Moser, D., Pannala, S., and Murthy, J., 2015. “Computa-
tion of effective radiative properties of powders for selec-
tive laser sintering simulations”. JOM, 67(5), pp. 1194–
1202.

[35] Devesse, W., De Baere, D., and Guillaume, P., 2015. “Mod-
eling of laser beam and powder flow interaction in laser
cladding using ray-tracing”. Journal of Laser Applications,
27(S2), p. S29208.

[36] Wang, X., and Kruth, J.-P., 2000. “A simulation model for
direct selective laser sintering of metal powders”. In Inter-
national Conference on Engineering Computational Tech-
nology, pp. 57–71.

[37] Gusarov, A., and Kruth, J.-P., 2005. “Modelling of radi-
ation transfer in metallic powders at laser treatment”. In-
ternational Journal of Heat and Mass Transfer, 48(16),
pp. 3423–3434.

[38] Verhaeghe, F., Craeghs, T., Heulens, J., and Pandelaers, L.,
2009. “A pragmatic model for selective laser melting with
evaporation”. Acta Materialia, 57(20), pp. 6006–6012.

[39] Hodge, N., Ferencz, R., and Solberg, J., 2014. “Implemen-
tation of a thermomechanical model for the simulation of
selective laser melting”. Computational Mechanics, 54(1),
pp. 33–51.

[40] Khairallah, S. A., and Anderson, A., 2014. “Mesoscopic
simulation model of selective laser melting of stainless
steel powder”. Journal of Materials Processing Technol-
ogy, 214(11), pp. 2627–2636.

[41] Bugeda, G., Cervera, M., and Lombera, G., 1999. “Nu-
merical prediction of temperature and density distributions
in selective laser sintering processes”. Rapid Prototyping
Journal, 5(1), pp. 21–26.

[42] Kolossov, S., Boillat, E., Glardon, R., Fischer, P., and
Locher, M., 2004. “3D FE simulation for temperature evo-
lution in the selective laser sintering process”. Interna-
tional Journal of Machine Tools and Manufacture, 44(2),
pp. 117–123.

[43] Körner, C., Attar, E., and Heinl, P., 2011. “Mesoscopic
simulation of selective beam melting processes”. Journal
of Materials Processing Technology, 211(6), pp. 978–987.

[44] Körner, C., Bauereiß, A., and Attar, E., 2013. “Fundamen-
tal consolidation mechanisms during selective beam melt-
ing of powders”. Modelling and Simulation in Materials
Science and Engineering, 21(8), p. 085011.

[45] Carslaw, H. S., and Jaeger, J. C., 1959. “Conduction of heat
in solids”. Oxford: Clarendon Press, 1959, 2nd ed.

[46] Frenkel, J., 1945. “Viscous flow of crystalline bodies un-
der the action of surface tension”. Journal of Physics

12



(Moscow), 9(5), pp. 385–391.
[47] Mackenzie, J., and Shuttleworth, R., 1949. “A phenomeno-

logical theory of sintering”. Proceedings of the Physical
Society. Section B, 62(12), p. 833.

[48] Tontowi, A. E., and Childs, T., 2001. “Density prediction
of crystalline polymer sintered parts at various powder bed
temperatures”. Rapid Prototyping Journal, 7(3), pp. 180–
184.

[49] Kruth, J.-P., Levy, G., Klocke, F., and Childs, T., 2007.
“Consolidation phenomena in laser and powder-bed based
layered manufacturing”. CIRP Annals-Manufacturing
Technology, 56(2), pp. 730–759.

[50] W3C OWL Working Group, 2012. W3C OWL2 web on-
tology language. http://www.w3.org/TR/owl2-primer/. Ac-
cessed on: 08/01/2016.

[51] Stanford Center for Biomedical Informatics Research,
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