
Mostly	sunny	with	a	chance	of	cyber1	
David	Flater,	NIST,	2016-05-09	

	
Counting	known	vulnerabilities	and	correlating	different	factors	with	the	vulnerability	track	
records	of	software	products	after	the	fact	is	obviously	feasible.		The	harder	challenge	is	to	
produce	“evidence	to	tell	how	vulnerable	a	piece	of	software	is”	with	respect	to	vulnerabilities	
and	attack	vectors	that	are	currently	unknown.		This	means	forecasting	the	severity	and	the	
rate	at	which	currently	unknown	vulnerabilities	will	be	discovered	or	exploited	in	the	future,	
given	a	candidate	system	and	its	environment.	
	
Meteorologists	can	observe	the	present	state	of	a	weather	system	and	assume	that	the	future	
state	must	evolve	from	it	through	the	application	of	known	physics.		Small	features	that	are	
below	the	resolution	of	the	radar	are	correspondingly	limited	in	their	impact,	so	the	uncertainty	
can	be	bounded.		But	for	computer	system	vulnerabilities,	there	are	no	analogous	limits.		High-
impact	exploits	of	tiny,	obscure	quirks	that	were	not	on	anyone’s	“radar”	appear	with	
regularity.		Although	the	resolution	of	that	“radar”	is	continuously	improved,	the	complexity	of	
systems	is	increasing	faster,	so	the	relevant	details	are	inexorably	receding	into	the	background.	
	
Under	these	conditions,	our	best	available	predictors	of	future	vulnerabilities	in	systems	that	
were	responsibly	designed	and	implemented	may	be	nothing	more	than	metrics	of	size,	
complexity,	and	transparency.		Unexciting	as	it	may	be,	there	is	rationality	to	this	approach.		To	
develop	a	market	for	smaller,	simpler,	more	verifiable	systems	would	not	be	too	modest	a	goal	
for	a	large	government	effort	to	attempt.	
	
1	Disclaimer:		This	statement	reflects	only	the	views	of	the	author	on	the	topics	discussed,	and	
does	not	necessarily	reflect	the	official	position	that	NIST	may	have	about	those	topics.	
	
	
	 	



	
I	added	these	notes	after	the	workshop	to	include	important	points	that	don't	appear	in	the	text	of	the	slides.	
	

	

Mostly	sunny
with	a	chance	of	cyber

David	Flater
dflater@nist.gov

2016-07-06
with	notes	added	2016-07-14

1. This	presentation	reflects	only	the	views	of	the	author	on	the	topics	
discussed,	and	does	not	necessarily	reflect	the	official	position	that	NIST	
may	have	about	those	topics.

2. Identification	of	commercial	products	and	entities	is	not	intended	to	imply	
recommendation	or	endorsement	by	NIST,	nor	is	it	intended	to	imply	that	
the	products	or	entities	are	necessarily	the	best	available	for	the	purpose.

Thesis

• The	nature	of	the	challenge	is	not	measurement,	
but	prediction
• Conditions	are	unfavorable	for	making	a	rational	
prediction
• Measuring	what	ismeasurable	and	applying	
empiricism	will	move	us	forward
• Measuring	cost reveals	a	complication



	
The	metrology	perspective	is	that	measurement	is	about	quantities.		A	quantity	like	5	kg	has	meaning	because	it	is	
defined	as	5	times	a	standard	reference,	the	unit.		In	most	cases	it	would	be	nonsense	to	say	that	Software	A	is	5	
times	as	vulnerable	as	Software	B.		Vulnerability	is	a	quality,	not	a	quantity.		At	best	we	may	measure	some	
quantity	that	helps	us	to	characterize	it	better.	
	

	
The	count	of	known	vulnerabilities	is	unsuitable	as	a	surrogate	measure	of	vulnerability.		The	future	question	is	the	
most	interesting	one.	

NIST	Workshop	on	Software	Measures
and	Metrics to	Reduce	Security	
Vulnerabilities

Challenge:		produce	“evidence	to	tell	how	vulnerable	
a	piece	of	software	is”

Software	artifacts
Development	and	
maintenance	
processes

Other	artifacts

Some	measurement process Some	[surrogate]	measure	of	
vulnerability expressed	as	a	
magnitude	with	meaningful	
units	and	a	confidence	interval

Measurement	vs.	forecasting
• Past:		correlate	different	factors	with	the	vulnerability	
track	records	of	software	products
• Present:		count	known	vulnerabilities

• Abuse	of	scale:		count=2	does	not	mean	twice	as	vulnerable	
as	count=1;	any	count	>	0	means	go	fix	your	stuff

• Future:		forecast	the	severity	and	the	rate	at	which	
currently	unknown	vulnerabilities	will	be	discovered	or	
exploited
• No	longer	determining	facts	based	on	observations
• Not	causal:		in	theory,	today's	CVE	could	be	the	last
• Prediction	models	can	be	better	or	worse



	

	
In	every	respect	but	one	(controllability),	cyber	emergencies	are	less	predictable	than	weather	emergencies.		I	will	
focus	on	the	different	impact	of	unseen	details.	

We	can	obtain	an	adequate	prediction	of	impending	weather	emergencies	even	though	the	radar	misses	many	
small	details.		The	butterfly	effects	do	not	matter	as	long	as	we	can	see	the	hurricane	on	its	way	with	ample	time	
to	react.		But	for	cyber	emergencies	it	is	exactly	the	opposite;	it	is	the	unseen	details	that	are	most	likely	to	create	
an	emergency	with	no	warning	at	all.	

Prediction	models
Attribute Weather	emergencies Cyber emergencies
Preconditions Known Unknown,	random
Conditions Take	time	to	evolve Already	in place
Set of	variables Fixed Ever-expanding
Unseen	details Not important Critically	important
Guidance Unguided Precision-guided
Uncertainty Frequentist Epistemic
Degrees of	control Prepare,	mitigate Preventable,	in	principle?



	

	
The	threat	model	is	of	finite	size.		The	unknown	universe	of	potential	attacks	may	be	infinitely	large.		At	least	it	is	
larger	than	our	imagination,	as	we	are	consistently	caught	by	surprise.	

The	idea	that	fully	addressing	the	top	10	or	top	25	attack	vectors	would	cause	there	to	be	fewer	successful	attacks	
is	an	untested	hypothesis.		Past	experience	suggests	that	there	is	a	large	reserve	of	attack	vectors	that	do	not	
appear	in	the	threat	model.		Perhaps	attackers	will	simply	move	farther	down	the	list	and	never	run	out	of	attacks.	

Different	perspectives,	different	metrics:		the	security	industry	sees	progress	in	increasing	the	complexity	of	
attacks,	but	the	target	sees	no	progress	unless	the	frequency	of	attacks	actually	goes	down.	
	

Unseen	details	=	blindside	attack	vectors

• Electrical	engineers
• Memory	integrity	quietly	declined,	enabling	rowhammer.js

• Implementation	quirk,	documented	but	
overlooked
• Intel	implemented	an	x86_64	instruction	in	a	slightly	different	way	
than	AMD	had,	enabling	VM	escape	and	escalate	to	hypervisor
(XSA-7)

• Unforeseen	consequence	of	new	feature
• Memory	deduplication	became	a	thing,	enabling	a	much	bigger	side	
channel	than	was	anticipated	(Bosman	et	al.	2016)

• Forgot	about	that	legacy	feature
• Everyone	forgot	about	APIC	register	relocation	or	failed	to	see	its	
usefulness,	enabling	another	escalation	to	SMM	(Domas 2015)

• Accidentally	introduced	fault
• A	random	CPU	erratum	was	discovered,	enabling	a	remote	exploit	
that	looks	like	harmless	code	(Kaspersky	&	Chang	2008)

Where	do	they	come	from?		Everywhere.



	
Even	if	you	had	complete	visibility	into	the	system	as	it	stands,	there	is	the	problem	of	future-proofing	the	
assurance	case.		We	are	forced	to	upgrade	in	order	to	close	the	barn	door	on	known	vulnerabilities.		Each	upgrade	
comes	with	an	expanded	attack	surface,	which	leads	directly	to	new	vulnerabilities.	
	

	
A	risk	model	cannot	do	justice	to	unknown	unknowns.		We	cannot	possibly	estimate	the	probability	of	something	
that,	by	definition,	we	know	absolutely	nothing	about.		Such	a	number	is	nothing	but	an	arbitrarily	chosen	safety	
margin.	
	

The	future	will	not	be	mitigated
• An	assurance	case	is	a	fixed,	closed-form	expression up	
against	an	evolving,	open	world
• The	unseen	attack	surface	is	vast	and	growing
• No	opt-out

Risk	models	vs.	unknown	unknowns

• "Risks"
• Valid	to	estimate	based	on	historical	data

• "Structural	uncertainties"
• Follow	from	events	that	are	rare	or	nonexistent	in	the	
historical	record

• Frequentist	reasoning	breaks	down
• "Unknowables"
• Follow	from	inconceivable	events
• Bayesian	reasoning	breaks	down

Kees van	der	Heijden.	 Scenarios:	The	Art	of	Strategic	Conversation.		
John	Wiley	&	Sons,	2nd	edition,	2005.	



	
Security	may	grow	over	time	in	tightly-controlled	systems,	but	the	more	typical	treadmill	of	vulnerabilities	and	
mitigations	suggests	that	it	does	not	grow	over	time	in	general.		(Taking	the	target's	perspective	that	the	difficulty	
of	exploits	is	irrelevant	if	they	just	keep	on	happening.)	
	

	
Inventing	a	metric	is	only	the	beginning.		Hypotheses	must	be	tested.		Measurements	must	be	validated.	
	

Growth	models
• No	evidence	that	security	grows	/	vulnerability	
decreases	over	time	(?)
• "Trivial	forecast	has	some predictive	accuracy"	(Timm
Grams,	"Reliability	Growth	Models	Criticized")
• Applicable	to	the	frequency	of	vulnerability	discovery

What	is	measurable?
• Known	quantities
• Track	record	of	fixed	vulnerabilities
• Known	unfixed	vulnerabilities
• Measurable	hardness	of	certain	kinds	of	defenses

• Hypothesized	indicators	of	unknown	vulnerabilities
• Measures	of	diligence

• Test/analysis	coverage
• Hardening	measures

• Size	&	complexity
• Area	of	attack	surface
• "Code	smells"	(operationalized)
• Transparency	(including	amenability	to	analysis	of	
whatever	kind)



	
This	argument	is	not	valid	for	products	whose	primary	customer	is	the	government,	for	regulated	industries,	or	for	
long-lifecycle	software.		It	applies	only	to	the	mass	market.	

We	are	familiar	with	studies	showing	that	the	cost	of	correcting	defects	is	less	if	they	are	detected	and	corrected	
earlier	in	the	process.		But	as	long	as	the	market	tolerates	faulty	software,	the	producer's	cost	can	be	lowered	
further	by	just	never	correcting	the	defects.		A	lot	of	software	is	being	produced	as	a	consumable	(or	as	part	of	a	
consumable)	rather	than	a	durable	good.		Maintenance	is	minimized,	and	after	a	date	certain	the	product	is	simply	
abandoned	and	the	next	product	is	rolled	out.	

Within	the	mass	market,	the	cost	of	poor	security	may	even	go	negative:		a	more	secure	product	may	be	too	
difficult	to	configure,	resulting	in	a	competitive	disadvantage.		Even	if	the	cost	of	building	security	in	is	reduced	to	
marginal	as	the	strategic	plan	envisions,	the	business	case	may	remain	broken.	

This	economic	problem	may	overwhelm	and	obviate	the	measurement	problem.	

On	measuring	cost,	and	the	problem	
that	this	reveals
• "Price	of	nonconformance"	(Philip	Crosby)	or	Cost	Of	
Poor	Quality	(ASQ)
• Post-release	patching	is	much	less	costly	than	an	auto	
recall
• The	consequential	costs	of	vulnerabilities	in	COTS	software	
are	almost	entirely	paid	by	consumers,	not producers

• "Quality	is	free"—not	true
• "You	can't	afford	not to	test	/	build	security	in"—also	
not	true
• Broken	economy
• Consequence:		there	may	be	no	security	to	'measure'



	

	
Empiricism	is	a	useful	strategy	when	we	are	overwhelmed	by	unknowns,	but	it	must	be	used	with	great	caution.		
Correlation	is	not	causation.		A	good	fit	to	past	data	does	not	ensure	a	good	prediction.		Hypotheses	must	be	
tested.		Measurements	must	be	validated.		Apply	science.	
	

	
Not	addressed:		we	also	need	software	to	be	sufficiently	functional	running	at	least	privilege	that	tricking	users	into	
granting	excess	permissions	to	trojans	will	no	longer	work.	
	

Conclusions

• There	is	value	in	correlating	
different	factors	with	the	
vulnerability	track	records	of	
software	products	after	the	
fact
• Hypothesized	indicators
• Programming	languages
• Development	techniques
• Quality	processes
• Formal	methods….

• Engineering	wasn't	invented;	
it	evolved

• Do	what	[apparently]	works,	
but	verify	and	track	progress

• Goal:		reliable	predictors,	best	
practices

• However,	there	also	needs	to	
be	a	business	case

• Redistributing	risk	may	be	
necessary	to	"significantly	
curtail	software	vulnerabilities"	
in	the	COTS	market	

"Measure	what	is	measurable,	
and	stop	yer lyin'	about	the	rest"

(Misquoting	Galileo)

Software	Metrology
David	Flater

dflater@nist.gov


