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ABSTRACT 

For structural steel framing systems subjected to column loss, the ultimate gravity load 

carrying capacity of the system is often controlled by the rotation and deformation 

capacities of the connections within the affected bays. Within current design 

specifications, the potential for disproportionate collapse in structural design is evaluated 

by notionally removing critical load supporting elements from the structure, and designing 

the structure to sustain the applicable gravity loads without collapse via the alternative 

load path analysis method. Steel gravity framing systems subjected to column loss 

undergo large vertical deflections under gravity loads that induce large rotation and axial 

deformation demands on the connections. However, the acceptance criteria currently 

used to evaluate connection failure in alternative load path analysis are based on results 

from seismic testing that do not reflect the large axial demands imposed on the 

connections. Recent experimental data have shown that application of these rotation 

limits to column loss scenarios in steel gravity framing systems can be non-conservative. 

In this paper, experimental data from steel single-plate shear connections tested under 

column loss are compared to the rotation limits provided in existing standards, and the 

factors influencing the widely varying levels of conservativism for different connection 

geometries are explained. A new approach for calculating acceptance criteria for steel 

gravity connections under column loss is also introduced. The new approach provides 

more risk consistency and accounts for the important influence of axial deformation 

demands on the connections. 

INTRODUCTION 

Some building owners in the United States (e.g., the General Services Administration and 

the Department of Defense (DoD)) and certain jurisdictions (e.g., New York City) currently 

require buildings to be designed to resist disproportionate collapse. To evaluate the 

potential for disproportionate collapse in design, engineers rely on the alternative load 

path analysis method (see e.g. DoD (2009)), in which individual load-bearing elements 



 

are notionally removed from the structure, and the remaining structure is designed to 

support the applicable gravity load combination without collapse. For steel frames 

designed to support only gravity loads, the steel shear connections play a critical role in 

ensuring the system robustness and stability. Large-scale tests of steel gravity framing 

systems under column removal (Johnson et al. 2014; Johnson et al. 2015) have shown 

that the system robustness depends on the capacity of the connections to resist axial 

loads after undergoing large rotation and axial displacement demands.  

Current acceptance criteria for steel connections, which are used to evaluate connection 

failure in alternative load path analysis, take the form of rotation limits. These rotation 

limits are based almost entirely on results from seismic testing. In such seismic tests, the 

connections are typically subjected to rotation cycles of increasing magnitude until failure. 

These test conditions (1) result in low-cycle fatigue of the connection components, which 

is not relevant to column loss, and (2) do not reflect the large axial demands placed on 

the connections under column loss. While the increased plastic deformations associated 

with low-cycle fatigue may partially compensate for the lack of axial demands, recent 

experimental data have shown that direct application of seismic rotation limits to column 

loss scenarios in steel gravity framing systems can be non-conservative. Thus a better 

approach for calculating rotation limits for connections under column loss is needed. 

In this paper, experimental data from steel single-plate shear connections tested under 

column loss (Weigand and Berman 2014) are compared to the rotation limits provided in 

standards for seismic evaluation and retrofit of existing buildings and for alternative load 

path analysis. Widely varying levels of conservativism are observed for different 

connections, and the factors contributing to this variability are discussed. To address the 

issues with the existing acceptance criteria, a new approach for calculating rotation limits 

for steel gravity connections under column loss is introduced. The new approach 

accounts for the influence of axial deformation demands on the connections and provides 

more risk consistency in the evaluation of connection failure under column loss. 

COMPARISON OF EXPERIMENTAL DATA WITH CURRENT ROTATION LIMITS 

Several existing specifications incorporate rotation limits for various types of steel 

connections; however, the applicability of these rotation limits to connections subjected 

to column loss needs to be considered carefully. The American Society of Civil Engineers 

(ASCE/SEI) 41-13 Seismic Evaluation and Retrofit of Existing Buildings (ASCE 2013) 

provides rotation limits for different connection types derived from tests of connection 

subassemblies under rotation cycles of increasing magnitude without axial restraint. 

These rotation limits depend only on the connection type and the depth of the connection 

bolt group, and thus have a number of deficiencies when considering their applicability to 

column loss, including the following: 

1. they do not account for changes in connection geometry (e.g., changes in bolt 

diameter, thickness of the shear plate), which strongly influences the connection 

rotational capacity, 



 

2. they do not include the effects of axial demands on the connections, and 

3. they do not account for the effect of span length. 

The Unified Facilities Criteria (UFC) 4-023-03 Design of Buildings to Resist Progressive 

Collapse (DoD 2009), which covers buildings under the jurisdiction of the DoD, adopted 

life-safety rotation limits from ASCE/SEI 41-13 for most connections, but provided 

reduced rotation limits for specific connection types including welded unreinforced flange, 

bolted web moment connections, reduced beam section moment connections, and single-

plate shear connections. The rotation limits specified for these connection types in the 

UFC 4-023-03 were reduced relative to ASCE 41-13 based on a series of tests on 

connections subjected to blast and/or column removal conducted by the U.S. Defense 

Threat Reduction Agency and analyses performed by Myers, Houghton & Partners (Karns 

et al. 2008). Fig. 1 shows a comparison between the applicable acceptance criteria and 

measured rotational capacities for single-plate shear connections under column loss from 

Weigand and Berman (2014). The uncertainty in the experimental data was estimated as 

±1 % (Weigand and Berman, 2016). The acceptance criteria, which are shown as dashed 

lines, include rotation limits from ASCE/SEI 41-13 for both life safety (labeled ASCE 41-

LS) and collapse prevention (labeled ASCE 41-CP), as well as rotation limits from 

UFC 4-023-03 for primary members (labeled UFC-Primary) and for secondary members 

(labeled UFC-Secondary). The UFC-Secondary line is the same as the ASCE 41-LS line. 

The equations used to calculate the rotation limits are shown in Table 1. 

Fig. 1 shows that the ASCE 41 rotation limits would be unconservative if applied directly 

to consider column loss (i.e., they would predict larger rotational capacities than single-

plate shear connections can actually sustain). The UFC-Primary rotation limits are 

conservative when compared to the measured rotational capacities, but the amount of 

conservativism (i.e., the amount that the measured rotational capacities lie above the 

UFC-Primary line) vary widely for the different connections, which had different 

geometries (span, plate thickness, thread-condition, etc.). The connections with the least 

conservativism had either the longest spans or threads included in the shear plane. 

 

Figure 1: Comparison between rotation limits from ASCE/SEI 41 and UFC 4-023-03 and 

measured rotational capacities for connections subjected to column loss, as a function 

of the depth of the bolt group, 𝑑𝐵𝐺. 



 

Table 1: Specified Rotational Capacities for Single-Plate Shear Connections from 

ASCE 41-13 and UFC 4-023-03 (𝑑𝐵𝐺 is the depth of the connection bolt group in mm).  

Specification Condition Rotation Limit 

ASCE 41-13 
Life-Safety 𝜃max

pl
= 0.1125 − (0.0001063 mm−1)𝑑𝐵𝐺 

Collapse Prevention 𝜃max
pl

= 0.1500 − (0.0001417 mm−1)𝑑𝐵𝐺 

UFC 4-023-03 
Secondary Members 𝜃max

pl
= 0.1125 − (0.0001063 mm−1)𝑑𝐵𝐺 

Primary Members 𝜃max
pl

= 0.0502 − (0.0000591 mm−1)𝑑𝐵𝐺 

A new standard, which is intended to specifically address disproportionate collapse, the 

ASCE/SEI Standard for Mitigation of Disproportionate Collapse, is currently under 

development. However, much of the existing guidance is still based on the 

ASCE/SEI 41-13 acceptance criteria. The new approach presented in this paper for 

calculating rotation limits for single-plate shear connections is based on the kinematics of 

connection response to column loss, and provides capabilities to overcome the 

deficiencies discussed above.  

COMPONENT-BASED ANALYSIS OF FACTORS AFFECTING ROTATION LIMITS 

Fig. 1 demonstrates that the amount of conservatism between the measured connection 

rotational capacities and the rotation limits specified in ASCE/SEI 41-13 and 

UFC 4-023-03 vary as a function of connection geometry. However, Fig. 1 only includes 

the specific connection geometries tested by Weigand and Berman (2014). Here, 

additional connection geometries are considered to answer two key questions: 

1. What if the beam spans were longer? 

2. What if the bolt threads were included in the shear plane? 

Because experimental data are not available for these geometries, a component-based 

model for single-plate shear connections developed by Weigand (2016) is used to answer 

these two questions. In the component-based connection model, the connection is 

discretized into an arrangement of component springs that geometrically resembles the 

connection, where each component spring embodies a single bolt and characteristic-

width segments of the shear plate and beam web (Fig. 2(a)). The component-based 

connection model was already validated against all 13 of the single-plate shear 

connection tests from Weigand and Berman (2014), and shown to predict their capacities 

within an average of 10 % (e.g., see Figs. 2(b) and 2(c)), using only the connection 

geometry, material properties, and applied loading (see Weigand (2014) for more details). 

Fig. 3(a) shows the measured rotational capacities from Weigand and Berman (2014), 

with span length differentiated by marker color (all except one connection had threads 

excluded from the shear plane), Fig. 3(b) shows calculated rotational capacities for 

connections with 3.66 m (12 ft) longer spans (i.e., 12.8 m (42 ft) and 18.3 m (60 ft) spans) 

and all other connection geometry held constant, Fig. 3(c) shows calculated rotational 

capacities for connections with threads included in the shear plane, and Fig. 3(d) shows 



 

calculated rotational capacities for connections with threads included and with the 3.66 m 

(12 ft) longer spans. Comparison of Figs. 3(a) and 3(b) shows that increasing the span 

would reduce the rotational capacities for all connections, and that one 3-bolt connection 

rotational capacity would actually fall below the UFC-Primary acceptance criteria. 

Comparison of Figs. 3(a) and 3(c) shows that including threads in the shear plane would 

also reduce the rotational capacities for all connections, and that four of the connection 

rotational capacities would fall below the UFC-Primary acceptance criteria. Including 

threads in the shear plane had a larger influence on the connection rotational capacities 

than did increasing the span (inferred by comparing Figs. 3(b) and 3(c)). Fig. 3(d) shows 

that connections having both threads included in the shear plane and long spans are 

particularly vulnerable to having rotational capacities that are non-conservative, relative 

to the UFC-Primary acceptance criteria (seven out of the total thirteen connection 

rotational capacities fall below the UFC-Primary acceptance criteria). This demonstrated 

potential for the rotational capacities of realistic connection geometries to be predicted 

non-conservatively by the most stringent current acceptance criteria (UFC-Primary) 

motivates the need for a better approach for calculating connection rotational capacities. 
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(a) (c) 

Figure 2: (a) discretization of single-plate shear connection into individual bolt-widths, 

(b) comparison of predicted vertical force-displacement response with connection data 

and (b) comparison of predicted horizontal force-displacement response from 

component-based model with connection data. 



 

  
(a) (b) 

  
(c) (d) 

Figure 3: (a) Experimental data; calculated rotational capacities for, (b) increased span 

lengths and threads excluded from shear plane, (c) threads included in shear plane, and 

(d) increased span lengths and threads included in shear plane. 

ANALYTICAL DERIVATION OF ROTATION LIMITS UNDER COLUMN LOSS 

For frames designed to support gravity loads only, loss of a column results in large vertical 

deflections at the missing column that impose significant rotational demands on the 

connections. Significant axial demands can also be imposed, depending on the degree 

of restraint provided by the surrounding structure. Where the connections are 

discontinuous through the unsupported column (e.g., for a corner column loss scenario) 

minimal axial restraint is provided, and thus the axial demands are small. However, where 

the connections span continuously through the unsupported column (e.g., for an interior 

column loss scenario), the axial restraint provided by the surrounding structure can 

subject the connections to significant axial deformations in combination with large 

rotations. Fig. 4(a) illustrates the limiting case of no axial restraint, where the end columns 

are free to translate horizontally in-plane and the connections are subjected only to 

monotonically increasing rotation until failure. Fig. 4(b) illustrates the limiting case of 

perfect axial restraint, where translation of the column ends is prevented. 



 

  
(a) (b) 

Figure 4: Column loss scenarios with (a) no axial restraint and (b) axial restraint. 

The rotational demands imposed on the connections can be calculated in terms of the 
vertical deflection of the missing column, ∆, as 

 𝜃 = tan−1 (
∆

𝐿r
)  , (1) 

where 𝐿r is the distance between the centers of the bolt groups at the ends of the framing 

members in the undeformed configuration (Fig. 5). For the condition without axial restraint 

(Fig. 4(a)), no axial demands are imposed on the connections. For the condition with axial 

restraint (Fig. 4(b)), an axial deformation 𝛿 is imposed on each connection (see Fig. 5), 

which can be calculated as follows: 

 𝛿 =
𝐿r

2
[√1 + (

∆

𝐿r
)

2

− 1]  . (2) 

 

Figure 5: Connection demands based on vertical deflection of the missing column. 

For both axial restraint conditions, the axial deformation of each connection spring (see 
Fig. 2(a)) can be calculated in terms of 𝜃 and 𝛿 as: 

 𝛿j = 𝛿 + 𝑦jsin 𝜃  , (3) 

where 𝑦𝑗 denotes the vertical distance from the 𝑗th connection spring to the center of the 

bolt group. Eqs. (1) - (3) are based on the assumption that the beams are rigid relative to 
the connections, so that the rotations and deformations localize in the connections. This 
rigid-body assumption is further discussed by Weigand and Berman (2014), including 
validation of the assumption through comparison with experimental measurements.  

For the condition without axial restraint (i.e., 𝛿 = 0), the connection spring deformations 
from Eq. (3) are essentially linear with increasing rotation (Fig. 6(a)). For the condition 

with axial restraint, 𝛿 is calculated from Eq. (2), and larger tensile deformations of the 
component springs are observed for a given level of rotation (Fig. 6(b)), relative to the 
case without axial restraint. Because of the dependence of Eq. (2) on the span length, 
larger span lengths result in increased tensile deformations of the component springs. 



 

  
(a) (b) 

Figure 6: axial deformations of connection segments, 𝛿j, with (a) 𝛿 = 0, and (b) 𝛿 ≠ 0. 

If the limiting axial deformation for a single bolt row of a connection, 𝛿u, is known, either 
from experiments or from computational modeling, then the corresponding rotation limit 

for the connection, 𝜃u, can be calculated. The rotation limit, 𝜃u, corresponds to the 
configuration in which the axial deformation of an extreme bolt row (lowest or highest) 
reaches 𝛿u. Setting 𝑦𝑗 = 𝑑BG/2 in Eq. (3) for the extreme bolt row and introducing the 

small-angle approximation sin(𝜃) ≈ 𝜃 allows Eq. (3) to be solved for 𝜃u, as 

 𝜃u =
2(𝛿u−𝛿)

𝑑BG
  . (4) 

For the condition without axial restraint (i.e., 𝛿 = 0), Eq. (4) reduces to 𝜃u = 2𝛿u/𝑑BG. For 
the condition with axial restraint, substituting Eq. (2) into Eq. (4), introducing small-angle 
approximations, and neglecting higher-order terms (see Main and Sadek (2012) for more 
details), results in a quadratic equation for 𝜃u that yields the following positive root: 

 𝜃u = 2√(
𝑑BG

2𝐿
)

2

+
𝛿u

𝐿
(1 +

𝛿u

𝐿
) −

𝑑BG

𝐿
  . (5) 

Fig. 7 compares solution curves calculated from Eq. (5) against measured rotation limits 

for single-plate shear connections subjected to column loss from Weigand and 

Berman (2014), for 3-bolt and 4-bolt connections with 9.1 m (30 ft) and 14.6 m (48 ft) 

spans. Fig. 7 verifies that the rigid-body model provides a close approximation to the 

measured rotation at connection failure, as demonstrated by the close proximity of the 

connection data (circular markers) to the solution curves. The solution curves are also 

shown to be slightly conservative relative to the experimental data (i.e., the solution 

curves are consistently below the experimental data), which is expected based on the 

rigid-body model and the assumed perfect axial restraint. 

By using Eq. (5), along with average measured values of the limiting axial deformation 𝛿u 

for different groups of connections tested by Weigand and Berman (2014), rotational 

capacities can be calculated and compared with the experimental data (Fig. 8). 

Compared with the wide scatter of the experimental data relative to current rotation limits 

(Fig. 1), Fig. 8 shows that Eq. (5) provides significantly improved consistency with the 

experimental data. The improved consistency is achieved by accounting for the influences 

of axial restraint, span length, and connection geometry, factors which current rotation 



 

limits used in alternative load path analysis do not directly consider. Fig. 8 shows that 

Eq. (5) is conservative relative to the experimental data for all but one test, with the slight 

non-conservatism in that case resulting from the use of the average measured value for 

𝛿u. Uncertainty in the deformation limit 𝛿u is the key factor affecting the uncertainty in the 

calculated rotational capacities. In selecting appropriate values of 𝛿u to use in design, 

uncertainty in the value of 𝛿u should be considered to ensure consistent reliability. 

  
(a) (b) 

Figure 7: Comparison between Eq. (5) and measured rotational capacities for (a) 3-bolt 

single-plate shear connections and (b) 4-bolt single-plate shear connections. 

 
Figure 8: Comparison between Eq. (5) (dashed line) and measured rotational capacities 

for single-plate shear connections (circular markers). 

SUMMARY AND CONCLUSIONS 

When evaluating the performance of connections subjected to column loss, it is important 

to recognize that connections behave differently when subjected to seismic loads than 

when subjected to column loss. Acceptance criteria in existing specifications, which were 

developed based on results from seismic testing, may not be appropriate for column loss 

as they do not capture (1) differences in connection geometry (e.g., bolt diameter, plate 



 

thickness, thread condition), (2) the influence of axial deformation demands on the 

connections, and (3) the influence of span length. As a result of these deficiencies, current 

acceptance criteria are not risk-consistent for connections with different geometries, or 

frames which have different spans. 

Results from component-based models of single-plate shear connections showed that 

there exist connection geometries in which even the most stringent currently specified 

acceptance criteria (the UFC 4-023-03 rotation limits for primary members) would not be 

conservative for disproportionate collapse. However, a new approach in which the axial 

deformation capacities of component-width segments of the connection are used to 

calculate rotational capacities for the connections can overcome these deficiencies to 

provide results that are both risk-consistent and capture the influence of axial deformation 

demands on the connection, including those resulting from span length. 
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