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The C programming language was invented over 40 years ago. It is infamous for buffer overflows. We have 
learned a lot about computer science, language design, and software engineering since then. As it is unlikely that 
we will stop using C any time soon, we present some ways to deal with buffer overflows.  By the way, many of 
these techniques are useful for other programing languages and other classes of vulnerabilities. 
 
The term “buffer” comes from decades ago when input/output (I/O) operations were slow. Memory was set aside 
to hold a chunk of output data going to a device, such as a printer or a 1200 bit/s modem, or input data being 
received from a keyboard or a punch card reader. When the buffer was finished, the computer was interrupted to 
set up another I/O operation. The term has come to mean a chunk of contiguous memory whose values constitute 

a larger whole. For instance, a string is often stored as characters kept in adjoining set of memory locations. We 

use the C language standard term “array,” but retain the common, although less precise term “buffer overflow.” 
 
An array is a semi-structured group of elements of the same type. The elements are accessed by integer indexes. In 
C, arrays are zero-based, that is, the first element has index 0. Other languages are one-based or allow the user to 
define the first index. In C, valid indexes range from zero to the total number of elements, minus one. Since C 
allows a reference (pointer) into an array, an indexed access with a negative index may be valid, too. 
 
The Bugs Framework (BF) [1] defines the Buffer Overflow (BOF) class as: “The software accesses through an array a 
memory location that is outside the boundaries of that array.”  In other words, the program uses an array 
reference to read from or write to a memory location that is before the beginning or after the end of the array. 
The BF provides information on the causes, attributes and consequences of other bugs classes, such as injection 
(INJ), information exposure (IEX), and control of interaction frequency (CIF). 
 
Figure 1 shows that there are only two proximate causes of BOF: [the amount of] Data Exceeds [the size of the] 
Array or there is a Wrong Index or Pointer Out of Range. These may be a result of other causes, too. Data Exceeds 
Array has two specific cases. In the first case, the programmer allocated the Array Too Small, such as in CVE-2015-
0235 – Ghost [2]. The code computes the size of the needed buffer but leaves out one factor, which makes the 
buffer four bytes short. In the second case, Too Much Data was accessed, such as in CVE-2014-0160 – Heartbleed 
[3]. Instead of finding the length of the reply string that is already stored in an array, the code uses a number from 
an input. So, bad input can cause the code to read far too much data. The chain of causes for Heartbleed are Input 
[was] Not Checked Properly that leads to Too Much Data [read], specifically a huge number of bytes are read from 
the heap. 
 
Buffer overflows cause failures because data is read or written in ways that are entirely foreign to what the 
programmer plans. Memory contains information, such as the address of the next instruction to execute after 
returning from a function, calling parameters, variables used in the function, data structures, and permission flags 
set by the operating system. Writing outside an array could change any of these. In the worst-case scenario, 
adversaries could cause the program to gain extra permission or make the program execute arbitrary code. 
Reading beyond array boundaries could retrieve sensitive data, such as old passwords, that are left in memory 
after they are processed. 
 
 
Disclaimer: Certain trade names and company products are mentioned in the text or identified. In no case does such identification imply 
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necessarily the best available for the purpose. 

 
 



 
Figure 1. BOF Causes and Attributes, from [1] 

 
 
 
Buffer Overflows may be detected through two general approaches: external and internal. Internal mechanisms 
are those that are built into a program and operate during execution. External, including static, mechanisms do not 
access the state of executing programs. The first external mechanism is observing a program’s behavior. 
 
Almost any failure could be the result of many kinds of bugs. However, some failures have characteristics strongly 
suggesting buffer overflow as the software weakness: 

• Is far more information produced than expected? This suggests a read BOF. Heartbleed may have been 
discovered earlier if we had verified that responses to heartbeat packets were only a few dozen bytes. 

• Is different data corrupted in unusual ways in response to specific input? For instance, does a longer input 
cause a different failure than a shorter input? This suggests a write BOF.  

• Does the program crash and a dump or debugger give nonsensical stack traces? This suggests a write BOF of 
stack location that corrupts the call/return stack. 

 
Static analyzers check programs for possible BOF and other issues. Sound static analyzers are potentially always 
correct. In contrast, heuristic analyzers generally run faster, handle more languages, and cover more classes of 
vulnerabilities. Today, most static analyzers have lower false positive rates and simultaneously lower false negative 
rates than they had in the past. Some static analyzers have been augmented with execution monitoring to yield 
hybrid (static and dynamic) analyzers. 
 
Good general testing techniques complement static analysis. Testing relies on fewer assumptions and checks 
properties that are difficult to specify. We mention a few points particularly important to testing for BOF: 

• Try to exceed limits, to check routines that allocate more memory and to challenge the limits of hard coded 
arrays. 

• Try very unusual inputs, such as negative numbers, empty fields, and letters or special symbols where 
numbers are expected. 

 



In contrast to external methods mentioned above, internal detection mechanisms have access to the program’s 
state and control flow. Many of them not only detect BOF, but also help prevent failures or lessen their impact. 
Therefore, in the next section we include internal ways to mitigate or preclude BOF with the discussion of ways to 
internally detect them. 
 
The best way to prevent BOF is to use a language other than C. Optimizing compilers and multicore processors 
remove most concerns about slower execution, allowing programmers to work on algorithmic improvements 
instead of checking every array access for a possible BOF. If you must write in C, the use of more structured stores, 
such as associative memory, prop lists, graphs, queues, sets, stacks, or trees reduces the risk of BOFs. These 
abstract data structures bundle accessing operations that only allow access to valid elements. Arrays have minimal 
structure: just the index order. 
 
There are many internal techniques for detecting, mitigating, or precluding BOF faults. They are either passive 
(detect BOF has occurred) or active (prevent BOF). Also they either require a programmer’s action in order to be 
inserted or are inserted automatically by the compiler or the OS. One technique is to add checks to verify that 
every access is within bounds. Research [4] shows that many forms of added integrity checking have little impact 
on speed. Chips with multiple, deeply-pipelined cores can check bounds while the array is being accessed. 
Checking may be done by the hardware, too. For instance, arrays might have read-only or unallocated blocks of 
memory on both ends. Small invalid array accesses result in memory violation interrupts. If performance still 
suffers, such checking could be enabled during development and testing, then disabled for production. 
 
Some of these techniques might not be applicable, for example, if the size of the buffer is not available to check. In 
such cases, more sophisticated techniques attempt to foil adversaries.  
 
Shadowing and fat pointers keep additional information about memory use and allocation in other parts of 
memory to enable access and taint checks [5].  Address space layout randomization (ASLR) distributes arrays 
unsystematically in memory. With ASLR, a BOF is unlikely to access the same unassociated object in different 
executions without a lot of work. Information that is connected, such as in the stack or in the same structure, is 
harder to rearrange. Padding allocates extra space for every array, so small magnitude BOF events might not cause 
problems. “Canaries” are special values, such as 0xDEADBEEF, added before and after arrays. If these values are 
changed, it is likely that a write BOF occurred. 
 
Testing for BOF is still crucial even when programs use good techniques. Test cases specifically targeted to 
exposing BOF may be generated through fuzzing, memory check, and negative testing. 
 
Fuzzing is a class of techniques in which random or structured random input is presented to a program with only 
limited checking of the outcome. Often the only checking is that the program did not crash or hang. Since fuzzing 
automates input generation and output checking, huge numbers of tests can be run at little cost other than a few 
hours of computer time. Fuzz testing is powerful because random inputs expose the limits of programmers’ 
analyses or they violate assumptions about inputs that can never occur. 
 
Structured random inputs are more powerful than purely random inputs, since the latter primarily exercise the 
input checking routines. For instance, if a particular input is a date, it is only useful to run a moderate number of 
purely random tests. Any additional random tests are almost always handled by the code that tests whether the 
date is invalid. After a moderate number of tests, structured random dates can be generated with random months 
from 1 to 12, random days from 1 to 31, and a wide range of years. Another approach to structured random inputs 
is to capture known input and randomly mutate it. For instance, image display programs can be fed actual images 
with random changes. 
 
Fuzzing with memory checking can be very effective. For instance, american fuzzy lop (afl) “tracks the branches 
that are taken and how often, then prefers using tests that cover the program differently when it evolves new 
tests” [7].  
 



Exact memory checkers, such as Address sanitizer (ASan) or Purify, check memory allocation and layout. The 
overhead can be significant, up to twice the execution time and memory use, but this is cheap insurance against 
vulnerabilities. 
 
Negative testing examines how the program behaves when inputs are not as expected. The vast majority of testing 
is designed to gain confidence that the program produces expected outputs for typical inputs. As Wheeler says, 
“Thorough negative testing … creates a set of tests that cover every type of input that should fail. … This would 
have immediately found Heartbleed, since Heartbleed involved a data length value that was not correct according 
to the specification. It would also find other problems like CVE-2014-1266, the goto fail error in the Apple iOS 
implementation of SSL/TLS.” [6]. 
 
You do not have to suffer from BOF. Buffer overflows can cause serious problems, especially when we 
acknowledge the possibility of adversaries who try to exploit vulnerabilities in your programs. The best approach 
to ensuring that your software does not have buffer overflows is to use a programming language in which such 
bugs are impossible (memory access is always handled reliably) or, at least, can surely be detected by tools during 
production. If today is not a good day for your C software to die, there are many techniques that detect the vast 
majority of buffer overflows. Reducing BOFs upfront will prevent your development process from being 
interrupted, scrambling to patch buffer overflows. 
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