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Abstract—This paper describes the methods used to 
register a mobile manipulator to a workstation to perform 
assembly tasks. The nonlinear, least square model of the 
system is formulated and Ceres Solver is used to compute 
the position of the robot arm relative to the mobile base. The 
use of non-contact fiducials to test the accuracy and 
repeatability of the mobile manipulator positioning in the 
context of an assembly operation is also discussed. Using 
mathematical methods and indirect measurements it is 
possible to compute the offset between physical components 
of the system where direct measurement is not feasible. 
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I.  INTRODUCTION  
Industry is making increasing use of robotics for material 

transport and processing. These robotic systems make use of 
many innovative sensing technologies [2]-[5] and control 
techniques [6]-[9] to improve their versatility and agility. 
The traditional approach to flexible manufacturing is to use 
mobile robots to transport materials [10]-[11] between 
workstations containing stationary robotic manipulators [6]. 
Another approach is to move the robotic manipulators 
between the workstations [12] using an Automatic Ground 
Vehicle (AGV). This configuration is referred to as a mobile 
manipulator in this paper. The use of mobile manipulators 
can be advantageous in a number of situations. It can result 
in cost savings when a single mobile manipulator can be 
used to replace several stationary manipulators. The use of 
mobile manipulators is also useful in cases where the item 
being worked on is too large to be easily moved. Throughout 
this paper the term manipulator will refer to the robotic 
manipulator arm mounted on the mobile base, and the 
mobile base will be referred to as the AGV. The combination 
is referred to as a mobile manipulator.  

The use of mobile manipulators in manufacturing 
presents new challenges [6]. The use of intelligent sensing 
systems such as computer vision or light detection and 
ranging (LADAR) sensors [13] can be used to measure a 
work-piece’s location and orientation relative to the 
manipulator. To effectively act on sensor information, the 
systems need to know precisely where those sensors are 
located with respect to the other elements of the system. The 
calibration of a new sensor involves the determination of the 
position and orientation of the sensor relative to other 

sensors and manipulators. These parameters are difficult, or 
even impossible, to measure directly. Sometimes the only 
way of determining these unobservable system parameters is 
through the mathematical analysis of the sensor’s own data. 
The calculation of arm-mounted camera offsets using images 
from the camera has been widely discussed in the literature 
[14]-[25]. In most of these methods, a key feature is the 
simultaneous solution of two sets of independent 
transformations. These transformations are typically the 
desired offset of the sensor and the pose of a calibration 
target. The solution of the calibration target pose is typically 
incidental to the solution of the desired offset. Similar 
methods can be applied to determining other system offsets. 

The focus of this paper is on indirect methods for 
determining the mounting offset of a robot manipulator on a 
mobile base. Section II discusses the need to calibrate the 
offset between the manipulator base and the AGV's 
coordinate system. It also describes the equipment and 
methods used to collect the data and evaluate the results of 
the mounting offset calibration. Section III. discusses two 
methods of computing the mounting offset: the first using 
measurements taken at selected positions around a test 
artifact, and the second a method of computing the offset 
using Ceres Solver and a selection of measurements from a 
random set of positions around the test artifact. Section IV. 
discusses the effectiveness and accuracy of the two 
calibration methods discussed in Section III.  Section V 
discusses the relative merits of using Ceres Solver for 
solving this type of calibration problem and the effects of 
measurement noise on the procedure.  

II. WORKSTATION REGISTRATION 

A. Description of the problem 
The goal is to be able to use the AGV to move the 

manipulator to a workstation and be able to accurately 
assemble items in that workspace [26]. To perform this task, 
it is necessary to accurately determine the location of the 
manipulator relative to the workspace. Two crucial 
components of this are determining: (1) the actual (not just 
the commanded) position of the AGV and (2) the position of 
the manipulator relative to the AGV. For component one, we 
need to be able to get the position of the AGV from the 
navigation system in near real time. All our prior research to 
this point has involved off-line, AGV position data 
processing from log files. For the current task, we must be 



 

 

able to pass the position information directly to the computer 
system that is controlling the manipulator.  

The second requirement is to establish the offset between 
the AGV and the base of the manipulator. This will allow the 
AGV’s position to be used to determine the global location 
of the manipulator when the AGV stops at a particular work 
station.  

B. NIST Mobile Manipulator Testbed 
The mobile manipulator used for the work described in 

this paper is a part of the National Institute of Standards and 
Technology (NIST), Robotic Systems for Smart 
Manufacturing Program. It was assembled as a platform for 
developing and testing performance standards [26]-[27] for 
mobile manipulators in industry. 

The mobile manipulator consists of a six-axis 
manipulator mounted on top of an AGV. The AGV is an 
electrically-powered, all-wheel drive, automatic forklift 
designed for material transport in an industrial setting. The 
AGV navigates from location to location using a path 
network that is preprogrammed off-line. The AGV location 
is measured using a navigation system that uses a rotating 
laser range sensor to detect the locations of reflectors 
strategically mounted throughout the work area. The 
positions of the reflectors are surveyed during the initial 
setup of the system. During operation the position and 
orientation of the AGV is calculated based on the range and 
angle to reflectors within range of the navigation sensor.  

In order to test the positioning accuracy and repeatability 
of the mobile manipulator, a laser retro-reflector sensor was 
mounted as the end-of-arm-tool (EOAT) of the manipulator. 
A digital signal is output from the sensor when the laser is 
emitted and reflected to the sensor. The signal is then read by 
the manipulator controller. Less intense reflections off of 
other objects in the workstation are ignored. The laser is used 
to interact with the Reconfigurable Mobile Manipulator 
Apparatus (RMMA) described in the next section. 

C. Reconfigurable Mobile Manipulator Apparatus  
The RMMA [26]-[28] is a test fixture developed at NIST 

to emulate the environment that would be encountered by a 
mobile manipulator. It was designed primarily to emulate the 
positioning requirements of an assembly task, specifically 
the peg-in-hole insertion task. It does this by providing a set 
of precisely positioned mount points for reflective targets. 
The targets are detected using a non-contact, laser retro-
reflector sensor designed to detect the presence of retro-
reflective targets in line with the laser beam. The sensor is 
mounted as the EOAT. The targets are designed to determine 
if the manipulator position is accurate enough for successful 
peg-in-hole insertion. The RMMA provides a way to test and 
verify the performance of mobile manipulator systems 
without the use of expensive 3D tracking systems [29]. 

The target fiducials are constructed using a piece of 
reflective material fixed behind a circular aperture. In some 
of the targets a fixed radius aperture is used, in others a 
variable aperture is used. A top down view of a target 
fiducial is shown in Fig. 1. The laser retro-reflector sensor is 
used to detect the alignment of the manipulator with the 

fiducial. A signal is returned by the sensor when the laser 
beam is reflected back by the fiducial. The position accuracy 
can be adjusted by varying the size of the aperture used to 
expose the reflector. In addition, a tubular collimator is 
added to the fiducial to restrict the detection angle of the 
fiducial. The position of a fiducial can be determined by 
performing a search starting somewhere near the fiducial’s 
actual position. By performing a spiral grid search with a 
step size of half the aperture diameter, the position of the 
fiducial can be determined with an accuracy bounded by the 

aperture diameter. Fig. 1 illustrates the path followed during 
a spiral grid search.  

Large circular reflectors can also be mounted on the 
RMMA to aid in mobile manipulator localization. The center 
of the large reflectors are measured by performing a 
bisecting search starting from a point within the radius of the 
reflector. The center is found by searching outward to find 
the reflector edges and bisecting that chord. After locating 
the center along one axis, a search for the reflector’s edges is 
performed along an axis perpendicular to the first. After the 
endpoints of this second chord are determined, the center 
position of the reflector can be calculated. The bisection 
search is illustrated in Fig. 2(a). After the centers of two 
reflectors has been measured, the position and orientation of 
the pattern can be determined. Then the positions of all the 
other target reflectors in the pattern can be calculated based 
on their position relative to the registration reflectors.  

 
D. Registration to RMMA Patterns 

The RMMA has a number of precisely-positioned, 
threaded holes into which the fiducials and reflectors can be 
mounted to exercise the system. There are two main target 

 
 (a) (b) 
Figure 2. (a) Bisection search concept, and (b) the mobile manipulator 
positioned next to the RMMA, the RMMA square and circle patterns, 

and the large reflectors within each pattern. 

 
Figure 1. Top down view of an RMMA fiducial showing grid spiral 

search pattern. 



 

 

configurations: a square target and a circular target as shown 
in Fig. 2(b). These are used to test the positioning accuracy 
and repeatability of the mobile manipulator after bisecting 
the large reflectors.  

The two dimensional (2D) pose of the square and circle 
pattern of small reflectors can be determined by measuring 
the locations of two reflectors, large or small, on each 
pattern. The other small reflector locations in the pattern can 
be calculated based on their relative offsets when given the 
pattern pose. Either a pair of small reflectors using the search 
method or a pair of large reflectors using the bisect method 
can be used to register the mobile manipulator with the 
workspace represented by each pattern. For example, after 
moving to the calculated reflector positions, if the small 
reflector is not immediately detected, a search is performed. 
The distance between the initial position of the manipulator 
and the position at the end of the search can be used to 
provide information on the accuracy of the mobile 
manipulator’s position and the accuracy of the registration.  

III. MANIPULATOR CALIBRATION 

A. Manual calibration method 
We experimented with methods to allow strictly manual 

calibration of the manipulator mounting offset using a 
number of simple measurements. The idea was to select pairs 
of calibration data measurements that would lead to the 
simple calculation of a single value of the manipulator 
mounting offset. This was done by selecting pairs of 
positions around the target where the other parameters of the 
manipulator mounting offset would effectively cancel each 
other out.  

The AGV positions were chosen to cancel out the effects 
of the other base offset parameters, or to minimize their 
effect on the computation. In testing, these values were good 
enough to come up with rough values of the offset, but not 
good enough for precise positioning of the manipulator. 
There were some interactions between the calibration 
variables that could not be completely eliminated using this 
method. However, the method works well as a sanity check 
for the other computation methods. 

The equations below describe the manipulator offset 
calibration in a 2D plane. The value being determined is the 
2D translational offset and rotation offset of the manipulator 
relative to the AGV. The reason for doing the calculations in 
2D is that the method for taking the measurements using the 
laser sensor only constrains the position in 2D, and the AGV 
navigation solution is only 2D. 

Fig. 3(a) illustrates a pair of mobile manipulator locations 
that isolates the x offset of the manipulator base. 
 Ax1 + Ox - Px1 = Ax2 – Ox + Px2, (1) 
 Ox = ½ (Ax2 – Ax1 + Px1 + Px2), (2) 
where:  

P is point in manipulator coordinates (Px, Py) 
A is AGV coordinate (Ax, Ay, Aa=angle) 
O is the manipulator mounting offset (Ox, Oy, Oa=angle) 
 
 Fig. 3(b) illustrates a pair of mobile manipulator 

locations that isolates the y offset of the manipulator base. 

 Ay1 + Oy – Py1 = Ay2 – Oy + Py2, (3) 
 Oy = ½ (Ay2 – Ay1 + Py1 + Py2) , (4) 
 
 Fig. 3(c) illustrates a pair of mobile manipulator 

locations that isolates the angular offset of the manipulator 
base. 
Ax1 + Ox – Px1 + R1 sin Oa = Ax2 + Ox – Px2 + R2 sin Oa, (5) 

 
where  
 Rn = ( Pxn

2 + Pyn
2 )1/2 (6) 

and 
 Oa = sin-1( (Ax1 – Ax2 – Px1 + Px2) / (R2 – R1) ) . (7) 

 
These formulas assume the manipulator is mounted on 

the AGV with its positive y-axis pointing toward the rear 
(fork-end) of the AGV (in the direction of the AGV’s 
negative x-axis).  

There are a number of issues that limit the effectiveness 
of this approach for determining the manipulator base 
location. One issue is that despite the best efforts to position 
the AGV as described, there will be some errors in 
alignment. The result is that the other offset terms will not 
cancel out exactly, and there will be some interaction 
between the parameters that will affect the results of the 
calibration. 

Another issue with this method is that it does not deal 
well with measurement error. Each parameter is calculated 
using a single pair of AGV positions. So any errors in the 
measurements are reflected directly in the calculated 
mounting parameters. The effects of measurement noise can 
be compensated for by averaging together a number of 
measurements at a given location.  

B. Calibration using Ceres Solver 
A better way to solve for the manipulator base offset is to 

express it in terms of a non-linear minimization problem. 
This allows all the interactions between the base offset 
parameters and the calibration measurements to be explicitly 
modeled. After the interactions between the calibration 
parameters and the calibration data have been modeled, the 
calibration parameters can be solved using iterative methods. 
The tool used to compute the iterative solution was the Ceres 
Solver library [1]. 

 
Figure 3. Mobile manipulator (green) positions relative to 

the RMMA (gray) selected for manual calibration of 
manipulator (blue) mounting offset. 



 

 

The calibration data consists of paired AGV and 
manipulator position data taken at various locations around 
the RMMA. The only constraint on the data is that it needs to 
be collected at a number of different AGV positions and 
angles in order for the solver to converge properly. Data 
from multiple target points can also be used as long as the 
association is maintained in the data model.  

The mobile manipulator system model is formulated as: 
 

 wp(k) = agvPose(t) * robotPose * rp(k,t),  (8) 
 

where:  
wp(k) is the estimated position of the kth target point in 

world coordinates;  
agvPose(t) is the measured pose of the AGV in world 

coordinates at time t;  
robotPose is the estimated pose of the manipulator in 

AGV vehicle coordinates;  
rp(k,t) is the measured location of the kth target point in 

manipulator coordinates at time t.  
The agvPose(t) and robotPose are 2D transformations 

consisting of a translation and a rotation. The points wp and 
rp are 2D points. Individual calibration targets are 
enumerated by k, and individual calibration measurements 
are enumerated by t. 

The program adjusts the values of wp(k) and robotPose 
to minimize the residual between the estimated world 
coordinates of the target points and the position value 
computed in (8) above using the calibration data. The 
estimate of the manipulator mounting offset is calculated 
using the data collected for the manual calibration 
augmented with additional samples not used in the manual 
calibration.  

The relationship between the calibration data and the free 
variables is established in Ceres Solver by the creation of 
residual blocks. The residual is defined as the difference 
between the estimated value of wp and the value of wp 
calculated by (8). The Ceres Solver then iteratively solves for 
the values of wp and robotPose that minimize the sum of the 
squares of all the residuals defined by the residual blocks. 
Ceres can also make use of a loss function, which can be 
used to minimize the effect of outliers. When the loss 
function is ρ(x) = x, Ceres minimizes the mean squared error 
of the residuals. The encapsulation of the residual 
computation in the residual blocks also allows Ceres to 
automatically compute the partial derivatives of the 
modeling equations. This eliminates a potential source of 
user error.  

This problem bears a close similarity to the three-
dimensional (3D) simultaneous, robot-world, hand-eye 
calibration discussed in [14][15][16]. The camera calibration 
problem is typically expressed as AX = ZB, where X is the 
3D pose representing the camera offset and Z is the 3D pose 
representing the location of the calibration target. It is easy to 
see that (8) can be manipulated into this form. Both X and Z 
are unknowns that have to be solved simultaneously. A 
number of closed-form solutions [25][14] have been 
proposed to solve for these values. The principle difference 
between the different solutions is how they resolve the 

weighting between the positional and rotational components 
[11] of the residual that defines the ‘best’ solution to the 
problem. Given the 2D nature of the current problem, it is 
probable that a closed-form solution to the problem can be 
formulated. However, since the calibration parameters do not 
need to be computed in real time, the iterative solution 
implemented with Ceres Solver is sufficient. The iterative 
solution method is also easily adapted to solve for other 
calibration constants, some of which may not be solvable 
with a closed-form solution.  

 More data is generally better data. Unlike the manual 
calibration approach, the iterative minimization approach can 
use additional data to minimize the effects of measurement 
noise. However, care must be taken to provide a suitably rich 
set of input data. For example, if all the samples were taken 
at different positions around the workspace, but with the 
same orientation, it is not possible to determine the 
orientation offset of the manipulator base. The iterative 
solution would either not converge, or would converge to an 
unstable value.  

Care must also be taken in the construction of the system 
model used for iterative minimization. If two or more of the 
free variables are correlated, the model will be under 
constrained, and may not be able to converge to an answer. 
A high degree of correlation between variables can also lead 
to a high degree of sensitivity to the input data.  

IV. RESULTS OF TESTING 
The initial set of calibration data was collected manually. 
The AGV was moved manually to various locations around 
the RMMA and its position was recorded. Then the 
manipulator was moved manually to the positions of the first 
and second reflectors of the square target. The manipulator 
was moved until the retro-reflector sensor detected the 
reflectors. Then the position of the manipulator was 
manually recorded. 

The reflectors used to collect the calibration data had a 
3.2 mm (1/8 in) aperture. The positions of the AGV relative 
to the RMMA for the manual data collection are shown in 
Fig. 4. A subset of these measurements, shown in Fig. 3, was 
used to perform the manual calibration described in Section 
III.A. The orientation of the EOAT was maintained constant 
relative to the manipulator base so that any lateral offset of 
the sensor from the tool center could be ignored. Any offset 
at the tool becomes part of the base offset for the purposes of 
this calibration. A subsequent calibration of the base offset 
using all of the collected data was performed using Ceres 
Solver.  

Testing of the manipulator base calibration was 
performed using an automated test program and the RMMA. 
A program was set up to drive the AGV to ten different 
positions around the RMMA as shown in Fig. 5. At each 
docking location, the position of the AGV, the world 
coordinate of the reflector, and the manipulator base offset 
were used to compute the robot coordinates of the reflectors 
using (8). After positioning the sensor, a search was 
performed to determine how far off the position calculation 
was. 



 

 

  
 
Ideally, it should be possible to move the manipulator 

directly to the reflector based on the position of the AGV. 
Unfortunately, noise and systematic errors in the AGV 
position data prevent this. Fig. 6 shows a plot of consecutive 
samples of the AGV’s x-axis position as the AGV sits 
motionless. The graph also shows a plot of the average value 
of samples 1 through n. This shows roughly how many 
samples need to average together to produce a reasonably 
stable position value. The y position and the orientation angle 
exhibit similar noise. The AGV position data is available at 
about 16 Hz, so it requires about 6.25 seconds to collect 100 
samples. In this 2D case a simple average of the orientation 
angles is sufficient. In the general case of 3D orientations, 
greater care needs to be observed in averaging the orientation 
[32][33]. In addition to the random noise, tests also indicate 
that there are some systematic biases in the AGV position 
data depending on the location of the AGV.  

 
The goal is to be able to align the manipulator with the 

workspace in the minimum amount of time. The ideal 
situation is to be able to perform the insertion task 
immediately on arrival at the workstation. However, in this 

case it is necessary to compensate for the unavoidable 
measurement errors. It becomes a tradeoff between time 
spent averaging the position data to produce a stable value 
vs. time spent searching for registration points in the 
workspace.  

The manual calibration method described in section III.A 
generated a base offset of (x = 831.5, y = - 7.5) mm and a 
rotation of 90.6°, yielding a mean square error of 1.25 mm 
and a maximum residual of 6.3 mm. The Ceres Solver came 
up with an offset of (x =833.637, y = -8.22223) mm and a 
rotation of 90.5314°, yielding a mean square error of 1.19 
mm and a maximum residual of 10.7 mm. The Ceres Solver 
was seeded with a variety of initial conditions, including 
setting all the variable parameters to 0, and had no problems 
with convergence. The resulting offset positions agreed with 
each other within 0.1 mm 

 

V. CONCLUSIONS 
With care, Ceres Solver has proven to be a valuable tool 

in calibrating a variety of hard to measure constants in our 
robotic systems. It provides an easy to use framework for 
solving difficult non-linear problems iteratively. The main 
issues that have to be observed are that the model cannot be 
either over or under constrained if Ceres Solver is to 
converge properly.  

 
Using Ceres Solver, we were able to compute the base 

offset of the manipulator mounted on a mobile platform 
despite the fact that the location of the AGV origin was not 
directly measureable. Using the computed offset and the 
location of the AGV, we were able to position the 
manipulator end effector within a few millimeters of the 
target regardless of the position and orientation of the AGV. 
While perfect initial positioning was not possible, the search 

 
Figure 5. Docking locations used for automated data collection 

and system evaluation. 

 
Figure 6. (blue)AGV position along x-axis, normalized to the first 

sample, x(1); (red) the mean of the normalized x value from x(1) to 
x(n).  

 
Figure 4. Position and orientation of AGV relative to the 

RMMA from manually collected calibration data. 



 

 

time required to achieve the desired alignment accuracy was 
greatly reduced by improving the initial positioning of the 
manipulator.  

The limiting factors in being able to accurately position 
the end effector are the noise and systematic errors in the 
AGV navigation sensor. This affects both the final position 
calculation and the accuracy of the manipulator base 
transform. The AGV position errors in the measurement used 
to compute the base offset affect the quality of the solution 
derived. The quality of the solution can be assessed by 
examining the residuals left after the model has converged to 
a solution for the free parameters. Large residuals indicate 
corresponding errors in the calibration data, either random or 
systematic.  

We plan on pursuing other methods to increase the speed 
of the workspace registration. The spiral grid search 
increases in time proportional to the square of the initial 
error. Performing a bisecting search on the large reflectors 
goes up approximately linearly with the size of the maximum 
expected error, since the size of the reflector needs to be 
scaled up to encompass the maximum initial positioning 
error. In the future, we are planning to investigate the use of 
camera-based position estimates to improve the alignment 
time.   

DISCLAIMER 
Commercial equipment, software, and materials are 

identified in order to adequately specify certain procedures. 
In no case does such identification imply recommendation or 
endorsement by the National Institute of Standards and 
Technology, nor does it imply that the materials, equipment, 
or software are necessarily the best available for the purpose.   
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