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Abstract— To have any chance of application in real world, 

advanced manufacturing research in data analytics needs to 

explore and prove itself with real-world manufacturing data. 

Limited access to real-world data largely contrasts with the 

need for data of varied types and larger quantity for research.  

Use of virtual data is a promising approach to make up for the 

lack of access.  This paper explores the issues, identifies 

challenges, and suggests requirements and desirable features in 

the generation of virtual data. These issues, requirements, and 

features can be used by researchers to build virtual data 

generators and gain experience that will provide data to data 

scientists while avoiding known or potential problems. This, in 

turn, will lead to better requirements and features in future 

virtual data generators. 
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I.  INTRODUCTION 

Much of the research in advanced manufacturing 
involves the creation of models and simulation-based 
experimentation. Simulation leads to significantly faster 
results than physical experiments that require use of real 
machine tools and materials in a physical shop floor [1]. 
Such simulations and models require data for carrying out 
those experiments. These data can be representative of a 
large number of sources such as machine tools, robots, 
suppliers, etc. The data types are also quite varied such as 
material density and strength, machine tool wear and energy 
usage.  

The concept of simulated data has been referred to in 
multiple ways in the literature. Many people use terms such 
as artificial data, virtual data, generated data, fake data, and 
synthetic data to all mean the same thing. In contrast, people 
denote data generated by physical machines as real data, 
physically-generated data, or live data. We (the paper 
authors) use both sets of terms interchangeably in speech but 
prefer synthetic data and real data in the written word. The 
term live data is occasionally used to emphasize physically-
generated data that is being consumed within a small 
window of its generation. However, this can be confusing so 
we generally avoid that term or make clear in context what 
we mean. 

A. Background 

Synthetic data generation has received significant interest 
in recent years across a number of fields.  A recent review 
[2] of the literature related to synthetic data identifies use in 
multiple fields including economics, urban planning, 
transportation planning, cyber security, weather forecasting, 
and bioinformatics.  Interestingly this review didn’t report 
any activity in manufacturing. The paper focused on 
synthetic data generation for learning analytics in the 
education environment and identifies some of the same 
issues that are discussed in relation to advanced 
manufacturing in different situations such as machine-
learning training, or extension of real data set. Similarly, [3] 
focused on synthetic data generation for Internet of Things 
(IoT) environment to address some of the same challenges 
including limited access to real world data discussed here. 

There have been papers that tangentially touch on 
synthetic data generation but with a primary focus on 
simulation. For example, [4] describes the European Virtual 
Factory Framework (VFF), an interoperability framework for 
factory modeling. The VFF includes a Virtual Factory Data 
Model (VFDM) for common representation of factory 
objects to evaluate performance of production systems and a 
Virtual Factory Manager to manage a shared data repository. 
Support for the external simulation tool, Arena, demonstrates 
the ability of data generation and potential for improved data 
interoperability [5].  

The National Institute of Standards and Technology (NIST) 

has two efforts specifically in the area of data generation for 

manufacturing. The first is the STEP2M Simulator which 

simulates machine monitoring data, given process plans [6]. 

The process plans are Step-compliant data interface for 

Numeric Controls (STEP-NC) conforming [7] and the 

resulting generated data are presented using MTConnect [8]. 

A second project defined a virtual machining model that 

simulates a 2-axis turning machine [9]. This model uses 

STEP-NC [10] commands and material property as inputs, 

and uses equations to compute time and power consumption 

depending on the tool path. The simulation generates 

machine-monitoring data in MTConnect format usable for 

other simulations. In [11], the authors demonstrated the 

usability of these data with a 3-axis milling operation. They 



integrated the earlier work into an agent-based model to 

provide capabilities to create a shop floor model [12]. More 

complex shop floor models could be built combining 

different agent-based models representing different 

operations.  Such a combination would lead to the 

generation of data at the machine level but also at the shop 

floor level where data could be aggregated. 

II. WHY IT IS SO HARD TO OBTAIN REAL DATA 

There are many reasons why it can be difficult or 
impossible to get sufficient real data both by type and 
quantity. Libes et al describe how significant amounts of data 
exist but are nonetheless unusable [13]. For example: 

• Data may be proprietary preventing access. 

• Data may have timestamps but are not synchronized 
preventing data joining. 

• Data frequency may be insufficient. 

• Data may be formatted inadequately leaving 
ambiguity. 

• Data may have inexplicable gaps. 

• Data may have been generated with different 
underlying goals. 

• Metadata may be inadequate or non-standard 
resulting in semantic confusion. 

• Accuracy may be undocumented. 

• Data provenance may be suspect (modified without 
documentation) or unknown. 

• Data may be too costly to obtain. 
We lack the space to explore all of these in detail but we 

will consider one as an example: data formatting. 
Enterprises sit atop a vast collection of disparate data, 

likely produced by a multitude of heterogeneous sensors, and 
often ultimately stored in files formatted according to a 
variety of standards, with varying degrees of compliance. 
Significant amounts of data may follow no standards 
whatsoever. Using standard specifications such as XML 
(eXtensible Markup Language) and JSON (JavaScript Object 
Notation) can help [14]. However, problems such as under 
specification can remain and leave ambiguities. For example, 
using an XML attribute called “time” means little if there is 
no definition for how the string is to be interpreted:  absolute 
with respect to UTC (Coordinated Universal Time) or local 
time zone? Is the time relative to the start of a process or 
something else? 

While standards can be helpful, they are not panaceas. 
For example, equipment and software from different vendors 
may use different standards. Data, while still standard-
compliant, can lose fidelity during interchange. Standards 
frequently have different levels of compliance that users may 
choose. Even highly specific standards do not guarantee data 
are usable. For example, the machine tool standard, 
MTConnect, covers only one direction of communication; 
so, correlation to commands may not be present or need 
reconstruction with timing uncertainties. Equally important, 
MTConnect does not cover all possible types of data that a 
machine tool can generate. For example, MTConnect defines 
a fixed set of statistics for DataItems. Kurtosis, a measure of 

peakedness relative to a normal distribution, is in the set. 
Skewness, a measure of symmetry, is not in the set. 

All of these choices of standards and specifications have 
reasons for existence. For example, different vendors may 
have different reasons for their choices. These can include 
historical issues, expense in tracking developing standards, 
and interactions with other software. For example, the choice 
of OWL (Web Ontology Language) variants depends on how 
much need there is for expressiveness – the breadth of 
concepts that can be represented [15]. But greater 
expressiveness brings with it a loss of computational 
guarantees [16].  

Data standards may be descriptive (describing practices) 
or prescriptive (defining practices). Each carries with it 
downsides. For example, descriptive standards may prevent 
the use of innovative techniques that are too new to be 
incorporated in standards while prescriptive standards may 
be ignored when better technology solutions are discovered. 
These dilemmas are particularly apparent in rapidly changing 
and highly-competitive fields. To allow variations and 
technological advances, some standards intentionally leave 
areas of ambiguity with a resulting ambiguity in the data. 

III. USES OF SYNTHETIC DATA 

Development and maintenance of data analytics 
applications, models, and real factories can all make use of 
synthetic data, albeit in different ways. For example, data 
analytics applications can use synthetic data to test that 
training algorithms perform adequately. Factories can also 
use the data to experiment with proposed changes. For 
instance, it is not possible to test a replacement machine tool 
before it is purchased and installed; however, data 
synthesized by a machine tool simulator can allow the 
factory to be modeled and tested as if the machine tool was 
present. Similarly, policy or algorithm changes can be tested 
before deployment in a real factory. Lastly, synthetic data 
can be a resource for test suites that exercise the full range of 
states of a system – including both normal operation and 
error conditions. 

In short, synthesized data can be used throughout the 
lifecycle of a factory – from initial brainstorming to 
development to maintenance. We focus on several uses of 
synthetic data in this section. 

A. Machine-Learning Training 

Machine learning models are not explicitly programmed 
or based on a physical model but primarily by analyzing 
data. For example, neural networks are trained on data and 
typically produce networks that make no attempts to model 
the physics. There is no use of equations that correspond to 
performance of any real machines.  An appropriate amount 
of data is necessary to make sure that machine learning 
algorithms well perform.  

While defining the right amount of data is one area of 
research, it is equally important to understand the limitation 
of synthetic data in this context. For instance, a neural 
network that is trained on synthetic data is unlikely to 
provide a better model than the model used to generate the 
synthetic data in the first place. For this reason, users (e.g., 



neural networks) of machine-learning algorithms should 
track the provenance of any generated data used to train 
those algorithms. Without such provenance, mistaken 
assumptions may arise over the quality of decisions 
generated by machine-learning algorithms. 

B. Verification 

The American Society of Mechanical Engineers (ASME) 
defines verification as the process of determining that a 
computational model accurately represents the underlying 
mathematical equations and their solution [17]. During 
development, verification is used to ensure that data 
analytics applications and models meet their design 
requirements and specifications. While direct methods are 
available in limited ways for verification, data can be used in 
verification, in some cases as input to be consumed and in 
some cases as output to be tested against. 

Being able to generate indefinite amounts of data allows 
more extensive testing than would otherwise be possible 
through limited reference data produced by physical 
machines. In addition, parameters can be changed to generate 
different synthetic data that would be very expensive or 
impossible to obtain by using physical machines. 

C. Validation 

ASME defines validation as the process of determining the 
degree to which a computational model is an accurate 
representation of the real world from the perspective of the 
intended uses of the model [17]. Validation confirms that 
applications or models match the needs of the customer. 
Data analytics applications and models should be validated – 
ideally, during development and continuing through the 
lifecycle. Data are useful in this validation process, 
particularly in cases when physically realized applications, 
models, and physical instances will not yet be available. 
Having synthetic data – both input and output – as if the 
enterprise existed, can be used to test that requirements are 
valid. Throughout the life of applications, models, and real 
factories, synthetic data can be used to validate that proposed 
changes continue to result in valid results. 

D. Optimization 

Optimization is the process of improving algorithms or 
applications to produce the best results, and improve the 
system under study. (This term is often mistakenly used for 
the process of “improvement” which is more practical while 
“optimality” is aspirational.) Optimization is frequently 
performed by simulation. 

Synthesized data can be used for optimization, such as in 
factory models. These models are not algorithmic machine-
learning models (see earlier) but rather simulations of 
factories (or subsets) that can be tested for performance 
optimality. For example, work cell and machine tool 
arrangements of a factory floor can be simulated and tested 
prior to deployment in order to select the best layout.  Since 
such simulations have no real counterpart, synthesized data 
can be used in the simulation. For example, part flow, 
machining time, machine breakdown, etc., can be used 

during simulation runs to produce and measure more realistic 
performance metrics. 

E. Augmenting Real Data 

For many reasons, real data can be missing or 
insufficient. For example, sensors may be incapable of 
collecting data quickly enough. Many techniques are 
possible to replace missing data values. For example, simple 
mathematical interpolation can produce data that fill gaps 
and reflects existing data. However, interpolation can distort 
data. This may sound counterintuitive but means that 
interpolated data give the mistaken impression that the data 
are smoother than it actually is. 

Analytic applications can automatically fill in missing 
data values by essentially running algorithms in reverse 
producing data that is more representative of real data. For 
example, once a neural network has been trained on a data 
stream, the neural network can be used to produce more data. 
However, by its very nature, such synthetic data will not 
have any impact on analytics rendering it of no intrinsic 
value except perhaps for pro forma purposes such as creating 
more complete visualizations. 

Missing data can be used during development (for 
example, for optimization) but is also useful when a factory 
is in production. In that case, there may be instances or 
periods when data are unavailable whether due to a broken 
sensor or communications problem. In this case, missing 
data can be replaced with synthetic data in real time. 

IV. CHALLENGES FOR DATA GENERATION AND 

COLLECTION 

While synthetic data have many uses, challenges exist, 
many of which may not be obvious until encountered. Thus, 
we describe some of most significant challenges in data 
generation. 

A. Quantity Sufficiency 

Algorithms for synthesizing data require some minimum 
amount of realistic data although the data may be of a 
different type. For example, generation of energy data may 
require a machine specification and material data. Some 
algorithms may generate data by using data similar to what is 
desired – for example, by increasing or decreasing the 
variance of an existing dataset. 

Data analytics algorithms generally increase accuracy 
with more data when that data cover more of the descriptive 
space to be analyzed. Of course, more data can slow down 
algorithms worsening time performance. More data can also 
be unnecessary, essentially providing no new information. 
More data can even introduce artifacts that are irrelevant and 
hurt model performance. However, sufficient quantities of 
training data can be significant, for example during walk-
forward testing while training neural networks. Knowledge 
of the quantity required for training can be as useful as the 
choice of the data itself and which data are more likely to be 
seen in the real system. Defining the right quantity might be 
possible by calculating the squared error of the data analytics 
model while training and testing to define if it is over or 



under fitted. Defining the right quantity of data before 
training is, however, a more complex issue. 

B. Timing 

Closely related to quantity sufficiency are issues of 
timing. These issues can be complex and be impacted by 
many parts of an enterprise but sensor behavior is the 
simplest place to explore such issues. 

Sensors operate in two modes.  Some sensors run free 
meaning that as soon as they have finished reporting data, 
they begin collecting or sending additional data. They are 
constantly busy. This can be useful for algorithms that want 
to consume as much data as possible.  Other sensors may be 
synchronized to an internal or external source. Such sensors 
artificially discretize readings. Being able to synthetically 
simulate such data sources can be useful for properly 
modeling real-world factories. 

Generators may need to be capable of generating both 
types of data sources with the ability to generate data at 
arbitrarily large rates. 

C. Dynamic Generation 

Data analytics developers often do not need or want to 
store all data in advance of the need. The amount of data 
needed may be too large to store. Generating data 
dynamically can also better reflect the way data are 
consumed as well as leaving open the possibility for 
feedback that can change the data generation process. The 
converse is also true. Consider data coherency. Data 
coherency can be disrupted by updating data at the same 
time it is being consumed but without synchronization. By 
avoiding the storage of large amounts of synthetic data, data 
coherency is maintained with lower costs (e.g., locking 
protocol overhead). For these reasons, it can be useful to 
generate and immediately consume data dynamically 
whenever possible. 

On the other hand, storage of large data sets may be 
useful for certain types of analysis. When time and space are 
not significant factors, data can be evaluated more 
thoroughly. Resulting models that are relatively static or are 
already optimal do not need to be continuously or frequently 
retrained if there is no benefit to doing so. 

 

1) Feedback and Control 
Real-time performance applications make decisions that 

are fed back to the system thereby affecting its performance. 
Naturally, changing the outcome of such decisions changes 
the performance of the system which in turn changes any 
performance data produced by the system that would 
ordinarily be fed back to the analytics applications. 

It is desirable for data generators to be able to incorporate 
feedback in order to control future data generation. This is 
not necessarily easy as feedback control can introduce non-
trivial synchronization issues. For example, lock-step 
synchronization is typically not necessary as there are lags in 
real factories when data-driven decisions affect controllers 
and similarly how quickly sensors can return feedback. 
Determining at what levels this is accounted for (e.g., 

generators, models, simulations) and with what accuracy can 
be challenging. 

 

2) Speed 
For physical data generation, data are generated at 

whatever speed the producers can generate it. For data 
analytics applications, that speed is generally not of interest. 
A data analytics developer is not consuming real data 
directly from a shop floor except in rare circumstances. 
Developers almost always use models or simulations that can 
run faster than real-time. For that reason, when data are 
generated dynamically, it is desirable to have data generators 
that can run faster than real-time, preferably as fast as the 
simulation itself. 

In some contexts, data generation may need to be slowed 
down to real time to ensure that applications are able to 
provide feedback in a timely manner to impact factory 
performance.   For example, if batch dispatching decisions 
occur every minute and an analytic application promises to 
improve system performance through better dispatching, the 
application should be able to execute and respond within 
sub-minute intervals.  The capability of such an application 
to perform well in a real system should be tested with a 
manufacturing simulation that ensures real time 
performance. 

D. Data Hiding / Suppression 

For a variety of reasons, it can be useful to suppress or 
hide (i.e., to not use) synthetic data during analysis (or 
development and testing of analysis). It may be desirable to 
hide details of the implementation as well. Some of these 
considerations are presented in this section. 

 

1) Intentional hiding 
For various reasons, more data may be available than is 

desired. Thus, it may be useful to hide some of the data. For 
example, the analytic engines may be incapable of 
consuming all the data, particularly if time limits are an 
issue. This is a concern with the need for real-time results. 
Data sampling might be a solution to achieve this task 
without modifying the dimensions represented in the data 
set. 

 

2) Walk-forward testing 
Walk-forward testing consists in training a machine 

learning model with a subset of the data, and testing the 
trained model with an unseen subset of the data. It is another 
example where data must be hidden – at least initially. This 
may be repeated on many quantities of unseen data in order 
to ensure that systems are not over-trained. The aim is to 
create a model that is not necessarily expert at recognizing 
only the training data but capable of recognizing data that is 
also likely to be produced in similar scenarios. 

 

3) Filtered 
Data may be hidden because it is withheld (filtered) for a 

variety of reasons. For example, data that is clearly wrong or 
exceeds certain bounds may be suppressed depending on the 
needs of the data analysis applications. An analytics 



application may be designed to run in a live system where 
data are guaranteed by database constraints as to its quality. 
During development, guarantees may be maintained when 
the generator is providing the data without any database 
filtering. Describing what should be filtered can be 
arbitrarily complex as there are many reasons for filtering 
and the reasons can be combined in complex ways. For 
instance, analytics software under development might be 
restricted from out-of-bounds data (previous example) as 
well as malfunctioning sensor readings that are within 
bounds but inaccurate. 

 

4) Black box generators 
A data generator or its underlying models and data may 

be treated as a black box. Hiding the implementation can 
prevent certain types of analytics that may give an 
unwarranted impression of a tool that is more universal than 
it is, simply because the implementer (or software) can “see” 
the implementation and use the implementation rather than 
the data as a basis for analytics. 

Data hiding also prevents premature optimization as well 
as shortcuts that can overlook problematic data. For example, 
an optimizer that knows it will never see data outside a 
certain range may learn that it is not necessary to handle such 
data. When it is faced with such unexpected data, perhaps by 
a misbehaving process upstream, the optimizer is likely to 
behave inappropriately since it has not been trained on such 
data. 

E. Data Quality 

Sensors quantize data, have lags, fail, and have other 
issues. So, ideal data should never be expected from real 
enterprises. However, there is value in building ideal data 
generators. For example, certain types of algorithms require 
or perform much better when optimal goals are provided. 
This is the case with many non-heuristic approaches to 
nondeterministic polynomial (NP) problems such as 
identifying optimal routing [18]. Nonetheless, most interest 
for data analytics is in creating more realistic data. The 
following sections describe data quality issues in data 
generation. 

 

1) Reliability 
Physical systems can be unreliable so it is useful for 

synthetic data to be able to reflect that. This unreliability can 
be difficult to model as misbehavior can come about in so 
many ways. For example, sensors can behave erratically, 
communication can encounter interference, or power can be 
dirty. Each causes reliability issues. 

Within each type of problem, there is a spectrum of 
unreliability. Reliability can also change over time, typically 
increasing but occasionally decreasing. In short, reliability is 
complex so generating realistic unreliable data is complex. 

 

2) Accuracy 
The accuracy of physical sensors must be accounted for 

by data generators. While an accuracy limit may suffice, it is 
more realistic to produce a range that models the physics of 
the sensor; however, this is often not possible. Instead a 

variety of ranges are used such as a Gaussian distribution, 
Poisson distribution, or Bayesian-based distribution. 

 

3) Uncertainty 
There are many sources of uncertainty. For example, 

machine-tool manufacturers themselves may not have a 
usable mathematical model for their products. Even if they 
do have a model, it may specifically omit aspects that are 
difficult or entirely unknowable, for instance. So for these 
and other reasons, physical device manufacturers often state 
only a range of accuracy leaving questions of distributions a 
difficult challenge between the designer of a generator which 
mimics that device and the user who configures the data 
generator. Quantifying and aggregating (epistemic and 
aleatory) uncertainty generated by different sources during 
the simulation is complex and requires to clearly identify and 
evaluate each source of uncertainty [19]. 

 

4) Adjusted 
Sensor data can often be adjusted at intermediate 

processing nodes. For example, data can be joined at a 
network node that collects data from several sensors for each 
entry in a log. Adjustments can include normalization, 
scaling, and quantization. This means that analysis software 
may only see adjusted data rather than raw data. For this 
reason, data generators should be able to produce either raw 
data or data adjusted in a variety of ways. 

F. High-Level Key Performance Indicators Without Low-

Level Data 

In many scenarios, the company is interested in high-
level (i.e., enterprise or shop floor level) Key Performance 
Indicators (KPIs) or data and not in low-level (i.e., process or 
machine level) KPIs or data. For example, machine tool 
measurements may not be significant to higher-level 
processes such as machine-tool inventory predictions despite 
the basis on machine tool information. Many analyses only 
use high-level KPIs as input such as finished product cost, 
inventory cost, and goals such as minimizing late orders. 
Once the KPIs are created, the low-level data are never again 
used. In such scenarios, the low-level data are not necessary 
if the KPIs can be created independently. 

Data generators that provide high-level KPIs may not 
need to model the underlying physics if the KPIs are good 
enough. Of course, “good enough” is challenging to define. 
Generating KPIs in a top-down approach (for example, 
driven by organizational goals) may be harder than 
generating low-level data and doing a higher-level 
simulation to arrive at KPIs. Whether this is true depends on 
the fidelity requirements of the KPI-consuming applications 
[20]. 

G. Well-Described Scenarios 

To generate data that are useful, scenarios must be 
identified to define the context in which the data applies. 
Finding and describing such scenarios can be difficult for 
several reasons. There are many variables that likely differ 
for every factory: products, machine tools, goals, and costs. 
These are almost always mixed. For example, a 



manufacturer may have a mix of machine tools and the 
number, types, and layout will differ from one manufacturer 
to another. Similarly, one manufacturer’s goals are likely to 
differ from another. One manufacturer may have contracts 
with suppliers and utilities while another manufacturer will 
have different suppliers and other constraints. Machine tools 
will be of different ages and exhibit different performance 
characteristics. Where semi-automation is an issue, human 
factors will be unique as well. 

To accommodate differences such as constraints or goals, 
data generator parameters can be adjusted; however, thought 
should be given to whether these parameters are intrinsic to 
data generation. For example, while both machine tool 
performance characteristics and goals (such as “use minimal 
power”) will affect the generated data, the former is intrinsic 
to the generated data while the latter can be considered a 
dependent variable that is only meaningful to a higher level 
of control. 

H. Manufacturing Levels 

It is customary to organize a hierarchy of manufacturing 
at different levels of operation, e.g., models for machine 
tools, workcells, factories, enterprises. Additionally, 
customers and supply chains may also be modeled. 
Developing simulators or analytics applications may be 
specific to a level or may include multiple interacting levels 
such as model supply chain level and its interaction with the 
factory level [21].  

Data at any one level are likely to have a strong 
dependence on other levels of a hierarchy. Obviously, a 
factory model depends greatly on the performance of the 
operations within. Less obviously, a machine tool depends 
on the goals of its workcells or even higher levels. For 
example, a machine tool may wear less by running at a 
slower speed which is only acceptable if the goals of the 
factory or workcell permit. 

I. Data Type Complexity 

Many different types of data exist in a real factory. For 
example: 

• Material Data: costs/characteristics/physics of 
material, water, energy 

• Process Data: task time, customer demand, 
production schedules 

• Product Quality: geometry, structural integrity, 
performance 

•  Manufacturing equipment: efficiency, reliability, 
spare capacity 

• Employee data: salary, hours worked, employee 
skills 

It is possible to generate all of these but the more types of 
data generated, the more work is required. For practical 
purposes, many of these are unnecessary and only depend on 
the particular goals of the analysis. Not all goals can be 
achieved simultaneously as many will always conflict. For 
example, it is generally impossible to achieve both minimal 
energy usage and time. There is always a tradeoff. For the 
same reason, there is no minimally optimal data set.  The 

scope of data sets varies based on the objectives of the 
analysis and the level of abstraction desired by the analyst. 

J. Repeatability, Reproducibility, and Provenance 

Repeatability, reproducibility, and provenance are closely 
related, all having to do with the confidence in the ability to 
recreate generated data. 
 

1) Repeatability 
Repeatability of data generation from a physical 

enterprise is difficult. For synthetic data generation, 
repeatability is generally straightforward. Generators must be 
capable of publishing and accepting random number seeds. 
Generator code must not require anything else that could 
change the data output from one run to another. The code 
itself must be published in such a way that the code remains 
the same so that others can rerun the same data generator 
with identical results. This can be ensured with a signing 
procedure such as providing the results of a cryptographic 
hash function. 

 

2) Reproductibility 
While repeatability is straightforward, reproducibility can 

be more difficult since underlying libraries and computer 
hardware can cause output differences despite identical high-
level code. Languages such as C are particularly notorious 
for this. These differences are not necessarily a bad thing but 
intended to give programmers more control over efficiency 
of an implementation. However, programmers are free to 
ignore (or may be unaware of) such subtleties which can lead 
to non-reproducibility. C is not alone. Many higher-level 
languages have subtle dependencies as well. In [22], the 
authors review correct approaches to assess the consistency 
of measuring process. These approaches can be similarly 
applied to data simulation to ensure consistent generation of 
data. 

 

3) Provenance 
Some data may not need reproducibility as long as it is 

suitable for its purpose and its provenance can be 
ascertained. Provenance through a digital signature provides 
a guarantee of the source of the data and that it has not 
changed. Only the signing of data and its metadata is 
necessary. 

Closely related to provenance is traceability. While data 
may be provably shown to have come from one data 
supplier, it may be of no value if others cannot ever hope to 
build a factory that reproduces it. 

K. Model Type Choice and Provenance 

There are a variety of model types used for data generation. 
There may also be hybrid combinations of these models. 
 

1) Physics-based Models 
Physics-based models are based on equations that reflect 

our understanding of what physically happens in real life. In 
theory, physics-based models are the optimal way of 
modeling any manufacturing process since they capture all 



information and effectively produce our best understanding 
of a process. 

However, these equations can be difficult to obtain, 
relying on, for example, a machine tool manufacturer which 
may have little incentive to provide specific types of 
equations or explanations. Alternatively, the equations may 
exist but fail for a variety of reasons to correlate with what is 
observable. For example, machine tool wear may be a factor 
in the equation but is effectively unmeasurable because it 
requires destructive testing or machine disassembly that 
voids a warranty. 

For practical reasons, it is rarely the case that we truly 
have accurate equations that hold in all situations. For 
example, it would not be sensible to have quantum-level 
models when Newtonian models are sufficient for almost all 
purposes. Similarly, while physics-based models are often 
implemented using continuous simulation, the ability to 
achieve arbitrary levels of resolution and scale is generally 
overkill for most data generation needs. 

The result is that physics-based models are always 
idealized and require adaptation to be used for realistic data 
generation. 

 

2) Empirical Models 
Empirical models are based on data, ideally from 

physical systems. These data are then used to build machine-
learning models using techniques such as neural networks 
and Gaussian networks. Such empirical models are generally 
used with discrete simulation techniques although this is not 
mandatory. 

The result is that empirical models are adequate to 
provide good data generation for some situations. However, 
for situations that they have not been trained for such as edge 
cases and other unusual events, empirical models can fail to 
generate suitable. 

 

3) Special-purpose Models 
Special-purpose models can be based on other techniques 

besides those based in statistics or physics. For instance, a 
data generator could be used to produce intentionally bad 
data specifically to test the behavior of analysis tools. It may 
suffice to use a stream of zeros or just open a file of random 
data. Similarly, an ideal data generator (see 4.5) can be used 
to test minimal fitness or conformance. Such data can be 
based on published or nominal specifications from a 
manufacturer with no regard to a statistical or physical 
model. Data could also be aspirational, referring to a goal for 
which no known algorithms can achieve but represent 
provable limits. 

L. Integration, Interoperability & Standards 

While it is important that data be meaningful, it is also 
important that data are in a form that allows it to be easily 
used. 
 

1) Data Interchange Standards 
It is desirable for data to be in a form that uses well-

recognized standards. A collection of standards, often 
considered as a stack or hierarchy, may be used together 

although rarely is the delineation clean. For example, 
standards such as XML or JSON may be used for low-level 
syntactic formatting while International Standards 
Organization (ISO) 10303 for product manufacturing 
information and ISO 22400-2:2014 (KPIs) apply to higher-
level manufacturing semantics [23], [24], [25]. Many 
standards exist to address other concerns. For example, 
CMSD (Core Manufacturing Simulation Data) and CSPI 
(COTS (Commercial Off-The-Shelf) Simulation Package 
Interoperability) are standards for facilitating the use of 
simulation models such as shop floor configurations [26], 
[27]. Standards such as MTConnect and Open Platform 
Communications Unified Architecture (OPC-UA) may be 
used to exchange manufacturing information from machine 
tools while Representational State Transfer (REST) and 
Simple Object Access Protocol (SOAP) are examples of 
standards for carrying out communications [28],[29].  

Data generators must be able to produce data in a form 
that either conforms to the relevant standards or is readily 
adaptable to them. 

 

2) Plug-in interoperability 
Data generators should be able to serve as plugins to 

other systems such as domain-specific testbeds and model 
design software that may provide other services such as 
model transformation or optimization. By using standards, 
plug-in capability can be more easily supported and 
generators can more likely be incorporated into additional 
systems. In the reverse sense, generators should also be able 
to use models based on a plugin architecture. For example, a 
data generator only capable of generating the results of a 
milling machine using aluminum would see limited use. 
Allowing the plugging in of models of tools and materials 
and parameterizing factors such as feed rates, a generator 
would be much more useful, leading to more of a widely 
applicable generator. 

V. SUMMARY AND CONCLUDING NOTES 

Limited access to real-world data is a significant 
impediment to advanced manufacturing.  Use of virtual data 
is a promising approach to make up for the lack of access.  
We have presented issues, challenges, and desirable features 
in the generation of virtual data. These can be used by 
researchers to build virtual data generators and gain 
experience that will provide data to data scientists while 
avoiding known or potential problems. This, in turn, will 
lead to better requirements and features in future virtual data 
generators. 

Three areas for future research and development are of 
particular interest and deserve increased attention and effort. 

 

A. Test Data Repositories 

Many people experimenting with data analytics would 
benefit from repositories of both real data and synthetic data. 
Such repositories would allow multiple academic researchers 
or commercial companies to be confident that they are using 
the same data in creating and testing software to deal with 
what are intended to be common scenarios. It is also 



desirable to provide configuration data to reproduce the raw 
data in the repositories so that it can be reproduced as well as 
modified. 

Data repositories should also have other aspects such as 
areas for algorithms and models that have been proposed to 
address data sets in the same repository. Ideally, 
documentation areas and discussion forums would be helpful 
as well. For example, observations or questions about 
particular data or data configurations would enable others to 
make progress by more easily re-using earlier results. 

Repositories have been established that incorporate some 
of these ideas. For example, Bosch has created a challenge 
that includes measurement data produced from production 
lines [30]. One example challenge is to “predict which parts 
will fail quality control.” The Bosch data sets and 
competitions are hosted on Kaggle, a service for general data 
science challenges [31]. Another example is the NIST Smart 
Manufacturing Systems Test Bed which makes available 
data from a manufacturing facility which resembles a small 
manufacturing shop [32]. Sets of data can be downloaded or 
queried. In addition, dynamic data streams can be monitored 
using MTConnect. 

 

B. Standards 

Standards development is already an area of intense 
interest. However, there are gaps in standards that would 
facilitate data generation and publication of synthetic data. 
For example, PFA (Portable Format for Analytics) is a useful 
specification in which to express data analytics [33]; 
however, while a PFA-enabled host can generate data usable 
to other software, PFA lacks the ability to control the seeding 
of its random number generators which limits its flexibility 
and repeatability. More work is needed on standards to better 
support data generation. 

DISCLAIMER   

No approval or endorsement of any commercial product by 

the National Institute of Standards and Technology (NIST) is 

intended or implied. Certain commercial software systems 

are identified in this paper to facilitate understanding. Such 

identification does not imply that these software systems are 

necessarily the best available for the purpose.  
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