
Resilience and System Level
Security

July 14, 2016

Lee Badger

Computer Security Division

National Institute	
 of Standards and Technology

Note: Any mention of a vendor or product is NOT
an endorsement or recommendation.

Resilience, Slightly Structured

e rs s s r r… s s s s …s…

“normal”	
 operation
“normal,”	
 possibly
altered, operation

…time

s
recovery event state

Focusing mostly on the when:
• Proactive resilience

– Triggered via non-­‐attack event
– administratively-­‐imposed or automated

• Reactive resilience
– Triggered by an attack event -­‐-­‐-­‐ maybe

Proactive Resilience A few examples

• Required updates of authentication credentials

– Yet another complex password… or RSA token…
– Or,	
 coming soon,	
 use of the Common Access Card.

• Automated software diversity transforms.
• Error masking.
• Micro-­‐reboot [Candea,	
 Fox].
• Key refresh.
• Software rejuvenation [Trivedi]
• Self-­‐cleaning Intrusion Tolerance [Sood].
• Log file rotation.
• Virtual Machine migration.
• more…

A few IntrusionReactive Resilience
Detection ideas

• Behavior deviated from a specification
– How to get the specification

•	 Logic induction [Ko], language-­‐assisted [Ko], static analysis [Wagner,
Dean]

• Behavior matched a bad pattern (misuse)
– State Transition Analysis [Ilgun,	
 Kemmerer]
– Rule-­‐based	
 misuse detection	
 [Lindqvist,	
 Porras]

• Behavior is unusual (and presumed bad)
– Statistical anomaly on users [IDES	
 system]
– Frequency distribution changes [Emerald system]
– Sequence-­‐based	
 anomaly detection	
 [Forrest et al]

The Complexity of Configurations

Prescribed configurations
Mandated by policy

SelectedPlatforms (http://usgcb.nist.gov)
Windows7 ≥ 406 settings

IE8 ≥ 114 settings

IE 7 ≥ 106 settings

WindowsXP ≥ 260 settings

Redhat Linux 5 Desktop ≥ 258 settings
 e.g.
…

…

Credit:NISTSP 800-­‐70-­‐rev2
National Checklist Program …(http://web.nvd.nist.gov/view/ncp/repository)

Standalone Managed

US Gov Legacy Specialized
Security-­‐Limited
Functionality

http://web.nvd.nist.gov/view/ncp/repository
http:http://usgcb.nist.gov

A Specific Configuration: OS X 10.10 Yosemite

Set individually or
In groups.

Interaction between
locally-­‐applied and
“managed”	
 settings
values hard to pin
down!

The actual meaning
of	
 a setting depends
on	
 how reading
software interprets
it.

Credit: DRAFT NIST Special Publication 800-­‐179	
 “Guide to Securing Apple OS X 10.10	
 Systems for IT
Professionals: NIST Security Configuration Checklist” csrc.nist.gov

http:csrc.nist.gov

www.tolerantsystems.org

http:www.tolerantsystems.org

Several DARPA Projects Touching

on Resilience

AWDRAT CORTEX DAWSON PMOP GENESIS
(MIT,Teknowledge) (Honeywell) (GITI) (MIT, Teknowledge) (UVA, CMU)

LRTSHS Steward VICI RAMSES CSISM
(MIT) (JHU, Purdue) (Komoku) (GITI, Stony BrookU.) (BBN, Adventium,	
 PACE)

LMRAC

(MIT, Determina)

OASIS Dem/Val

DPASA

(BBN)

And more……

few Observations and Idea Sketches

•	 Mission/workflow specifications (rules, constraints) facilitated

adaptation.
–	 Detection via spec violation is very helpful!
–	 Tradeoffs: need to write the specifications.
–	 Idea: further research in expressing mission/workflows

• And runtime checking.
• Big semantic gap.

•	 Redundancy with discardable components facilitated service
maintenance, provided a chance to adapt.
–	 Enabled fallback,	
 diagnosis of attacks.
–	 Components sometimes automatically repairable.
–	 Idea: apply discardable components approach to modern execution

environments
• Virtual machines, containers, microservices.

•	 Secure configurations hard to define and author.
–	 The NIST	
 Secure Content Automation Protocol (SCAP) provides a basis for

representing configurations.
• E.g., see the National Checklist Program(http://www.nist.gov/itl/csd/scm/ncp.cfm)
• But content authoring is often labor-­‐intensive, skills-­‐intensive, and error-­‐prone.

–	 Idea: additional	
 research into generative approaches to content creation (e. g.
templating,	
 wizards,	
 macros).

http://www.nist.gov/itl/csd/scm/ncp.cfm

System Level Security

Take advantage of emerging systems architecture
patterns to strategically improve assurance.
• Modern software/service packaging strategies are flexible,	
 dynamic,	
 and efficient,	
 but:
• Isolation is configuration-­‐based.
• Can assurance be maintained or improved?
• Reasons for both Optimism and Concern.
• Building blocks include: physical machines,	
 physical networks,	
 virtual machines,	
 virtual

networks,	
 web browsers,	
 containers,	
 microservices,	
 and more.

•	 OS Containers
–	 “A container is an object isolating some resources of the host, for the

application or system running in it.” From the Ubuntu lxc(7)	
 man page.
•	 Microservices

–	 “An approach to designing software as a suite of small services, each
running in its own process and communicating with lightweight
mechanisms.”	
 From	
 M. Fowler, “Microservices Architecture”,
http://martinfowler.com/articles/microservices.html

http://martinfowler.com/articles/microservices.html

AA A

A
AAA

AA
A

Virtualization vs Containers

A application

Full virtualization Linux Containers
dom0

A
A

A
A

A
A

Guest Guest Guest A I/O
VMM

A

Host OS

Guest
OS OS OS OS

VMM Host OS

AAA A AA A AAAA

A AA A AAAAA

AAAA A

AAAA A AA A

AAAA AA

VMM

A
A

HW HW HW

type 1 type 2

• Ubuntu/vbox5.0.24 base VM: 5,101 M
• Ubuntu base container: 33 M

– Control groups: namespace, cpu, memory,
– Name spaces: UTS, IPC, User, PID, Network
– Device Drivers
– Configure to “isolate” an application or a system

Control group info from the Ubuntu lxc man page (note: “l” in “lxc is lowercase L).

Kick the Tires: Installing

.

.

From Scratch
Installation

Make a new
Container: fast

Kick the Tires: Running

We’ve made
some containers

Run one of
them

Run a single
command in a
container
(and exit)

Complex Configuration

• Architecture

• Hostname
• Halt signal
• Reboot signal

• Stop signal
• Init command

• Init id
• Psedo ttys
• Console
• /dev dir
• Mount points

• Root fs
• Avail syscalls

• Control group

• Network
– Type
– Link
– Mtu
– Name
– Hwadr
– Ipv4
– Ipv4 gateway
– Ipv6
– Ipv6 gateway

• Lifecycle
hooksx

• Logging

Info from ‘man lxc.container.conf’

few Observations and Idea Sketches

•	 Container	
 configurations	
 are highly expressive, but easy

to get	
 wrong
–	 Configuration templates and change tracking already being

addressed: e.g., Docker, LXC templates
–	 Idea: further research in semantically checking container

configurations; e.g., a container “lint” utility.

•	 Lightweight containers can promote the principle of least
privilege.
–	 “The Protection of Information in Computer Systems”, J.

Saltzer,	
 M. Shroeder.
•	 Economy-­‐of-­‐mechanism, fail-­‐safe-­‐defaults, complete-­‐mediation,	

open-­‐design, separation-­‐of-­‐privilege,	
 least-­‐privilege, least-­‐common-­‐
mechanism,	
 psychological-­‐acceptability

–	 Idea: develop	
 analysis techniques/tools to generate custom
containers that approximate least-­‐privilege for important
classes of programs.

Microservices

•	 Microservices

–	 “An approach to designing software as a suite of small services, each
running in its own process and communicating with lightweight
mechanisms.” From M. Fowler, “Microservices Architecture”,
http://martinfowler.com/articles/microservices.html

•	 Not really a new idea:
–	 Remember web services?
–	 Remember the Mach microkernel or GNU HURD?

•	 But some goals do appear to be different:
–	 Services should be easy to replace.

•	 So connective protocols need to be simple.
–	 Services should implement business capabilities.
–	 Services should have their own refresh cycles.
–	 Services should be programming-­‐language agnostic.

Credit: info frommartinfowler.com/articles/microservices.html

http://martinfowler.com/articles/microservices.html

“Hello World” Microservice”

hello.py

Import the necessary framework.
from nameko.rpc import rpc

Define the service.
class GreetingService(object):

Decorator exposes the
function that implements
the service.

def hello(self, name): Return a string to the
return “Hello, {}!”.format(name) client.

name = “greeting_service”

@rpc

• This example is from: nameko.readthedocs.io/en/stable/index.html.
• Nameko is one of numerous frameworks that can be used.
• Used here for convenience because it’s simple Python, and open source.

http:hello.py

“Hello World” Microservice”

hello.py

Import the necessary framework.
from nameko.rpc import rpc

Define the service.
class GreetingService(object):

Decorator exposes the
function that implements
the service.

def hello(self, name): Return a string to the
return “Hello, {}!”.format(name) client.

name = “greeting_service”

@rpc

• This
• Nameko is

example is from: nameko.readthedocs.io/en/stable/index.html.
one of numerous frameworks that can be used.

• Used here for convenience because it’s simple Python, and open source.

But thiswould be to simple...

http:hello.py

Under the Hood: Queuing

hello.py

from nameko.rpc import rpc

class GreetingService(object):
name = “greeting_service”

@rpc
def hello(self, name):
return “Hello, {}!”.format(name)

client
request

reply

rpc_queue

replyto_queue
server

From: www.rabbitmq.com/tutorials/tutorial-­‐six-­‐python.html

• Nameko depends on	
 rabbitmq,	
 an open source queuing framework.

www.rabbitmq.com/tutorials/tutorial-�-six-�-python.html
http:hello.py

Kick the Tires: Microservices

Launch
service

Access
service

Some Achievable Properties

from nameko.rpc import rpc,	
 RpcProxy

class Service(object):

name = “service”

other_rpc =	
 RpcProxy(“another service”)

@rpc
def hello(self):
pass

Credit: nameko.readthedocs.io/en/stable/key_concepts.html

• Decoupling of logic from
computing resources.

•	 Explicit inter-­‐service interface
specifications.
– Support Saltzer/Shroeder principles

•	 Independent update cycles.

•	 A dependency on another
microservice.

•	 Dynamically linked when a
“worker”	
 object is created.

•	 A worker object exists only for the
duration	
 of a single method’s
execution.
– (in the nameko framework)

•	 This is a form of “software
rejuvenation”.
–	 (the concept that restarting software

components clears out some bugs)

few Observations and Idea Sketches

• TrustedMicroservices

–	 Properly formulated,	
 could some services (and their messaging fabrics) be viewed
as ReferenceMonitors?
• Concept from the Anderson Report in the 1970s: always invoked, tamperproof, verified.

–	 Idea: research aspects of microservices interfaces and interactions and how
assurance arguments could (or could not) be constructed for systems
implemented with microservices.

• Interposition-­‐based	
 Enhancements
–	 Interposition on the right interfaces can augment,	
 transform,	
 deny,	
 or monitor

uses of the interfaces.
• However, interposition can also destabilize systems, and impose slowdowns.

–	 Idea: research interposition strategies that are compatible with microservices-­‐
based	
 systems.

Thanks

	Structure Bookmarks
	time s
	Figure
	Figure
	Figure
	Figure
	Figure
	Standalone
	Managed USGov Legacy
	Figure
	Figure
	Figure
	Figure
	OASISDem/Val
	A
	A A A A A A
	A I/O VMM A HostOS
	AAA A AA A AAAA A AA A AAAAA AAAA A AAAA A AA A AAAA AA
	A A
	Figure
	HW HW HW
	. . FromScratch Installation Makeanew Container:fast
	We’vemade somecontainers Runoneofthem Runasinglecommandinacontainer (andexit)
	Figure
	Figure
	Figure
	name=“greeting_service” @rpc
	• This
	Figure
	Figure
	Figure
	name=“greeting_service” @rpc
	• This• Nameko is
	client request reply rpc_queue replyto_queue server
	Launchservice Accessservice
	Figure
	Figure

