
 

Spectrum Estimation of Density Operators with Alkaline-Earth Atoms
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We show that Ramsey spectroscopy of fermionic alkaline-earth atoms in a square-well trap provides an
efficient and accurate estimate for the eigenspectrum of a density matrix whose n copies are stored in the
nuclear spins of n such atoms. This spectrum estimation is enabled by the high symmetry of the interaction
Hamiltonian, dictated, in turn, by the decoupling of the nuclear spin from the electrons and by the shape of
the square-well trap. Practical performance of this procedure and its potential applications to quantum
computing and time keeping with alkaline-earth atoms are discussed.
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The eigenspectrum of a d-dimensional density matrix ρ̂
of a system characterizes the entanglement of the system
with its environment [1]. As it gives access to quantities
such as purity, entanglement entropy, and more generally
Renyi entropies, the eigenspectrum is an indispensable tool
for studying many-body quantum states and processes in
general and quantum information processors in particular
[2,3]. A strategy to estimate the spectrum specifies the
measurements to be performed on n copies of ρ̂, along with
a rule that specifies the estimated spectrum given meas-
urement outcomes. It is natural that an optimal measure-
ment should be invariant under arbitrary permutations
[symmetry group Sn] and arbitrary simultaneous rotations
[symmetry group SUðdÞ] of all n copies. The well-known
empirical Young diagram (EYD) algorithm involves a
single joint entangled measurement on all n copies which
satisfies these symmetries, by projecting onto irreducible
representations of Sn × SUðdÞ [4–9]. In this Letter, we
show that Ramsey spectroscopy on n fermionic alkaline-
earth atoms stored together in a square trap can be used for
spectrum estimation. We require each atom to have a copy
of ρ̂ stored in the d-dimensional nuclear spin. Then,
spatially uniform Ramsey pulses between electronic states
result in a joint measurement with Sn × SUðdÞ symmetry,
reminiscent of the EYD measurement.
Two unique features of fermionic alkaline-earth atoms are

the metastability of the optically excited state jei ¼ 3P0 and
the decoupling of the nuclear spin from the (J ¼ 0) electrons
in both the ground state jgi ¼ 1S0 and in jei. Thanks to these
two features, alkaline-earth atoms have given rise to the
world’s best atomic clocks [10,11] and hold great promise
for quantum information processingwith nuclear and optical
electronic qubits [12–17] and for quantum simulation of
two-orbital, high-symmetry magnetism [18–23]. Spectrum

estimation of ρ̂, using a copy of ρ̂ stored in the nuclear spin of
each of n jgi atoms, would be of great value in all of these
applications. First, it can determine whether ρ̂ describes a
pure state, in which case the fermionswould be identical and
s-wave scattering would not interfere with clock operation.
Second, it can be used to assess how faithfully the nucleus
stores quantum information as one manipulates the electron
[12,13,16]. Finally, this procedure can be used to character-
ize the entanglement of a given nuclear spin with others in a
many-atom state obtained via evolution under a spin
Hamiltonian [18–24]; this would require n copies of the
many-atom state.
As illustrated in Fig. 1(a), to estimate the spectrum of ρ̂,

whose n copies are stored in the nuclear spins of n jgi
atoms, we transfer all n atoms into a single square well,
with at most one atom per single-particle orbital. For
sufficiently weak interactions, due to energy conservation
and the anharmonicity of the trap, the n occupied orbitals of

(a) (b) (c)

FIG. 1. Spectrum estimation with alkaline-earth atoms. (a) n
copies of a d-dimensional density matrix ρ̂ are stored in the
nuclear spin of n fermionic alkaline-earth atoms trapped in a
single square-well trap and prepared in their ground electronic
state jgi. (b) A Ramsey sequence is applied consisting of two
pulses of area β and −β, respectively, coupling jgi to the first
excited electronic state jei. (c) The number hn̂ei of e atoms is
measured for different dark times τ (red circles) between the
pulses, allowing one to extract the spectrum of ρ̂.

PHYSICAL REVIEW LETTERS 120, 025301 (2018)

0031-9007=18=120(2)=025301(5) 025301-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.120.025301&domain=pdf&date_stamp=2018-01-09
https://doi.org/10.1103/PhysRevLett.120.025301
https://doi.org/10.1103/PhysRevLett.120.025301
https://doi.org/10.1103/PhysRevLett.120.025301
https://doi.org/10.1103/PhysRevLett.120.025301


the well remain unchanged throughout the experiment and
play the role of individual sites. Thanks to the decoupling
of the d-dimensional nuclear spin from the electrons,
s-wave interactions give rise to a spin Hamiltonian
with nuclear-spin-rotation SUðdÞ symmetry [18,19].
Furthermore, the interaction strength between square-well
orbitals labeled by positive integers p ≠ q is proportional toR
π
0 dxsin2ðpxÞsin2ðqxÞ ¼ π=4 and is thus independent of p
and q, giving rise to the site-permutation symmetry Sn [25].
Critically, the resulting Hamiltonian has Sn × SUðdÞ
symmetry.
Remarkably, the independence of the interaction strength

on p and q also makes the motional temperature of the
atoms irrelevant.
Our Ramsey protocol begins with the initial state of the

n-atom system jGihGj ⊗ ρ⊗n, where jGi ¼ jg…gi and
each nuclear spin is in the same state ρ̂. The first
Ramsey pulse of area β between jgi and jei [Fig. 1(b)]
is implemented over short time tP ¼ β=Ω (so that inter-
actions can be ignored), using Hamiltonian ĤP ¼
ðΩ=2ÞPn

k¼1 ðσ̂keg þ σ̂kgeÞ with Rabi frequency Ω and
σ̂kμν ¼ jμikhνjk. Since s-wave e-e interactions are lossy
[21], we assume that the trapping of jei atoms is tempo-
rarily loosened during the dark time τ [15], so that only g-g
interactions contribute via the spin Hamiltonian

ĤD ¼ U
X
j<k

σ̂jggσ̂kggð1 − ŝjkÞ − δ
X
k

σ̂kee: ð1Þ

In the Supplemental Material we discuss the approach
with a more general Hamiltonian [26]. Here, ŝjk ¼P

d
r;r0¼1

jrijjr0ikhr0jjhrjk exchanges nuclear spins on sites
j and k (so two identical fermions indeed do not s-wave
interact), δ is the detuning of the Ramsey-pulse laser from
the g-e transition, U ¼ 4πℏaggω⊥=L, agg is the s-wave g-g
scattering length, L is the length of the square well, and ω⊥
is the frequency of the potential that freezes out transverse
motion of the atoms [25]. After the second Ramsey pulse of
area −β, the state is ρ̂0 ¼ Ŵ†V̂ Ŵ jGihGjρ̂⊗nðŴ†V̂ ŴÞ†,
where Ŵ ≔ exp½−itPĤP� and V̂ ≔ exp½−iτĤD�. Finally,
the number of jei atoms hn̂ei ¼ Tr½n̂eρ̂0� is measured,
where n̂e ¼

P
jσ̂

j
ee.

We envisage starting with m × R sets of n atoms, each
with nuclear spin state ρ̂. We denote the eigenspectrum of ρ̂
as p⃗ ¼ ðp1; p2;…; pdÞ, ordered for future convenience as
p1 ≥ p2 ≥ … ≥ pd. For each dark time τ1; τ2;…τR, we
repeat the Ramsey protocol m times and compute the
average [Fig. 1(c)] to yield estimates of hn̂eðτ1; p⃗Þi;
hn̂eðτ2; p⃗Þi;…; hn̂eðτR; p⃗Þi. Our key finding is that p⃗
can be inferred by fitting the measured values to a
precalculated expression of the mean number of e atoms
hn̂eðτ; p⃗Þi.
Although our approach is valid for all n, as n increases,

the distribution of measurement outcomes n̂e=n becomes

tightly peaked about its expectation value hn̂ei=n given by
the following expression in the large n limit:

hn̂eðτ;p⃗Þi
n

¼sin2β
2

�
1−

Xd
r¼1

prcosðωrτÞ
�
þ ~O

�
1ffiffiffi
n

p
�
; ð2Þ

where ωr ¼ Uðn − 1Þð1 − prÞcos2ðβ=2Þ þ δ. We use the
notation that a tilde over the O indicates that we ignore
logarithmic factors. Therefore, the number of required
repetitions m decreases with n, making our approach
particularly appealing in the regime of large n [see
Fig. 2(a)].
The limiting cases of Eq. (2) are easily understood.

Indeed, Rabi π pulses (β ¼ π) give zero since ĤD → −nδ,
so Ŵ†V̂ Ŵ ¼ exp½inδτ�. Similarly, hn̂ei ¼ 0 in the absence
of Rabi pulses (β ¼ 0) since no jei atoms are ever created.
If ρ̂ describes a pure state, in which case one of the pr is
unity while the rest vanish, the interactionU drops out (as it
should for identical fermions) and we recover the familiar
noninteracting expression.
EYD spectrum estimation.—Before presenting the der-

ivation of the number of e atoms hn̂eðτ; p⃗Þi, it is useful to
review the original EYD spectrum estimation algorithm.
For the familiar case of qubits (d ¼ 2, or, equivalently,
spin-1=2), the EYD algorithm can be stated as:

(a)

(b) (c)

FIG. 2. (a) For spectrum p⃗ ¼ ð0.7; 0.2; 0.1Þ and n ¼ 30, we
compare the true expectation value hn̂eðτ; p⃗Þi=n (solid line) with
that estimated using mean-field theory (dashed line). The blue
region indicates outcomes that are within 1 standard deviation of
hn̂eðτ; p⃗Þi=n, where the standard deviation is estimated using the
mean field result Eq. (5). (b) The normalized probability
distribution PrðSjn; pÞ for measurement outcome S (and the
estimate S=nþ 1=2 for p) for n ¼ 30 and n ¼ 300 copies of ρ̂
with spectrum ðp; 1 − pÞ with p ¼ 0.8. (c) For n ¼ 30, the
probability distribution is shown for different outcomes
ðλ1; λ2; n − λ1 − λ2Þ given spectrum (0.7,0.2,0.1).
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Letting ðp; 1 − pÞ with p ≥ 1=2 be the spectrum of ρ̂, in
the limit n → ∞, a single measurement on ρ̂⊗n of the total
spin Ŝ2 [with possible outcomes SðSþ 1Þwith nonnegative
S ¼ n=2; n=2 − 1;…] gives an outcome satisfy-
ing p ¼ 1=2þ S=nþOð1= ffiffiffi

n
p Þ.

This result follows from the fact that for large n the
measurement outcome distribution PrðSjn; pÞ becomes
peaked with mean and standard deviation ðp − 1=2Þn
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1 − pÞnp

to leading order in n, as shown in
Fig. 2(b) [26]. Note that the measurement operator Ŝ2

has symmetry group Sn × SUð2Þ. The action of this
symmetry group within each eigenspace of Ŝ2 corresponds
one to one to a distinct irreducible representation
of Sn × SUð2Þ.
This generalizes to arbitrary d. Thanks to Schur-Weyl

duality [27], the irreducible representations (irreps) of Sn ×
SUðdÞ in the dn-dimensional nuclear-spin Hilbert space H
of n atoms are in one-to-one correspondence with d-row
Young diagrams λ⃗ ¼ ðλ1; λ2;…; λdÞ whose row lengths
satisfy λ1 ≥ λ2 ≥ … ≥ λd and

P
λi ¼ n (see Fig. 3). We

write H ¼ ⨁
λ⃗

Hλ⃗, where the λ⃗ subspace Hλ⃗ ⊂ H supports

the λ⃗ irrep. Any operator on H with Sn × SUðdÞ symmetry
has Hλ⃗ as eigenspaces.
In the EYD algorithm, one measures the Young diagram

on ρ̂⊗n. The distribution of outcomes Prðλ⃗jn; p⃗Þ has a
single peak near np⃗ [see Fig. 2(c)] with a typical deviationP

ijðλi=nÞ − pij of Oðn−1=2Þ (for fixed d) [8].
The experimental complexity associated with changing

from the Sn × SUðdÞ irrep basisHλ⃗ to the (generally easier
to measure) computational basis makes implementing the
EYD algorithm [28] seem like a daunting task in practice.
The main result of this Letter is that the standard tool of
Ramsey spectroscopy applied to fermionic alkaline-earth
atoms in a square-well trap naturally accomplishes essen-
tially the same task, allowing for efficient spectrum
estimation.
A hint at why our proposal achieves this goal is that the

Hamiltonian restricted to the ground electronic state,
hGjĤDjGi ¼ U

P
j<kð1 − ŝjkÞ, is an operator on H with

Sn × SUðdÞ symmetry. Therefore, hGjĤDjGi has subspa-
ces Hλ⃗ as energy eigenspaces, which can be probed by

Ramsey spectroscopy. However, the energies Eðλ⃗Þ ¼
ðU=2Þnðn − 1Þ − ðU=2ÞPd

i¼1 λiðλi − 2iþ 1Þ are not in
one-to-one correspondence with subspaces Hλ⃗ for d > 2

(see Fig. 3 for an example). Therefore, even if it were
possible experimentally, direct measurement of the energy
associated with hGjĤDjGi would not be sufficient to
perform the EYD algorithm. We will see that, remarkably,
by accessing restrictions of ĤD to different electronic
states, Ramsey spectroscopy is powerful enough to
uniquely identify λ⃗, thus enabling spectrum estimation.
Mean-field solution.—To infer the spectrum, we need to

calculate the Ramsey measurement expectation value,

hn̂eðτ; p⃗Þi
n

¼ Tr½ρ̂⊗nn̂eðτÞ�
n

; ð3Þ

defining n̂eðτÞ ≔ hGjW†V†Wn̂eW†VWjGi, which is an
operator on H with Sn × SUðdÞ symmetry. We now show
that, within the mean-field approximation, Eq. (3) can be
evaluated using the expression in Eq. (2).
Without loss of generality, we choose the eigenbasis of

the initial nuclear-spin density matrix ρ̂ as the nuclear spin
basis. At the mean-field level, time evolution under ĤP and
ĤD does not create coherence between different nuclear
spin states. Let ρrrμν be the entry hμrjρ̂ðτÞjνri of the single-
atom density matrix ρ̂ðτÞ, where μ, ν denote the electronic
state (g or e), while r denotes nuclear spin. Then the dark-
time evolution keeps ρrrgg and ρrree unchanged, while

∂ρrreg
∂τ ¼ i

�
δ −Uðn − 1Þ

�
ρrrgg −

X
r0
ρr

0r0
gg

��
ρrreg: ð4Þ

Putting this together with the two Ramsey pulses, we
recover Eq. (2) without the 1=

ffiffiffi
n

p
correction. Since there is

at most one e atom in every site (spatial mode), the variance
of n̂e=n within the mean-field approximation is

hðn̂e=nÞ2i − hn̂e=ni2 ¼
hn̂e=ni − hn̂e=ni2

n
: ð5Þ

This 1=
ffiffiffi
n

p
standard deviation scaling is the same as that of

the deviation of the mean-field value of hn̂eðτ; p⃗Þi=n from
its exact value [26]. However, the exact expression is still
important for small n which would occur when technical
limitations prevent us from putting all available atoms into
the same trap or when atoms are produced in small batches.
In that case, we would need to repeat the experiment many
times and will be sensitive to the deviation of the meanfield
value from the exact result. Therefore, we now evaluate
Eq. (3) exactly.
Exact solution.—To avoid clutter, we drop hats on

operators and arrows on vectors and introduce abbrevia-
tions: c ≔ cosðβ=2Þ, s ≔ sinðβ=2Þ. We define a basis jEi of
binary vectors, E ¼ ðE1; E2;…; EnÞ ∈ f0; 1gn, where the
kth atom is in electronic state jgi (jei) when Ek ¼ 0

FIG. 3. The Young diagrams λ⃗ ¼ ðλ1; λ2;…; λdÞ for n ¼ 6,
d ¼ 3. With all atoms in jgi, the interaction Hamiltonian
jGjĤDjGi ¼ U

P
j<kð1 − ŝjkÞ has Sn × SUðdÞ symmetry and

is therefore diagonal in λ⃗ subspaces. The energy in hGjĤDjGi
is displayed above each Young diagram. Notice two of the Young
diagrams correspond to the same energy.
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(Ek ¼ 1). We also denote by jEj the number of 1’s in E.
Expanding WjGi in the jEi basis,

neðτÞ ¼
X

E0;E∈f0;1gn
ijE0j−jEjc2n−jEj−jE0jsjEjþjE0j

× hE0jV†WneW†VjEi: ð6Þ

Since WneW† is a sum of single-atom operators, terms in
which strings E and E0 differ on more than one site vanish.
When E0 ¼ E,

hEjV†WneW†VjEi ¼ hEjWneW†jEi
¼ ðn − jEjÞs2 þ jEjc2; ð7Þ

since VjEi ¼ eiδjEjτ exp½−iαPj<k∉Eð1 − ŝjkÞ�jEi. Here
α ¼ Uτ, j < k∉E is a sum over all pairs j < k such that
Ej ¼ 0 and Ek ¼ 0. Terms with E0 ¼ E thereby sum to
2nc2s2 ¼ ðn=2Þsin2β in Eq. (6).
When E0 and E only differ on the kth atom such that

Ek ¼ 1 and E0
k ¼ 0,

hE0jV†WneW†VjEi ¼ −icseiδτeiα
P

j∉E
ð1−sjkÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

AE

; ð8Þ

as e−iα
P

j<l∉E0 sjleiα
P

j<l∉E
sjl ¼ e−iα

P
j∉E

sjk , which holds
since the exponents commute. Defining AE as given by
the underbrace, the contribution to the sum in Eq. (6) of E
and E0 that differ on a single atom is

−
Xn
k¼1

X
E∈f0;1gn
Ek¼1

c2n−2jEjþ2s2jEjTr½ρ⊗nðeiδτAEþe−iδτA†
EÞ�: ð9Þ

Note that Trðρ⊗nAEÞ is invariant under site permutation,
and therefore depends only on jEj. For integer w ¼ 0;
1;…; n − 1, define the convenient jEj ¼ wþ 1 represen-

tative operator Bw ≔ eiα
P

n−w−1
j¼1

ð1−sjnÞ. Then,

hn̂eðτ; p⃗Þi
n

¼

sin2β
2

�
1 −

Xn−1
w¼0

Prðwjn; βÞRefeiδτTrðρ⊗nBwÞg
�
; ð10Þ

where Prðwjn; βÞ ≔ ðn−1w Þc2ðn−w−1Þs2w is the binomial dis-
tribution obtained from expanding ðs2 þ c2Þn−1 ¼ 1.
We evaluate Trðρ⊗nBwÞ in two ways. The first way

(presented below) uses group representation theory and
illustrates the connection to the EYD algorithm, and yields
an expression that can be evaluated conveniently numeri-
cally. The second approach (provided in the Supplemental
Material [26]), is used to prove that the asymptotic result in
Eq. (2) deviates from the exact result by ~Oð1= ffiffiffi

n
p Þ.

As Trðρ⊗nBwÞ is invariant under Sn × SUðdÞ actions,

Trðρ⊗nBwÞ ¼
X
λ

Prðλ⃗jn; p⃗ÞTrλðBwÞ; ð11Þ

where Prðλ⃗jn; p⃗Þ is the EYD probability distribution, and
Trλ is a trace over the λ-subspace Hλ. Now we show

TrλðBwÞ ¼ eiαðn−w−1Þ
X
ξ

Prðξjw; λÞ
Xd
r¼1

∥ξ−r∥
∥ξ∥

e−iαðξr−rÞ;

ð12Þ
where the sum is over all irreps ξ of Sn−w, and Prðξjw; λÞ ≔
f½mðλ; ξÞ∥ξ∥�=½∥λ∥�g is a probability distribution defined in
terms of the multiplicity mðλ; ξÞ of irrep ξ of Sn−w when
regarding λ as a (reducible) representation of the subgroup
Sn−w ⊂ Sn. For an irrep μ of Sm, its dimension is denoted as
∥μ∥, the length of the rth row is μr, and μ−r is an irrep of
Sm−1 defined by removing a box from the rth row of μ.
To begin, note Bw is composed of permutations in the

subgroup Sn−w of the first n − w − 1 sites, along with the
nth site. From this observation, we regard the representa-
tion space λ as a representation of Sn−w, to obtain a
reducible representation λjnn−w of Sn−w. Note that we
ignored the SUðdÞ Hilbert space and considered Sn alone
since AE is written in terms of elements of Sn, which are
each themselves SUðdÞ symmetric. This decomposes into a
direct sum of irreps ξ of Sn−w as λjnn−w ≅ ⨁ξmðλ; ξÞξ. The
multiplicitymðλ; ξÞ is the number of distinct paths from λ to
ξ, where each step in a path is a Young diagram, with one
box removed from the previous step [26]. Since Bw is
invariant under permutation of the first n − w − 1 sites, we
can finally diagonalize Bw by further restricting each ξ irrep
of Sn−w to subgroup Sn−w−1 ⊂ Sn−w; Bw must have each ξ−r

subspace as an eigenspace. The eigenvalue of the ξ−r

subspace is eiαðn−w−1Þe−iαðξr−rÞ [26], resulting in Eq. (12).
We have introduced three probability distributions

Prðλjn; pÞ, Prðwjn; βÞ, and Prðξjw; λÞ, all of which turn
out to be unimodal for large n. In the large n limit, the
unimodality together with the fact that ½ð∥ξ−r∥Þ=ð∥ξ∥Þ� →
ðξr=

P
jξjÞ recovers the mean field result Eq. (2). For n and

d which are too large to evaluate hn̂eðτ; p⃗Þi=n exactly, one
can still obtain a more precise estimate with this approach
than that given by Eq. (2) by dropping terms associated
with negligible contributions to the distributions [26].
Experimental considerations.—In Ref. [25] we suggest

an implementation to trap tens of 87Sr atoms in a square
well potential by freezing out the x and y directions using a
strong red-detuned laser such that ω⊥ ¼ 2π × 10 kHz, and
“capping” the ends of the tube of length L ∼ 10 μm
with a blue-detuned laser. These parameters and the
s-wave 87Sr scattering length agg ¼ 5.1 nm [29] result in
U ¼ ð4πaggω⊥Þ=L ≈ 2π × 10 Hz, allowing one to trap
≲20 atoms.
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The relevant time scale for Eq. (2) is 1=ðnUÞ ∼ 1 ms.
One can use a build-up cavity to increase barrier height

of the caps and ω⊥, allowing one to trap more atoms and
therefore carry out higher-resolution spectrum estimation.
To avoid losses caused by e-e collisions, we propose

temporarily loosening the e trap during the dark time,
which is readily doable for our choice of internal states
[15]. This should be performed slowly with respect to ω⊥
and quickly with respect to U.
An experimentally simpler approach is to use β suffi-

ciently small as to make e-e interactions negligible; this
will, however, decrease the signal requiring additional
repetitions of the experiment. In the Supplemental
Material, we include e-g collisions in the mean-field
treatment [26]. We include analysis of experimental imper-
fections in the Supplemental Material [26].
Outlook.—We have shown that alkaline-earth atoms can

be used as a special-purpose quantum computer capable of
measuring the spectrum of a density matrix, motivated by
EYD. It is possible that many other useful quantum
information tasks can be accessed in similar systems with
special symmetry properties. In particular, an important
extension of our work would be to find an efficient
implementation of full-state tomography in current exper-
imental systems. On the other hand, it would also be
interesting to know if one can improve on our proposal if
one seeks to measure a simpler quantity than the full
spectrum [9], such as the purity.
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Note added.—While finalizing the manuscript, we learned
of a proposal [30] to perform spectrum estimation with
Rydberg atoms using a sequence of swap operations
between two copies of the system, controlled by an ancilla.
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